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Abstract

Suppose that some job must be done for a period of unspecified
duration. The market offers a selection of devices that can do this
job, each characterized by purchase and running costs. Which of them
should we buy at what times, in order to minimize the total costs? As
usual in competitive analysis, the cost of an on-line solution is com-
pared to the optimum costs paid by a clearvoyant buyer. This problem
which generalizes the basic rent-to-buy problem has been introduced
by Y. Azar et al. In the so-called convex case where lower running
costs always imply higher prices, a strategy with competitive ratio
4 + 2

√
2 ≈ 6.83 has been proposed. Here we consider two natural sub-

cases of the convex case in a continuous-time model where new devices
can be bought at any time. For the static case where all devices are
available at the beginning, we give a simple 4-competitive deterministic
algorithm, and we show that 3.618 is a lower bound. (This is also the
first non-trivial lower bound for the convex case, both for discrete and
continuous time.) Furthermore we give a 2.88-competitive randomized
algorithm. In the case that all devices have equal prices but are not
all available at the beginning, we show that a very simple algorithm is
2-competitive, and we derive a 1.618 lower bound.
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1 Problem Statement and Results

The rent-to-buy problem, also known as ski rental, leasing, spin-block prob-

lem etc., is a very basic on-line problem with only one positive real number

x as its input. Assume that some resource (of whatever nature) is required

for an unknown duration x. The on-line player has the option to rent it at

cost r per time unit or to buy it at cost b. He may first rent the resource

for a while and buy it later at any time he wants. The goal is to minimize

the total cost. The optimal strategy of an off-line player (who knows x in

advance) is to rent the resource if x < b/r, and to buy it at time 0 oth-

erwise. It is an easy exercise to prove that the best deterministic on-line

strategy has competitive ratio 2. This strategy is: Rent until time b/r, and

then buy, in case that x is larger. (Note that the on-line player knows at

time t that x > t.) As shown in [7], the best randomized strategy achieves

excpected competitive ratio e
e−1 ≈ 1.58 against an oblivious adversary. (For

basic concepts not explained here we refer to [2].)

One may consider r as any kind of running costs per time unit, rather

than a rental fee. This gives reason to an equivalent formulation of the

problem: We need some device for an unknown time x. There are two

models available, one with b0 = 0 (i.e. for free) but r0 > 0, and a second one

with b1 > 0 but r1 = 0 (i.e. without running costs). The player is obliged to

buy some device at time 0, but he may buy any other device at an arbitrary

later moment. That is, buying a device terminates accumulation of running

costs of the previously used device.

Now we may consider a generalized version with n + 1 devices Di, each

characterized by non-negative numbers ai, bi, ri, i = 0, . . . n. Here ai denotes

the time when device Di appears, that means, Di is not available before time

ai ≥ 0.

This problem, named on-line capital investment, has been introduced in

[1]. It was shown that no algorithm for the general case can have constant

competitive ratio, however, an algorithm with competitive ratio bounded by

logarithmic functions of some natural instance parameters has been given,
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and these bounds are fairly tight, up to slowly growing factors.

On another front, competitive strategies exist for natural special cases

of capital investment, one of which has been considered in [1]: Suppose that

ri < rj implies bi ≥ bj , that is, a more “modern” device being cheaper at

work is always more expensive in acquisition. An algorithm with competitive

ratio 4 + 2
√

2 ≈ 6.83 has been given for this so-called convex case.

It must be noticed that the problem was considered in [1] in the discrete-

time model. In the present paper we adopt a continuous-time model where

it is allowed to buy a device at any moment, unless otherwise stated. We

achieve competitive ratios being not far from optimal, for two subcases of

the convex case, as introduced below.

If all devices are available at time 0, and therefore only x is unknown to

the on-line player, we speak of the static case. It is clear that we may without

loss of generality assume r0 > . . . > rn and b0 < . . . < bn, after removal of

“redundant” devices. Hence the static case is included in the convex case.

Note that the static case is also applicable to long phases in general instances

where no new device is released (intervals between consecutive ai), therefore

this restriction is not too special.

Later we consider instances with arbitrary release times ai, but equal

prices bi. Obviously, this is another subcase of the convex case.

