
Multiple Spin-Block Decisions∗

Peter Damaschke

School of Computer Science and Engineering

Chalmers University

41296 Göteborg, Sweden

ptr@cs.chalmers.se

Abstract

We study the online problem of holding a number of idle threads on an applica-
tion server, which we have ready for processing new requests. The problem stems
from the fact that both creating/deleting and holding threads is costly, but future
requests and completion times are unpredictable. We propose a practical scheme
of barely random discrete algorithms with competitive ratio arbitrarily close to
e/(e−1), where e ≈ 2.718 is Euler’s number. The competitive ratio is sharply con-
centrated for any input. The results are generalizations of the well-known result
for the rent-to-buy problem.

Key words: multithreading, spin-block problem, online algorithms, randomiza-

tion, implementation issues

∗An extended abstract appeared in the Proceedings of the 10th International Symposium on

Algorithms and Computation ISAAC’99, Chennai/India, Lecture Notes in Computer Science 1741

(Springer), pp. 27-36.

1

1 Introduction

Problem statement. A server in a network has to execute a large number of jobs

due to requests from several clients. Multithreading is an approach to serve many

requests simultaneously, either on parallel processors or scheduled by a multitasking

operating system, such that short requests do not have to wait for completion of other

time consuming jobs, which would be frustrating or even unacceptable. Each arriving

job is assigned to some currently idle thread which is responsible for completing the

job. If no thread is idle then a new thread is created. (We consider systems not refusing

jobs.) A busy thread that has finished a job becomes idle again.

The workload of the server, i.e. the number of simultaneous jobs, can fluctuate over

time very much, but creating and deleting a thread is a costly operation. In object-

oriented environments, this is more expensive than creating/deleting other kinds of

object, cf. [8]. So we should have enough idle threads ready for future requests. On

the other hand, running many threads on the spot over long periods would be a waste

of processor cycles which could be better used by other applications residing on the

same machine. (The scheduler periodically checks all threads, also idle ones, whether

some work is to be done.) Hence one has to observe a suitable strategy for deleting

idle threads, so as to keep the total costs possibly small, without knowledge of future

jobs. This is a typical online problem which can be stated as follows: How should we

assign new jobs to idle threads and which of the idle threads should we delete at what

time, in order to minimize the total costs for creating, deleting, and running threads?

(We presume some familiarity with online algorithms, the concept of competitiveness,

and the several notions of adversaries; see [1] for a general introduction to the field.)

The problem is sometimes implicitly mentioned in articles in software developer

magazines, as the idea of pooling threads and deleting them after some idle time is

quite common. For heavily loaded servers with fluctuating density of calls, savings on

this front may have a measurable effect [2]. The subject is particularly interesting if the

request sequence mainly consists of clusters of many short jobs, which is a typical case

in many environments. In view of this practical motivation, the strategy should not

only be competitive with respect to the mentioned costs, but also easy to implement

and, most importantly, it must be computationally simple, to not compensate savings

of thread costs by large amount of additional data structure for thread administration.

Although our motivation was thread administration on a server, other fields of in-

terest are imaginable, too. To mention an example, the same problem appears when

2

a pool of database connections is left open for serving future requests. (Opening and

closing a connection is expensive). One may further think of supplying energy if switch-

ing the sources on and off incurs some costs, or of renting storage space in a warehouse

if a fee is charged for each alteration of the contract. See [7] for more hints.

Model. We assume that progress of busy threads within our server application

does not depend on the number of additional idle threads, but they take available

processor time that might else be used by other applications. (This is suitable e.g. if

the system devotes some fixed fraction of time slices to the busy threads, or if threads

are delegated to different processors on a parallel machine.) In other words, we assume

that the schedule of jobs is given to the online player and is beyond his influence. In

particular, the workload, i.e. the number of simultaneous jobs which equals the number

of threads that have to be busy, is given at any time.

We assume the following costs. Running an idle thread one time unit long incurs

cost 1, reflecting a penalty for the scheduler’s extra work. Since time and cost units can

be chosen arbitrarily, we may w.l.o.g. fix them in such a way that C + D = 1, where

C and D are constant costs of each create and delete operation, respectively. That

means, running a thread for 1 time unit is as expensive as a creation-deletion pair. We

will find this choice to be very convenient. (The time unit is fixed henceforth. Prior

to real installation on a concrete machine, the cost ratio, and hence the appropriate

time unit, must be estimated or determined by experiment which may be part of the

installation routine.)

Overview. As we shall see in Section 2, our problem turns out to be a certain

natural generalization of the single rent-to-buy problem, which is, along with some of

its variants, well-known under different names, including the leasing problem, spin-

block problem, ski rental problem etc.: One needs a resource for a time interval with

previously unknown duration. One is allowed to rent the resource at price 1 per time

unit or to buy it at an arbitrary moment at price 1. To distinguish our problem from

single rent-to-buy, we refer to it as the multiple spin-block problem. (Let an idle thread

spin, or block/delete it.)

Quite trivially, the best deterministic competitive ratio for single rent-to-buy is 2.

In Section 2 we give an optimal offline algorithm, called BRIDGES, for our problem,

and in Section 3 we propose two different 2-competitive deterministic online algorithms.

