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Abstract

Suppose that we are given n mutually exclusive hypotheses, m mutu-
ally exclusive possible observations, the conditional probabilities for each
of these observations under each hypothesis, and a method to probe each
hypothesis whether it is the true one. We consider the problem of efficient
searching for the true (target) hypothesis given a particular observation.
Our objective is to minimize the expected search cost for a large number
of instances, and for the worst-case distribution of targets. More precisely,
we wish to rank the hypotheses so that probing them in the chosen order
is optimal in this sense. Costs grow monotonic with the number of probes.
While it is straightforward to formulate this problem as a linear program,
we can solve it in polynomial time only after a certain reformulation: We
introduce mn2 so-called rank variables and arrive at another linear pro-
gram whose solution can be translated afterwards into an optimal mixed
strategy of low description complexity: For each observation, at most n
rankings, i.e., permutations of hypotheses, appear with positive proba-
bilities. Dimensionality arguments yield further combinatorial bounds.
Possible applications of the optimization goal are discussed.

Keywords: probabilistic inference, searching, ranking, mixed strategy, linear
programming, polytopes

1 Problem Statement

We study an optimization problem in probabilistic inference. Assume that
among n mutually exclusive hypotheses exactly one is true. We make exactly
one observation out of m possible observations which are mutually exclusive as
well. For every hypothesis h and every observation D we know P (D|h), defined
as the conditional probability to observe D if hypothesis h is true. Note that
we mean by D a complete description of what we observe, hence the conditional
probabilities satisfy

∑
D P (D|h) = 1 for every h. The P (D|h) are known from
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background knowledge about causal relations, or estimated from statistical ma-
terial. In contrast to these conditional probabilities, the distribution of targets
may be arbitrary and unpredictable.

The problem is, first in a vague formulation, as follows. Given an observation
D, a Searcher wants to find the correct hypothesis h, also called the target
hypothesis or simply the target, in a cheap and efficient way. For the moment
we assume that every one hypothesis can be tested for being the target by some
reliable experiment. (We discuss this matter further in Section 2.) Consider
two natural settings:

• Let g < n be a fixed number. For any D, we are allowed to choose g
hypotheses, and we would like to have the target in our selected set. One
may think of g as an acceptable number of attempts to identify the target,
whereas additional tests are undesirable or come with an extra cost.

• A smoother cost assumption is that all verification experiments have unit
cost, and their number is not limited other than by n. Then, for any D,
we have to rank the hypotheses and test them in the chosen order. We
want to find the target early, i.e., minimize the number of tests. In other
words, we want to rank the target low.

The target is unknown (otherwise there is nothing to search for), but the
P (D|h) and the observed D may hint to it. Note that the selection or ranking
need not be deterministic, that is, Searcher may apply a randomized strategy.
We are interested in strategies that perform well on average, on a large number
of problem instances but for the given fixed table of conditional probabilities.
That is, Searcher is presented many independent cases and wants to minimize
his total search costs in the long run. (There is not much to say about the
actual performance on any single instance, but for a large number of instances,
expected costs turn into average actual costs.) Since we assume nothing about
the distribution of targets h, it is natural to optimize the expected search cost
in the worst case, i.e., maximized over all h. This corresponds also to the
usual game-theoretic framework: An adversary is presenting the instances, and
a strategy is sought that gives the best guarantee for the objective (here: for
the expected costs). We will discuss motivations and applications of this op-
timization goal in Section 2. Note that the probability space, for each h, is
defined by the randomness both in the observations and in the strategy, and
expectation refers to this probability space. This will become explicit in the
formal description below. For calculations it is more convenient to denote the
observations by indices k = 1, . . . ,m and hypotheses by j = 1, . . . , n. We write
pkj for P (Dk|hj).

Search Cost Minimization
Let us be given a sequence of costs c1 ≤ . . . ≤ cn, and for each pair k, j
(1 ≤ k ≤ m and 1 ≤ j ≤ n) the conditional probability pkj for observation
k if j is the target hypothesis. The task is, for each particular observation k, to
rank the n hypotheses so that the expected value of cr (expected search cost) is
minimized, where r is the rank of the target. More specifically, since the target
j is not known, we wish to minimize the expected search cost in the worst case,
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i.e., maximized over all j. Expectation refers to the random rank of j in the
strategy responding to the random observation k caused by j.

Before we give a more formal specification of the problem, we show that
cost sequences actually capture the two aforementioned cases. In fact, the “g-
selection” problem is now specified by c1 = . . . = cg = 0 and cg+1 = . . . = cn =
1, which expresses that the first g tests are for free, and further tests cost some
one-time fee. Thus we are interested in maximizing the probability to catch
the target. The second case with sequential testing is, obviously, equivalent to
cr = r. General monotone sequences cr can model more complex cost structures
(see also Section 2). Anyhow, our algorithm for Search Cost Minimization
will work for any monotone costs cr in the same way, thus we study the problem
straightaway in this generality.