We have the following results: In Section 2 we give a simple 4-competitive

deterministic algorithm for the static case called DOUBLE. (It is similar to

the 6.83-competitive convex case strategy of [1].) Despite its simplicity it

is not far from optimal, as we will derive a 3.618 lower bound. The lower

bound proof is the main technical contribution. Furthermore we propose

a 2.88-competitive randomized version of DOUBLE. In Section 3 we show

that a very simple algorithm has competitive ratio 2 in the case that all

devices have the same price, but arbitrary times of appearance. For this

case we have a lower bound of 1.618.

Other, different generalizations of rent-to-buy have been studied in a few

papers. Rent-to-buy with interest rates is studied in [6]. In [8], an algorithm
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for a sequence of rent-to-buy decisions has been given, under the assumption

that durations x are sampled from a fixed but unknown probability distri-

bution. The closely related acknowledgement delay problem which arises in

network communication protocols has been studied in [5]. In [3] we gener-

alized rent-to-buy strategies to situations where several identical pieces of

a resource are needed in overlapping time intervals. Some problems consid-

ered in mathematical finance (cf. [2] for a survey) are a little similar, but

they have other cost assumptions and objectives. In [4] we studied another

on-line problem of similar flavour as rent-to-buy.

2 The Static Case

We give a more formal definition of our problem in the static case. An

instance consists of pairs (bi, ri), i = 0, . . . n. A strategy specifies, for every

i, a point ti on the time axis which is either a non-negative real number

or ∞. All finite ti must be distinct, and one of the ti has to be 0. Let

0 = u1 < u2 < u3 < . . . be the sorted sequence of these times ti, and denote

by i(j) that index which satisfies ti = uj . Then the cost of the strategy until

time x ≥ 0 is defined as∑
uj≤x

bi(j) + ri(j)(min{uj+1, x} − uj).

Evidently, ti is the time to buy device i, where ti = ∞ means that device

i will never be bought, and the cost is the accumulated purchase and running

costs if, at any time, the device bought last is applied. One must have some

device right from the beginning, therefore some must be bought already at

time 0. It is required that some device must run at any moment in [0, x].

Now assume that an on-line player does not know the length x of this period,

whereas an off-line player does and chooses an optimal strategy. Then the

on-line player’s goal is to minimize the competitive ratio, i.e. the ratio of

his own costs and the off-line player’s costs until time x. It is equivalent to

say that we aim at a possibly small competitive ratio for any x (that is, to

minimize the maximum over all x ≥ 0).
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An optimal off-line algorithm for fixed x is evident, due to the following

observation:

Lemma 1 Without loss of generality, an optimal off-line player OPT buys

a device either immediately (when released) or never.

Proof. Assume that OPT buys, at time t, a device D with costs (b, r),

and that the currently used device has running cost r′. Clearly r < r′,

otherwise there is no reason to buy D. But then it would be advantageous

to buy D earlier: The price b is the same, and r′ − r running cost per time

unit could be saved. This contradicts optimality. 2

In particular, since in the static case all devices are present at time 0,

the off-line player buys only one device, namely that with minimum bi +rix.

Hence the optimal solutions for all x are given by a piecewise linear monotone

function being convex from above. In the following, this function is denoted

f . Note that f and f−1 are very easy to compute.

No deterministic on-line algorithm can achieve a better competitive ratio

than 2, since rent-to-buy is a special case. Next we give a 4-competitive on-

line algorithm for the static case. As mentioned in the introduction, we

assume r0 > . . . > rn and b0 < . . . < bn. Clearly, the on-line player will

successively buy some of the devices Di, with i increasing in time. Note that

f is bounded if and only if rn = 0. We study the following on-line strategy:

Algorithm DOUBLE

At time 0, buy D0. Then buy a new device when a certain condition

specified below is met, and wait for a period specified below, without check-

ing the condition. Then buy the next time the condition is met, wait again,

etc. Now we give these specifications:

Let y(t) be the total cost incurred until time t. The condition is that

y(t) reaches 2f(t). When this happens, find u > t such that f(u) = y(t).