In contrast to the optimal deterministic result, there exists an e/(e−1)-competitive

randomized algorithm against an oblivious adversary [6], where e ≈ 2.7183 is Euler’s

3

number. Throughout the paper it is called the KMMO algorithm. We shall briefly

review the KMMO algorithm in Section 4, and then we describe how any randomized

rent-to-buy algorithm can be turned into one for the mulitple spin-block problem,

preserving the expected competitive ratio. However the drawback of the resulting

algorithm is that it either needs much randomness, or the actual competitive ratio can

be much higher than its expectation.

In order to get algorithms with smoother behaviour, we first study discrete ran-

domized rent-to-buy algorithms in Section 5. Such an algorithm may buy the resource

only in a finite set of points on the time axis (unlike e.g. the KMMO algorithm that

can buy at any time according to a certain probability density). The main result of

Section 5 is that some n-point discretization of the KMMO algorithm has competitive

ratio no worse than e/(e − 1) + 1/2n, and this is optimal, subject to an 1/n2 term.

In Section 6 we use this result to construct a scheme of r-competitive algorithms for

multiple spin-block decisions, with r arbitrarily close to e/(e−1). It is computationally

simple, guarantees a sharply concentrated competitive ratio, and it is barely random

in the sense that a constant number (depending on n) of random bits per time unit is

used, for arbitrarily many simultaneous threads.1

In Section 7 we briefly mention some extensions of our results: algorithms with

lookahead, and the influence of inaccurate cost measures on the competitiveness.

Related literature. As mentioned, our results are based on the optimal random-

ized online algorithm for rent-to-buy [6]. A time-discrete version has been given also

in [3] in a more general context (leasing with interest rates), however for our purpose

we need solutions with prescribed probabilities 1/n. In [7] a sequence of isolated rent-

to-buy decisions is studied under the assumption that requests follow an unknown but

fixed probability distribution, and the goal is to adapt the online player’s strategy to

this distribution. In contrast, we consider concurrent threads which overlap in time,

and we do not make probabilistic assumptions. The TCP acknowledgment delay prob-

lem [4] is of similar flavour as ours. An essential difference is that each acknowledgment

has unit cost regardless the number of acknowledged packets, whereas our operations

create or delete only one thread each. The call admission problem is also very different

from ours, as requests may be rejected due to limited capacities, and the goal is to

maximize the throughput (see e.g. [5]).
1Usually, the term “barely random” refers to online algorithms, processing a sequential input, that

flip constantly many random coins in the beginning and are otherwise deterministic. But since our

input has unlimited size also at any time, it seems appropriate to adopt this phrase.

4

2 Decomposition of the Multiple Spin-Block Problem

First we observe that only the number of running jobs and threads, respectively, at any

time is relevant to the costs: Since idle threads are identical, it is not essential which of

them is selected to serve a new job or deleted. (This may only affect the administration

costs, however this matter can be considered separately.) Similarly, the start and end

times of individual jobs are not relevant, we only need to consider their total number

as a function of time.

This staircase function from the real numbers (time) into the nonnegative integers

(number of running jobs) is called the workload function f . It is not a restriction

to assume that no jobs start or end at exactly the same moment, so f always in-

creases/decreases by at most 1. For competitive analysis we consider a finite amount

of work, thus we have f = 0 outside the finite interval I from the arrival of the first job

until completion of the last job. Function f is the input of our online problem, and the

online player always knows f up to the current moment, but not the future part. The

outcome of the desired algorithm is nothing else than a staircase function g ≥ f indi-

cating the number of (busy and idle) threads at each time. (By the above discussion,

the assignment of jobs to threads can be considered as an independent matter.)

Next we introduce some useful notion. We say that a staircase function h has a

downwards step at time t if h decreases at t. We say that h has an upwards step at

time t if h increases there. The ordinate of a downwards step is defined to be the

function value after that step. The ordinate of an upwards step is defined to be the

function value before that step. A down-up pair of h is a downwards step together

with the next upwards step of h which has the same ordinate. (See Fig. 1.) The

ordinate of a down-up pair is the ordinate of its downwards and upwards step. Note

that the down-up pairs can be considered as matching open and close parentheses, like

in an arithmetic expression. The width of a down-up pair P , denoted w(P), is the

distance between its downwards step at time d(P) and upwards step at time u(P),

that is w(P) = u(P) − d(P). Note that exactly maxt h(t) upwards and downwards

steps, respectively, are not involved in down-up pairs. Nevertheless, it is convenient

to consider them as maxt h(t) down-up pairs of infinite width. (This will avoid a few

tiresome case distinctions in subsequent discussions.)

Remember that we are interested in the costs of create/delete operations and run-

ning idle threads. For a given result function g, these costs obviously consists of the

following summands:

5

• C times the number of upwards steps of g,

• D times the number of downwards steps of g,

• the area between the graphs (staircase curves) of g and f .

Due to our convention C + D = 1, the first two terms can be replaced with the

number of down-up pairs of g (including those of infinite width.)

The optimum (offline) cost for a workload function f is the minimum cost of g such

that g ≥ f . (Note that, as with f , we have g = 0 outside some finite interval.) While

an offline algorithm may fix g with full knowledge of f , an online algorithm can use

values of f up to t only, to fix g(t).

Consider any staircase function g ≥ f . If g has some upwards step at t such that

g > f immediately after t, we can postpone this upwards step, without adding new

down-up pairs to g, thereby reducing the area below the graph of g. We conclude:

Observation 2.1 An optimum g has upwards steps only at such t where f has upwards

steps, too, and these corresponding upwards steps of f and g always have the same

ordinate (hence f = g around t). An equivalent condition is: Whenever we get g > f

at some moment, g is then monotone decreasing at least until g = f is reached next.

Now let g be a function satisfying the condition mentioned above. For every down-

up pair P of f , define s(P) such that d(P) + s(P) is the time g reaches the ordinate of

P again before u(P) (maybe s(P) = 0), and s(P) = u(P)−d(P) otherwise, i.e. if g > f

during the whole interval from d(P) to u(P). (Fig. 1 contains all these cases.) From

Observation 2.1 it is not hard to see that g(t) = f(t)+#{P : d(P) ≤ t < d(P)+s(P)}
for all times t.

It follows that we can restrict attention to functions g constructed in the following

way:

Observation 2.2 An optimum g satisfies

g(t) = f(t) + #{P : d(P) ≤ t < d(P) + s(P)},

where the s(P) ≤ w(P) are nonnegative numbers assigned to the down-up pairs P of f .

This is used to decompose the multiple spin-block problem: We charge the down-up

pairs of f with costs which sum up to the costs of g:

6

Definition 2.3 The cost of a down-up pair P of f is s(P) if s(P) = w(P), and 1+s(P)

if s(P) < w(P).

This “pricing” is justified by

Lemma 2.4 For functions g as constructed above, the cost of g is the sum of costs

contributed by all down-up pairs of f .

Proof. The area between the graphs of g and f is obviously
∑

P s(P). By con-

struction, the only downwards steps of g are at times d(P) + s(P), for such P with

s(P) < w(P), whereas in case s(P) = w(P), pair P does not affect the course of g.

Thus we add cost 1 (for a down-up pair of g) for each P with s(P) < w(P). 2

We specify an offline algorithm called BRIDGES by:

Definition 2.5 BRIDGES is given by s(P) = w(P) if w(P) ≤ 1, and s(P) = 0 if

w(P) > 1.

We have chosen this name since, figuratively speaking, the graph of g builds bridges

over all valleys of f not longer than 1, and g = f elsewhere. Note that the lookahead

of BRIDGES is bounded by one time unit.

Lemma 2.6 For every workload function, BRIDGES yields the unique optimal solu-

tion, with cost
∑

P min{1, w(P)}.

Proof. We must show that any g is more expensive than that chosen by BRIDGES.

As we have seen, we may w.l.o.g. assume that g is constructed from numbers s(P),

and the total cost is given by Lemma 2.4. Hence it is enough to show that only the

s(P) as chosen by BRIDGES lead to the smallest possible cost of every down-up pair

P . In fact, P has cost min{w(P),mins(P)<w(P)(1 + s(P))} = min{w(P), 1}. Obviously

this is minimized for s(P) = w(P) if w(P) ≤ 1, and s(P) = 0 if w(P) > 1. 2

So BRIDGES is an optimal offline algorithm. Clearly, an online algorithm is not

able to choose s(P) in this way, since w(P) is not known at time d(P). However we

achieve competitive ratio 2 in the next section.

7

3 Strongly Competitive Deterministic Algorithms

In the first theorem of this section we are going to describe an online algorithm in terms

of the values s(P). The question how to achieve these values by an implementation is

discussed afterwards.

Theorem 3.1 The algorithm specified by s(P) = min{1, w(P)} is 2-competitive.

Proof. First note that we have indeed an online algorithm: For fixing g at any

time it suffices to know whether the contribution of each P is still 1 or already 0. Rule

s(P) = min{1, w(P)} means that this summand remains 1 until d(P) + 1. There is no

need to know w(P) in advance.

For each P , the algorithm pays w(P) if w(P) ≤ 1, and 2 if w(P) > 1. This

is at most twice the optimum cost min{1, w(P)}. Thus Lemma 2.4 and 2.6 imply

2-competitiveness. 2

The above algorithm is a natural generalization of the optimal (2-competitive) rent-

to-buy strategy, which we apply to every down-up pair of f . To “rent” means to let

an idle thread run, and to “buy” means to delete an idle thread (and create a new one

later if needed). Note that a workload function with f ∈ {0, 1} everywhere leads to

nothing but a sequence of independent instances of the rent-to-buy problem.

For a concrete thread administration (our original motivation) we have to specify

which threads are deleted resp. allocated to new jobs, rather than fixing their number

g only. It is fairly obvious that the following algorithm implements the strategy of

Theorem 3.1. (Be careful to distinguish between “delete” and “remove”.)

EXPIRATION DATE STACK

Maintain a stack of threads.

(1) When a thread becomes idle at time t, assign expiration date t + 1 to it, and add

it to the stack.

(2) When the expiration date of the thread at the bottom of the stack is reached, delete

this thread and remove it from the stack.

(3) When a new job arrives, assign it to the top idle thread on the stack and remove

the now busy thread from the stack.

8

Note that the expiration dates are monotone on the stack, hence the thread to

expire next is always the bottom element. (Although (3) is not a stack operation, we

use the term “stack” to stress the fact that idle threads are added and assigned to jobs

on a last-in-first-out basis.)