Find i such that the optimal off-line algorithm would buy Di if x = u. That
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means f(u) = bi + riu. (In the special case that the graph of f has a bend

at u, choose e.g. the largest i satisfying this equation.) Buy this Di at time

t. Wait until time u, not buying anything.

If no u exists in the above situation (since f is bounded) then buy Dn.

If y(t) reaches bn when still y(t) < 2f(t), then buy Dn, too.

Theorem 2 DOUBLE satisfies y(t) < 4f(t) at any time t, hence it is 4-

competitive.

Proof. First let f be unbounded. Remember that both players have to

buy something at time 0. DOUBLE buys D0. As long as time t has not

passed the first bend of f , we can assume that OPT also took D0, since this

is the optimal choice. Thus we have y(t) = f(t) until the first bend of f .

Function f is continuous, and as long as DOUBLE does not buy anything,

y is also a continuous function, hence also y/f is continuous in any time

interval between buy decisions. Therefore y(t) ≤ 2f(t) remains true until

equality is reached.

If DOUBLE buys some device Di at time t, let y(t+) := y(t)+ bi denote

the value of y immediately after the purchase. Now consider the first t with

y(t) = 2f(t), and let i be the index specified by the algorithm. Note that

bi = y(t)− riu. It follows y(t+) < 4f(t). Furthermore observe that

y(u) = y(t+) + ri(u− t) = 2y(t)− rit < 2f(u),

since DOUBLE buys no device in time interval [t, u]. In this time interval, y

is linear and f is convex from above. Since y < 4f holds at both endpoints,

this inequality holds in the entire interval [t, u]. Moreover, since y(u) ≤
2f(u), we can repeat the same argument for the next t > u, and so on.

If f is bounded then the above argument also works as long as y(t) ≤ bn.

Otherwise DOUBLE buys Dn, thus

y(t+) = 2f(t) + bn < 2f(t) + y(t) = 4f(t),

and y remains constant henceforth. This proves 4-competitiveness.
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(We have added the last statement in the algorithm for sentimental rea-

sons only: It ensures that DOUBLE yields the optimal competitive ratio 2

for rent-to-buy, but it is not relevant to the worst-case behaviour.) 2

Algorithm DOUBLE as described above relies on the continuous-time

assumption. It remains open whether the result carries over to the discrete-

time setting. The on-line player can still ensure y(u) ≤ 2f(u) as above, but

in general, he cannot take the exact moment t when y(t) = 2f(t), hence the

ratio may slightly exceed 4 in the beginning of every phase.

Next we raise the lower bound from the trivial ratio 2 to 3.618:

Theorem 3 No deterministic algorithm for the static case (and hence for

the convex case) of capital investment can achieve a better competitive ratio

than c = 5+
√

5
2 .

Proof. Consider a fixed c, and assume that there is an algorithm with

competitive ratio less than c− δ. Our final goal is to derive a contradiction,

for c mentioned above and arbitrarily small δ > 0, by presenting an instance

that fools the on-line player. Then the theorem follows.

Our adversary constructs an instance with b0 = 0, r0 = 1, and 1 = b1 <

b2 < . . . < bn. We will specify our particular values bi later on. Moreover

suppose that a sequence of error terms εi has been fixed. They play a special

role in our proof, for the moment just think of small positive numbers. Once

the bi and εi are decided, we can choose slopes ri > 0 and times xi, zi such

that the following conditions are fulfilled:

(1) A segment of every line Li = {(x, y) : y = bi + rix} is part of graph F of

the optimal cost function f , and xi is the smallest x in Li∩F . That means,

the off-line player would buy Di if x ∈ [xi, xi+1).

(2) For every i, zi ∈ [xi, xi+1] is a time such that for every j < i, bj + rjx

will exceed cf(x) before x = zi, but it holds f(x) < bi +εi, for all x ∈ [xi, zi].

To see that the claimed xi, ri, zi exist, we argue as follows: We fix these

values step by step, for increasing i. For every i > 0, we can obviously make
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ri small enough compared to the previous slopes such that condition (2) is

satisfied for some zi > xi. Fix such a time zi. Decreasing ri further cannot

violate (2), with the zi just decided. Hence we can finally make ri small

enough to ensure that Di still remains the optimal choice sometime after

zi (because bi+1 exceeds bi plus the accumulated running costs of Di). But

then we can get some xi+1 > zi, to satisfy (1).