Corollary 3.2 EXPIRATION DATE STACK is 2-competitive. 2

EXPIRATION DATE STACK is easy enough to implement, however it must main-

tain a stack of threads with their expiration dates. We have another, simpler algorithm

that needs to store only two numbers in order to compute the next expiration date.

The number of threads is now denoted h.

CUMULATIVE IDLE COSTS

Let initially t0 be the left endpoint of I, and t the current time.

Whenever
∫ t
t0

(h(x) − f(x))dx = 1, delete one thread and reset t0 := t. Reset t0 to t

also whenever h(t) = f(t).

Note that the integral is the cost of idle threads between t0 and t. Clearly, instead

of permanently updating the integral we can easily precompute the moment when it

will achieve 1 if the number i of idle threads does not further change, and this must be

updated only when i does change yet.

Although both algorithms behave quite different on the same instance, the worst-

case performance is the same:

Theorem 3.3 CUMULATIVE IDLE COSTS is 2-competitive.

Proof. Let f be the workload function, g the function that BRIDGES would

produce, and h the function produced by CUMULATIVE IDLE COSTS. Consider any

down-up pair P of h, and let t0 be the moment of its downwards step. We charge P

with cost 2, namely C + D = 1 for the downwards and upwards step, and 1 for the

idle threads until the next expiration date t (i.e. the integral). So the intervals [t0, t]

of different P partition the time axis, such that the costs of h are bounded by twice

the number of down-up pairs. It remains to compare this to the costs of g, which are

optimal by Lemma 2.6.

First we look at such P where h(t0) ≥ g(t0). Then the downwards step of P at t0

can be considered as a delayed downwards step of some down-up pair Q of g, namely

9

the most recent one at the same ordinate. Observe that different P correspond to

different Q (since h increases only if h = f), and that BRIDGES pays at least 1 for

each Q.

For P with h(t0) < g(t0) we use a different argument. Function h makes a down-

wards step P only after some time interval [t0, t] where h was constant, and the size of

the area between the graphs of h and f on [t0, t] has run up to 1. This area also lies

between the graphs of g and f (since h < g). Moreover, these areas are disjoint for

different P . On the other hand, the total cost incurred by BRIDGES is at least the

area between the graphs of g and f .

Altogether, CUMULATIVE IDLE COSTS pays at most twice the optimum. 2

We remark that these deterministic algorithms are strongly competitive, since 2 is

the optimal competitive ratio already for the special case of the rent-to-buy problem.

In contrast to online scheduling problems (cf. [9]), knowledge of execution times of

current jobs is not helpful to improve the competitive ratio, since an adversary may

send arbitrarily short requests and extend completed jobs immediately by new ones, so

the online player cannot exploit such knowledge.

4 Randomization

A competitive ratio below 2 can be obtained by randomization.

A randomized rent-to-buy algorithm is nothing else than a probability distribution

on the points b in time at which we shall buy the resource. In the KMMO algorithm [6],

the probability to buy before b is a continuous function, namely
∫ b
0 (e−1)−1etdt. Under

the assumption that uniformly distributed random reals X from [0, 1] are available, we

may set b = ln(1 + (e− 1)X).

In the following, R is an arbitrary but fixed randomized rent-to-buy algorithm with

expected competitive ratio r (against an oblivious adversary), buying the resource after

expected time r−1. For example, take the KMMO algorithm with r = e/(e−1) ≈ 1.58.

An obvious randomized version of CUMULATIVE IDLE COSTS might come first

into mind:

CUMULATIVE IDLE COSTS (R)

Let initially t0 be the left endpoint of I, and t the current time. Fix b according to R.

Whenever
∫ t
t0

(h(x)− f(x))dx = b, delete one thread, reset t0 := t, and sample a new b.

10

Unfortunately this attempt fails, as the following heuristic consideration shows.

Observation 4.1 CUMULATIVE IDLE COSTS (R) is not even 2-competitive.

To see this, we construct an example of a function f that fools the algorithm. We

discuss only the part of f being essential for our claim. First f grows to n, then n

downwards steps follow at infinitesimal distances, and t < 1 time units later f makes

n upwards steps, also in quick succession. Figuratively speaking, f has a “canyon” of

depth n and width t. Since t < 1, BRIDGES would pay tn to cross the canyon. Now,

let h be the (random) function produced by CUMULATIVE IDLE COSTS (R). We

assume the best case that h = f at the left edge of the canyon. The idea of the example

is that h will typically have unnecessary costs due to many downwards steps inside the

canyon (and their corresponding upwards steps). The area between h and f = 0

accumulates to 1 after time 1/n. Since R has expected competitive ratio r, function h

steps down after expected time (r− 1)/n. Iterating this argument, k downwards steps

are performed after expected time
∑n

i=n−k+1(r−1)/i. The expected area below h until

this moment is k(r − 1). For large enough n we may take the expectations as true

values. Hence the number k of downwards steps satisfies
∑n

i=n−k+1(r − 1)/i ≈ t. Let

be y = t/(r−1). Since the harmonic numbers grow as ln, this gives lnn− ln(n−k) ≈ y,

hence k ≈ n(1 − e−y). For small t this simplifies to k ≈ nt/(r − 1). CUMULATIVE

IDLE COSTS (R) pays k for the steps and k(r−1) for the area, a total of kr, compared

to tn payed by BRIDGES. For f composed of a chain of such narrow canyons, these are

the dominating costs, thus the expected competitive ratio becomes kr/tn ≈ r/(r − 1).

Ironically, this is larger than 2 just because of r < 2.

This example suggests to pay attention to the moments when the threads became

idle, which means that randomizing EXPIRATION DATE STACK is the proper way.

EXPIRATION DATE STACK (R), Version 1

Maintain a stack of threads.

(1) When a thread becomes idle at time t, assign expiration date t + b to it, where b is

chosen according to R, and add it to the stack.

(2) When the expiration date of a thread is reached, delete this thread and leave a

dummy element at the position of the expired thread in the stack. If this position

is the bottom, remove all consecutive dummy elements from the bottom of the stack

(such that the deepest non-dummy idle thread becomes the new bottom.)

11

(3) When a new job arrives, remove the top element from the stack. If it is an idle

thread then assign the job to it. However if it is a dummy element then create a new

thread for the job.

It may seem stiff and contrary to the goals that we create a new thread if the top

element is dummy, although other idle threads may still exist. However the point is that

we easily get a proof of r-competitiveness. Afterwards we present a more natural version

of the algorithm that renounces dummy elements at all and assigns every new job to

the topmost idle thread, unless the stack is empty. The r-competitiveness argument

becomes more complicated, thus we found it smoother to insert the preliminary Version

1 and do the proof by comparison.

Theorem 4.2 EXPIRATION DATE STACK (R), Version 1, is r-competitive.

Proof. Using our framework from Section 2, we see that this algorithm is specified

by s(P) = min{b, w(P)}, with b chosen according to R, independently for all down-up

pairs P of f . Now r-competitiveness follows similarly as in Theorem 3.1:

For each P , the algorithm pays w(P) if w(P) ≤ b, and 1 + b if w(P) > b. The

assumption that R is an r-competitive rent-to-buy algorithm means that the expected

value of this cost is at most r times the optimum cost min{1, w(P)}, for any value

w(P). By the decomposition explained in Section 2 and linearity of expectation, the

total expected cost is within factor r of optimum. 2

EXPIRATION DATE STACK (R), Version 2

Maintain a stack of threads.

(1) When a thread becomes idle at time t, assign expiration date t + b to it, where b is

chosen according to R, and add it to the stack.

(2) When the expiration date of a thread is reached, delete this thread and remove

it from the stack. (The stack may be implemented as a doubly linked list, such that

removal is fast.)

(3) When a new job arrives, remove the top element from the stack and assign the job

to it.

Theorem 4.3 EXPIRATION DATE STACK (R), Version 2, is r-competitive.

12

Proof. By Theorem 4.2 it suffices to show that, for every f and every random

string of b’s, Version 2 is not more expensive than Version 1. Consider any down-up

pair P of f . At the upwards step of P , Version 1 uses the thread that became idle

at the downwards step of P , if it still exists, otherwise it creates a new one. In the

following we call it “the thread of P”, for convenience.

From the rules of both algorithms, it is not hard to see that the set of down-up

pairs of f can be partitioned into chains, such that in every chain (P1, . . . , Pk) with

k > 1 the following holds:

• Pi+1 has a higher ordinate than Pi.

• The thread of P1 expires before the upwards step of P1.

• For 1 ≤ i < k, at the upwards step of Pi, the thread of Pi+1 becomes busy.

• At the upwards step of Pk, a new thread is created.

Note that, within every chain, the sum of idle times in Version 2 is at most the sum

of idle times in Version 1 (since threads become busy earlier). Furthermore, Version 2

creates only one new thread in every chain, whereas Version 1 creates at least one new

thread (in P1). 2

An important issue in all randomized algorithms is the amount of randomness. First

of all, if R itself is a continuous algorithm (such as KMMO), then, in order to devote

constantly many random bits to each b, we must use a discretized version of R with

slightly larger competitive ratio instead. Thus the following discussion refers to discrete

distributions R only.

EXPIRATION DATE STACK (R) is highly random if we apply R independently

to all threads that become idle. On the other hand, the proof of r-competitiveness

does not rely on independent applications of R at all. (Linearity of expectation holds

for arbitrary random variables.) So we might even go to the other extreme and fix

a single b according to R which is then used in all (!) down-up pairs. The obvious

drawback is that certain workload functions can foil such a solution, i.e. produce an

actual competitive ratio significantly larger than r. (For example, consider a 0,1-valued

f where the f = 0 intervals have length b + ε.) In contrast, independent applications

of R make the competitive ratio sharply concentrated around r for any large enough

input.

13

It arises the question whether we can achieve a competitive ratio sharply concen-

trated around r on any input, while using less randomness. In the next sections we

propose such a version of EXPIRATION DATE STACK (R). Regardless the size of

f it uses a constant amount of randomness per time, however, the expected competi-

tive ratio is slightly larger than the optimum e/(e − 1), with an excess depending on

this amount. In principle, this is the best one can get, since some trade-off between

randomness and r − e/(e− 1) is inevitable already for rent-to-buy.

5 Discrete Randomized Rent-to-Buy

As a preparation, we return to the single rent-to-buy problem.

Definition 5.1 A discrete rent-to-buy algorithm R with denominator n is a probability

distribution on a set of n points 0 ≤ t1 ≤ . . . ≤ tn in which R buys at each time tk with

probability 1/n. Let r denote the expected competitive ratio of R.