The intuition behind this construction is to make the running cost of

any new device Di negligible, compared to all previous ones, such that the

total cost becomes too high after a while if the on-line player hesitates to

buy Di, whereas it does not even noticeably increase up to that moment if

Di has been bought. In the following we only use properties (1) and (2),

but no explicit values of ri etc., therefore it is needless to give formulas for

them.

Next we construct our sequence bi explicitly, thereby adjusting our error

terms. It is important to notice that our εi will only depend on c, δ, and

previous bj , but not on the values of xi, ri, zi, hence there is no circulus

vitiosus.

Remember that b1 = 1.

Let b2 := c − 1. Assume that the on-line player never buys D1. Then

we have f < b1 + ε1 = 1 + ε1 after x1 for a while, whereas the on-line cost

increases up to c, due to (2). Therefore the on-line player must buy D2 (or

a more expensive device) before z1, otherwise the competitive ratio would

exceed c − δ for small enough ε1. On the other hand, he cannot buy D2

before x1, as the competitive ratio would exceed c. Hence, after buying D2,

the on-line cost is at least c whereas we still have f < 1 + ε1. This yields

a contradiction to competitive ratio c − δ. This shows that D1 must be

bought. Once we know this, the best the on-line player can do is to buy D1

at his earliest convenience, otherwise he pays unnecessarily for running the

more expensive D0. On the other hand, he cannot buy D1 before f reaches
1

c−1 , since otherwise the competitive ratio would exceed c. Thus the on-line

cost at time x1 will be at least c
c−1 .
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In the following we extend this argument inductively to later times xi,

by suitable choice of the bi and εi. However some more calculations are

necessary.

Consider index i, and suppose that bj is already fixed for all j ≤ i + 1.

Let p := bi+1/bi, and let q be a coefficient such that the on-line cost at the

time when Di became most favourable for the off-line player (xi) was at

least qbi. As for the induction base i = 1 we have shown above that we can

choose p = c− 1 and q = c
c−1 .

Now we fix P := (c− 1)p− (q − 1) and bi+2 := Pbi. We claim that the

on-line player must buy Di+1 sometime. If the on-line player never buys

Di+1 then, at time zi+1, we have f < bi+1 + εi+1 whereas the on-line cost

has increased to at least cbi+1. Therefore the on-line player must buy Di+2

(or a more expensive device) before that moment, otherwise the competitive

ratio would exceed c−δ for small enough εi+1. On the other hand, he cannot

have bought Di+2 before zi+1, as the competitive ratio would exceed c− δ:

If the player buys Di+2 during [xi+1, zi+1] then the on-line cost is at least

(q + p − 1 + P )bi whereas we still have f < bi+1 + εi+1 = pbi + εi+1. Note

that the ratio is above c− δ for small enough εi+1, and an earlier purchase

would yield an even larger ratio, since on-line and off-line cost increase with

the same slope ri. This proves the claim.

The best the on-line player can do is to buy Di+1 at his earliest con-

venience, otherwise he pays too much for running Di or an earlier device.

But he cannot buy Di+1 before f reaches (1 + y)bi, with y := q+p−c
c−1 , oth-

erwise the competitive ratio would exceed c again: To see this, verify that
q+y+p
1+y = c.

If Di+1 is bought at the above mentioned moment then, obviously, the

on-line cost at time xi+1 will be at least (q+y+p)bi which equals (q+p−1)c
c−1 bi.

We want to establish new coefficients p′, q′ for index i+1, having the same

meaning as p, q have for index i. Define Q := (q+p−1)c
c−1 . Then the on-line

cost at time xi+1 is at least Qbi. Furthermore remember that bi+2 = Pbi.

9



Since bi+1 = pbi, we just have p′ = P/p and q′ = Q/p. This yields:

p′ = c− p + q − 1
p

and

q′ =
c

c− 1
· p + q − 1

p
.