The problem is to find points tk so as to minimize r, for fixed denominator n. This

is also interesting for its own, since a discrete strategy does not need real computations,

unlike the continuous KMMO algorithm. The tk may be computed once and stored in

a table. Note that our problem is “orthogonal” to that of randomized snoopy caching

solved in [6] where tk = k/n are fixed and the probabilities are the variables.

In an instance of the rent-to-buy problem, let t denote the duration for which the

resource is needed. (t is unknown to the online player). Remember that min{t, 1} is

the optimum cost. For convenience we additionally define t0 = 0 and tn+1 = ∞. We

express r by

r = max
0≤k≤n

rk

where rk is the worst-case expected competitive ratio, provided that tk ≤ t < tk+1.

Next we study rk, that is, we assume tk ≤ t < tk+1. Define

sk =
k∑

i=1

ti.

The expected cost incurred by R is n−1(sk + k + (n − k)t), since we pay 1 + tk if we

buy at point tk, and we pay t if we didn’t buy until time t. We distinguish three cases:

• If tk+1 ≤ 1 then rk is the cost divided by t, which is maximized if t = tk. Hence

we have rk = n−1(sk+k
tk

+ n− k) in this case, for k ≥ 1, and rk = 1 for k = 0.

14

• If 1 < tk then rk is the cost of R, which is maximized if t = tk+1, hence rk =

n−1(sk + k + (n− k)tk+1). In case k = n we get rn = n−1(sn + n).

• If tk ≤ 1 < tk+1 then rk is the maximum of both expressions mentioned above.

Now we can prove:

Lemma 5.2 In an optimal R with denominator n we have tn = 1 and r = max1≤k≤n rk,

where

rk = n−1
(

sk + k

tk
+ n− k

)
.

Proof. Assume that tn > 1. Let u be that index with tu ≤ 1 < tu+1. By the above

discussion, the tk, k > u, do not appear in the rk expressions with k ≤ u. Furthermore,

every rk, k > u, is a monotone increasing function in all arguments ti. It follows that

for any fixed vector t1, . . . , tu we get minimum r if each tk, k > u, equals tu, instead of

having the given value. This shows tn ≤ 1. We conclude that rk = n−1(sk+k
tk

+ n− k)

holds for all k ≥ 1. The term r0 = 1 is redundant.

Now assume tn < 1. If we multiply all ti by the same factor a > 1 then all rk

decrease. Hence r is minimized if we choose a possibly large, but this means tn = 1. 2

Since rk is monotone decreasing in tk and monotone increasing in all ti, i < k, we

get minimum r if r1 = . . . = rn. So Lemma 5.2 yields n−1 algebraic equations in n−1

variables tk, k < n. We illustrate case n = 2:

Corollary 5.3 The best R with denominator 2, given by t1 = (
√

5 − 1)/2 ≈ .62, has

competitive ratio (5 +
√

5)/4 ≈ 1.81.

Proof. By Lemma 5.2, r1 = 1+1/2t1 and r2 = 1+(t1 +1)/2. Thus t21 + t1−1 = 0.

2

Denominators n > 2 lead to higher-order algebraic equations which do not seem

to have “nice” solutions. However they may be solved numerically. For n = 3 we

get t1 ≈ .45, t2 ≈ .78, and r ≈ 1.75, etc. In general, we can at least show that

r ∼ e/(e− 1) + 1/2n, subject to lower-order terms:

Theorem 5.4

e

e− 1
+

1
2n

− 1
n2

< r <
e

e− 1
+

1
2n

.

15

Proof. Recall from the proof of Lemma 5.2 that any R with tn ≤ 1 has the following

properties: r = max1≤k≤n rk where rk = n−1(sk+k
tk

+ n − k), and the worst-case ratio

of the expected cost to t occurs at some t = tk.

We show that just a discretization of KMMO (rather than an optimal R) gives our

upper bound. Namely, choose R with tk = ln(1 + (e − 1)k/n), in particular tn = 1.

Compare the expected costs of R and KMMO at any fixed t = tk. By our choice of tk,

the probability to buy until tk is k/n in both algorithms. It remains to estimate the

difference dk of the expected rent times of R and KMMO.

The probability to buy the resource in interval (ti, ti+1] is 1/n in both algorithms,

but R defers the buy decisions of KMMO until ti+1. Since the density function et/(e−1)

used in KMMO is monotone increasing, the average delay is at most the half interval

length. Due to this observation, for 0 ≤ i < k, the contribution of interval (ti, ti+1] to

dk is at most ti+1−ti
2n . Since these summands telescope, we have dk ≤ tk

2n . Finally, in rk

the costs are divided by tk, thus the upper bound follows.

For the lower bound, consider any discrete rent-to-buy algorithm R′, specified by

points t′1, . . . , t
′
n. By Lemma 5.2 we may w.l.o.g. assume t′n = 1. Let k ≥ 1 be the first

index with t′k ≤ tk. Clearly, r′ ≥ r′k ≥ rk. Hence it suffices to prove that each rk of our

particular R is larger than the asserted lower bound.