Note that p′ + q′ c−1
c = c. Since this relation holds for every i, we also

obtain p+q c−1
c = c. We substitute p with c−q(c−1)/c in the q′ expression,

and after some straightforward manipulation we get

q′ =
c3 − c2 + cq

c3 − c2 − (c− 1)2q
.

Define a sequence qi by q1 = c
c−1 and qi+1 = (qi)′. Using this notion, we

can summarize our hitherto discussion as follows: If qi > c for some i then

a (c − δ)-competitive algorithm cannot exist. Now the proof is completed

by the following observations: For c = 5+
√

5
2 , the sequence qi goes to the

fixpoint
√

5. But if c = 5+
√

5
2 − ζ for any ζ > 0, then the qi sequence takes

this hurdle and then grows to c and beyond. 2

As a consequence, the simple algorithm DOUBLE has competitive ratio

less than 10/9 away from optimum. It seems possible that the true lower

bound is 4, i.e. that DOUBLE is optimal. We leave this as an open problem.

We remark that our lower bound proof constructs instances where c = 3.6 . . .

is reached only after an astronomic time x (compared to x1). Thus the

competitive ratio for bounded but unknown x/x1 also deserves further study,

since in real-world situations we are always interested in foreseeable periods

of time.

Theorem 3 provides a lower bound also in the discrete-time model: One

can start with the above construction and use the freedom in the choice of

slopes to fine-tune them such that all xi become integer.

The next result says that randomization beats the deterministic lower

bound considerably. The competitive ratio is understood as expected value

against an oblivious adversary; see [2] for fundamental notions.
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Theorem 4 There exists a 2.88-competitive randomized algorithm for the

static case of capital investment.

Proof. Basically we apply the deterministic algorithm DOUBLE, but to

make analysis easier, we slightly aggravate the on-line costs: Whenever we

get y = 2f , we pretend that y is doubled immediately and remains constant

until f reaches this double value, and so on. (A moment of thinking reveals

that this y is, in fact, not smaller than the cost incurred by DOUBLE.)

Moreover, prior to that, we choose some u between f(x1)/4 and f(x1)/2

(where x1 is the first bend of f) and let y jump from u to 4u when f =

y = u. This makes the evolution of costs particularly simple: DOUBLE

and OPT alternatingly double their costs (instantly and over some period

of time, respectively). Hence their ratio always ranges from 2 to 4. The only

randomized part of our algorithm is the initial choice of u, which we specify

now.

In the following, z denotes the final optimum cost (at time x). Without

loss of generality let 2 ≤ z ≤ 4, otherwise we may divide all costs by the

suitable power of 2. Let k be the largest integer such that v := 2ku < 2.

Instead of choosing u ∈ [f(x1)/4, f(x1)/2] at random, we may equivalently

choose v ∈ [1, 2] at random.

The crucial observation is: Since the ratio of on-line cost and optimum

cost is always in [2, 4], the final ratio is 8v/z if 2v < z, and 4v/z if 2v ≥ z.

Thus, if we sample v according to some density function h, the expected

competitive ratio is

8
z

∫ z/2

1
vh(v)dv +

4
z

∫ 2

z/2
vh(v)dv =

4
z

(∫ z/2

1
vh(v)dv + E[h]

)
.

Choosing h(v) := 1
v ln 2 we obtain 4

z ln 2( z
2 − 1 + 2 − 1) = 2

ln 2 . This is the

claimed bound. 2

Note that this algorithm is barely random in the sense that it makes a

random choice in the beginning, whereas the rest is deterministic. It remains

open whether the result of Theorem 4 is optimal.
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3 The Dynamic Case With Equal Prices

Recall that device Di (i = 0, . . . n) is characterized by the triple (ai, bi, ri),

where the ai, bi, ri are arbitrary non-negative numbers. The bi and ri have

the same meaning as before, device Di becomes available only at time ai,

and the on-line player learns about Di only at that time. Some ai must be 0.

Instead of giving a total duration x as part of the input, we may equivalently

add a dummy device with a = x and b = r = 0.

Note that we assume that no offer disappears, i.e. device Di can be

bought at price bi at any time t ≥ ai. Otherwise, i.e. if one can buy each

device only during some time interval, no competitive algorithm exists, since

the online search problem (see Section 14.1 in [2]) can be trivially reduced

to this version. On the other hand, the present model captures reductions

in prices: Instead of diminishing ri we may introduce a new device with

smaller price, such that the old one becomes redundant.