Similarly as above, we only have to estimate dk, and we exploit the monotonicity

and convexity of the KMMO density function. Within interval (ti, ti+1], the area below

the graph of this function is at most eti+1+eti

2
ti+1−ti

e−1 . The rectangle of height eti

e−1

included therein has area eti ti+1−ti
e−1 . Thus at least a 2eti

eti+1+eti
fraction of the probability

mass in this interval has an average delay of the half interval length, if buy decisions

are deferred to ti+1. From eti = 1 + (e− 1)i/n we see that this expression is minimized

with i = 0, and it simplifies to 2n
2n+e−1 . It follows that dk ≥ 1

2n+e−1 . Verify that this is

at least 1
2n −

1
n2 . 2

6 Barely Random Multiple Spin-Block Algorithms

In this section let R be a fixed discrete rent-to-buy algorithm with denominator n and

tn = 1. A useful observation is that r1 = 1/nt1 + 1 ≤ r yields t1 > 1/n(r − 1).

As announced, we now provide a version of EXPIRATION DATE STACK (R),

called Version 3, which is barely random (in the sense as defined in the Introduction) and

achieves competitive ratio close to r with high probability, on each workload function.

For this we take Version 1 and modify Step (1) as described below. (An informal

16

description should be enough.)

We use an arbitrary but fixed permutation π of the first n positive integers. Define

h = t1. Divide the time axis by lattice points into slices of length h. For a lattice point

l, let T (l) be the set of threads that became idle between l − h and l, and have not

been occupied again by new jobs by time l. T (l) is some topmost segment of the stack.

Note that R would not delete any job from T (l) before l, since it has been idle for less

than t1 time units. So it suffices to fix the expiration dates of all idle threads in T (l)

only at time l. This is done in the following way: Put the threads of T (l) in a round

robin fashion into n subsets, in the ordering they became idle, hence any n consecutive

threads from T (l) get into different subsets. Sample a random integer x ∈ {1, . . . , n}.
Assign idle time v = t(π(k)+x) mod n+1 to all threads in the k-th subset. (The expiration

date of a thread is u + v when it became idle at u.)

Corollary 6.1 EXPIRATION DATE STACK (R), Version 3, is r-competitive.

Proof. This follows as in Theorem 4.2. Just note that, due to the random shift by

x, every idle thread in each T (l) is deleted according to distribution R. 2

We remark that, by an obvious modification, we may also assign the same idle times

to the threads as soon as they become idle: Follow π forward/backward when a thread

becomes idle/busy, and perform a random shift every h time units.

Version 3 uses only a fixed number of independent random integers per time unit,

regardless of the workload function f . Most pleasantly, r is not only the expected

competitive ratio. We can give a stronger guarantee. Remember that the cost incurred

by a function g ≥ f can be considered as the sum of certain costs charged to the

down-up pairs of f , as introduced in Definition 2.3.

Proposition 6.2 In EXPIRATION DATE STACK (R), Version 3, we have: The cost

of all but constantly many down-up pairs of f in every T (l) is surely at most r times

the optimum.

Proof. As in Version 1, every thread is assigned to a fixed down-up pair of f , as

soon as it becomes idle. Partition T (l) into subsets T (l)k (0 ≤ k ≤ n), being the sets of

threads in T (l) which are responsible for down-up pairs P of f with tk ≤ w(P) < tk+1.

Obviously, every T (l)k is a contiguous subset of elements on the stack, at time l.

Further partition each T (l)k into contiguous blocks of exactly n threads. There remain

17

less than n threads in each T (l)k which are not in these blocks, and hence less than n2

such threads in T (l).

Due to the “modulo construction”, every block contains exactly one thread with idle

time tj , for 1 ≤ j ≤ n. This fact together with the formula in Lemma 5.2 means that

the cost of each block in any T (l)k is at most factor rk away from optimum. Finally

note rk ≤ r. 2

A straightforward consequence is a bound on the standard deviation for any work-

laod function f with many “broad” down-up pairs being optimal subject to constant

factors.

Theorem 6.3 In EXPIRATION DATE STACK (R), Version 3, with fixed R (and n),

the standard deviation of the competitive ratio is less than O(1/
√

p) on any workload

function having p down-up pairs of width at least h.

Proof. In every T (l), the excess of costs above r times the optimum is bounded

by the number of threads outside blocks. These are less than n2 threads. Hence the

variance of these extra costs in T (l) is constantly bounded. Since independent random

shifts are used in different T (l), the variance of total extra costs is easily seen to be

O(p), and the standard deviation is O(
√

p). Since each of the p down-up pairs has

at least the constant optimum cost h, the standard deviation of the competitive ratio

behaves as claimed. 2

Note that narrow down-up pairs (of width less than h) are optimally served by the

algorithm. To see that O(1/
√

p) is the best standard deviation one can guarantee, con-

sider functions f jumping between 0 and 1 only, with down-up pairs of width between

h and 1. Then the only thread is deleted at most p times independently, so that the

extra costs follow a binomial distribution with standard deviation O(
√

p), whereas the

cost is Θ(p).

The results in this section work for any fixed cyclic ordering π of the tk values.

Thus we may use a particular π where the tk are “well mixed” in the following sense:

For each k and m, all segments of length m in the cyclic ordering contain “almost the

same” number of ti values with i ≤ k. Remember that, in each T (l)k in Proposition

6.2, the threads outside blocks form a contiguous set, hence we conjecture that such

π yields the smallest standard deviation. However we abstain from an analysis of this

rather marginal subject. The following is a good choice: Let φ = (3−
√

5)/2 (thus 1−φ

18

is the golden ratio). Define a total ordering ≺ by ti ≺ tj iff iφ− biφc < jφ− bjφc, and

use the cyclic ordering obtained from ≺.