As shown in [1], the competitive ratio can be bounded in terms of some

input parameters. Here we address the competitive ratio in the special case

that all prices bi are equal, without loss of generality bi = 1.

The following result can be proved by reduction to the acknowledgement

delay problem [5] which has an optimal deterministic competitive ratio 2.

However a direct argument is even simpler:

Theorem 5 There exists a 2-competitive algorithm for on-line capital in-

vestment if all prices bi are equal.

Proof. Without loss of generality let be 0 = a0 < . . . < an and r0 > r1 >

. . . > rn. Obviously, other devices are redundant and may be removed from

input.

Consider the following on-line algorithm: Buy the most recent device

when the accumulated running costs since the last purchase reach 1, unless

you are already using the most recent device.

Consider any phase, that is, a time interval [x, y) between two purchases

done by the on-line player. He pays 1 for the device and 1 unit of running
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costs. If the off-line player buys some device during the phase, he pays at

least 1. If the off-line player does not buy anything during the phase, he has

to pay only his running costs R. But since the on-line player bought the

most recent device at time x, his running costs in the phase are not larger

than R. This implies R ≥ 1. In either case, the ratio is at most 2. 2

One may conjecture that Theorem 5 can be improved, exploiting the

fact that both players always have to pay at least the running cost of the

most recent device. (No analogous term occurs in the rent-to-buy or the

acknowledgement delay problem where ratio 2 is optimal.) Actually there

remains a gap between 2 and the following lower bound of 1.618:

Theorem 6 No deterministic algorithm for on-line capital investment with

equal prices can guarantee some competitive ratio better than c = 1+
√

5
2 .

Proof. The basic idea is similar to Theorem 3, but the details are easier.

Given an on-line strategy and any δ > 0, we show how an adversary can

construct an instance where that strategy has a competitive ratio at least

c− δ.

We consider instances where 0 = a0 < a1 < a2 < . . . an, with r0 = 1,

rn = 0, where ri is a rapidly decreasing sequence, as we will discuss below.

Let yi and zi denote the total costs incurred until ai by the on-line strategy

and by the optimal off-line strategy, respectively. We get y0 = z0 = 1, since

both players must buy D0 at time 0. The adversary chooses some small a1.

Suppose that all release times up to ai have been fixed. Let d be the

time when the on-line player would buy Di, provided that no further device

is released in between. Let t denote the running costs paid by the on-line

player between ai and d. We keep the invariant that the device used by the

off-line player immediately before ai is Di−1. This is true for i = 1. Define

φ =
√

5−1
2 .

Case t ≥ φ: Then the off-line player buys Di at time ai and places ai+1

immediately after d. This yields yi+1 = yi + t + 1 and, on the other hand,

zi+1 = zi + 1 + ri(ai+1 − ai).
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Case t < φ: Then the off-line player does not buy Di and places ai+1

immediately after d. He buys Di+1 and defers ai+2 such that the on-line

player must buy Di+1 sometime. This yields yi+2 ≥ yi + t + 2 and zi+1 ≤
zi + t + 1 + ri(ai+1 − ai) + ri+1(ai+2 − ai+1). Term t in the running costs

is due to the fact that the off-line player has the second best device in use,

and this invariant is recovered at ai+2 since he has bought Di+1.

Note that t+2
t+1 > 1 + φ for t < φ. Ignoring the ri terms for the moment,

we see that the on-line player has always to add at least 1 + φ times the

optimum cost in one or two phases. Moreover, since the on-line player runs

some device older than Di before d, ai+1 can be bounded in terms of earlier

slopes. (This bound is not important, just its existence.) Thus every new

ri can be chosen small enough such that ri(ai+1 − ai) is smaller than any

desired number. Therefore the actual ratio of added costs can be made

larger than 1 + φ− δ = c− δ.

We conclude lim yi/zi > c − δ, hence yn/zn > c − δ for large enough n.

2

Concerning the relationship to the discrete-time model, similar remarks

as in Section 2 apply.
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