In analogy to Version 2 we may finally introduce Version 4 where the stack contains

no dummy elements, i.e. expired threads are removed immediately from the stack, also

from inner positions. As in Theorem 4.3, Version 4 is not more expensive than Version

3, for any worklaod function and any sequence of random integers.

However, in Version 4 it becomes crucial to a real implementation how we handle

the deletion of expired threads. Using a timer for each thread is out of the question.

It is too expensive and may even cause a server crash [2]. Instead we use n timers (i.e.

a constant number!), one for each set Tk of idle threads whose idle time is fixed to be

tk. The k-th timer notifies the program if the earliest expiration date in Tk is reached.

Then it deletes one thread and sets the alarm for the next expiration date in Tk which

is found in n expected steps: Since the tk are drawn from a cyclic ordering, interrupted

by random shifts, we may simply search the stack bottom-up, until we meet a thread

from Tk. (This is not true in Version 2, where we must maintain an auxiliary data

structure in order to quickly find the next expiration date!) In practice, the choice

of n is a compromise between competitive ratio (cf. Theorem 5.4) and administration

overhead.

7 Some Extensions

We briefly report two extensions of our study. The proofs are left to the reader. No

arguments than those given in earlier sections are required.

We have seen that a suitable algorithm with lookahead 1 gives optimal cost and

studied online algorithms with lookahead 0. It is natural to ask what is the competitive

ratio for lookahead L if 0 < L < 1. An optimal deterministic rent-to-buy algorithm

buys at time 1− L if it notes that the resource is needed at least until time 1. We get

r = 2 − L, and optimality is easy to see. This competive ratio applies to the multiple

spin-block problem with lookahead L, due to the decomposition argument. Similarly as

in [6], we get a randomized rent-to-buy algorithm using density function e
t

1−L

(e−1)(1−L) for

0 ≤ t ≤ 1− L, and 0 elsewhere. The expected competitive ratio is r = e−L
e−1 . Note that

this is the KMMO bound if L = 0, and is 1 if L = 1. Again, this yields randomized

spin-block algorithms with lookahead L and the same competitive ratio.

We have assumed that the costs of create/delete operations and running idle threads

are accurately known. The choice of the time unit depends on this knowledge. In

19

practice we must use an estimation, obtained from experiments. So assume that we

apply our algorithms based on a wrong time unit U 6= 1. Here U < 1 (U > 1) means

that the create/delete costs are underestimated (overestimated.) We get r = 1 + 1/U

if U < 1, and r = 1 + U if U > 1. The randomized KMMO algorithm would use the

density function et/U

(e−1)U for 0 ≤ t ≤ U . Some case distinctions and tedious calculations

give r = 1
e−1 + 1

U if U < 1, and r = 1 + U
e−1 if U > 1. Again, the results extend to the

multiple spin-block problem. Note that our randomized algorithms give significantly

better results than the simple deterministic rule, also in case of badly estimated costs.

The benefit vanishes only if U is much smaller than the true value, i.e. if idle threads

are deleted too rashly.

Acknowledgment

I would like to thank the referees for a number of careful remarks.

References

[1] A. Borodin, R. El-Yaniv: Online Computation and Competitive Analysis, Cam-

bridge Univ. Press 1998

[2] T. Damaschke: private communication on a business component software project

(1998-99)

[3] R. El-Yaniv, R. Kaniel, N. Linial: Competitive optimal on-line leasing, Algorith-

mica 25 (1999), 116-140

[4] D.R. Dooly, S.A. Goldman, S.D. Scott: On-line analysis of the TCP dynamic

acknowledgment delay problem, J. of the ACM 48 (2001), 243-273

[5] J.A. Garay, I.S. Gopal, S. Kutten, Y. Mansour, M. Yung: Efficient on-line call

control algorithms, J. of Algorithms 23 (1997), 180-194

[6] A.R. Karlin, M.S. Manasse, L.A. McGeoch, S. Owicki: Competitive randomized

algorithms for non-uniform problems, Algorithmica 11 (1994), 542-571

[7] P. Krishnan, P.M. Long, J.S. Vitter: Adaptive disk spindown via optimal rent-to-

buy in probabilistic environments, Algorithmica 23 (1999), 31-56

20

[8] D. Lea: Concurrent Programming in JAVA. Design Principles and Patterns,

Addison-Wesley 1997

[9] R. Motwani, S. Phillips, E. Torng: Nonclairvoyant scheduling, Theor. Comp. Sc.

130 (1994), 17-47; extended abstract in: 4th SODA’93, 422-431

21

u uu u u

-
0 1

g

f

1

2 2 3 3

1

1
2

3

pppppppp
pp
p p

Figure 1. The figure illustrates a pair of functions f and g. The time axis is hor-

izontal, the arrow in the left upper corner has unit length. Three down-up pairs Pi,

i = 1, 2, 3 of f are shown, along with segments of length s(Pi) given by g. Note that

s(P3) = 0. When the part of g starting at d(P1) is replaced with the dashed line, we

get the behaviour of BRIDGES for this workload function f .

22