Now we turn to the formalization. Since our Searcher can decide on a ranking
by a randomized strategy, a Searcher’s strategy is specified by a set of probabil-
ities xπk ≥ 0 to choose permutation π of hypotheses in the event of observation
k, for all π and k. Of course, strategies must satisfy

∀k :
∑

π

xπk = 1. (1)

The expected cost in case that j is the target amounts to
∑

k

∑
π cr(j,π)xπkpkj ,

where r(j, π) denotes the rank of hypothesis j in permutation π. Our objective
is therefore

minmax
j

∑
k

∑
π

cr(j,π)xπkpkj . (2)

This is an optimization problem with linear constraints and a set of linear
objective functions the maximum of which shall be minimized. A standard
trick transforms any such problem into a linear program (LP): Introduce a new
variable u and new constraints expressing that the jth objective is less than
or equal to u, and minimize u. However, this straightforward reduction to an
LP does not solve Search Cost Minimization in polynomial time, as we get
mn! variables xπk. (Note that the r(j, π) are not problem variables, r is just a
“meta”-function describing the indices in general form.)

The main technical contribution of this paper is a polynomial algorithm for
Search Cost Minimization. We still use a reduction to an LP, but on a detour
via auxiliary variables. From the optimal solution of the corresponding LP we
finally construct solutions to the original problem, i.e., randomized ranking
strategies. For each observation they need at most n different rankings with
nonzero probabilities. We emphasize that it is a suitable reformulation of the
LP which leads to an efficient solution.

The paper is organized as follows. In Section 2 we discuss the model by
some examples and review related literature. Then the technical results follow.
Section 3 gives the announced algorithm, except the procedure which actually
constructs the randomized ranking. This construction is better developed sepa-
rately, in Section 4. In Section 5 we point out that optimal randomized solutions
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are still “very much deterministic”, which makes them easier to handle in prac-
tice. Section 6 concludes the paper with some open questions and directions of
further research.

2 Illustrations and Discussion

Let us recall the main issues:

• The P (D|h) are known and fixed, but nothing is assumed about the distri-
bution of hypotheses h. Expressed in game-theoretic terms, targets may
be generated by a malicious adversary.

• We are interested in the average search costs that can be guaranteed for
a large number of instances, and for any possible h. Observation D is the
“contingent” part in each instance, drawn according to the P (h|D), and
just used as a hint to the possible targets.

• Rankings can be randomized.

As a first illustration we start with some calculation example that is kept as
simple as possible, to make the point. Let be m = 2, n = 3, and conditional
probabilities given by:

p11 = 1.0, p12 = 0.5, p13 = 0.0,
p21 = 0.0, p22 = 0.5, p23 = 1.0.

Since here only two hypotheses have nonzero pkj for each k, the cost sequence
is not relevant, and costs are just proportional to the probability to err with the
hypothesis ranked first. Intuitively one might rank the hypotheses by decreasing
likelihood, that is, 1-2-3 if k = 1, and 3-2-1 if k = 2. Then we are always right
if 1 or 3 is the target, but also always wrong if 2 is the target, which is bad
during times when target 2 abounds. A more balanced and fair strategy ranks
hypothesis 1 or 2 first, each with probability 0.5, if k = 1, and similarly it
ranks hypothesis 2 or 3 first, each with probability 0.5, if k = 2. Then we err
with probability 0.5, regardless what the true hypothesis is. Expected costs are
lower than in the maximum-likelihood strategy already if hypothesis 2 happens
to be true in more than half of the cases. But no strategy dominates the other
one in terms of costs, rather, that depends on the target frequencies. However,
Search Cost Minimization gives the best possible guarantee for any target
distribution. This smoothing effect is beneficial in the following more complex
scenario.

Suppose that some error-prone transmission or copying mechanism changes
each character of an input string S into an output character (identical or differ-
ent), according to known conditional probabilities that are characteristic for this
noisy channel. We wish to reconstruct the input S from output string T , with
the prior knowledge that S belongs to a certain formal language of “conceivable”
or “meaningful” strings.
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A natural approach is to rank the possible input characters at every position,
depending on the output character there, in such a way that the true input
character is always ranked as early as possible. Then the hypothetical input
characters can be connected to possible substrings of S, say of length l, which
are finally assembled to infer the whole of S, using context information. Let us
define the score of a candidate substring of S as some weighted sum of ranks
of its symbols. We may keep all meaningful substrings of length l, sorted by
ascending scores up to some threshold. Now, if our ranking gives a guarantee
on this expected score E[c] for all possible input characters (as our optimization
does), and the threshold is chosen slightly above lE[c], then the true substring
of S is found with high probability among these candidates. In contrast, a simple
deterministic ranking (e.g., by likelihood) at each position can systematically
rule out certain target strings. (For instance, if we have conditional probabilities
as in the above example, and string 222 . . . 2 belongs to the language, this string
would always get the worst score, even though it may occur frequently in S.)
Since the search space explodes with the ranks, the expected score of the target is
the function that should be minimized. A comprehensive study of noisy string
reconstruction is beyond the scope of this work. Overall efficiency depends
on many factors like density and structure of the language (how many other
meaningful substrings are smuggled in as false candidates), the time for testing
whether a string belongs to the language, and the search procedures applied.
But in any case, local hypothesis ranking is the basis for efficiency.

The noisy channel model is well established in language processing, e.g., for
spelling correction (where the units in S and T are words rather than charac-
ters). A system proposes, upon detection of putative misprints, possible correc-
tions as ranked lists. Conditional probabilities of various types of editing errors
have been modelled, see [5, 19] for details. Bayes’ theorem is then applied to
guess the most likely original words, ranked by posterior probabilities. The hope
is to rank the true hypotheses early in each case. Another module may even test
the proposed corrections one by one and pick the target automatically, using
context information and a model of the language. However, a certain problem
is that prior probabilities of the correct words are needed in Bayes’ theorem,
albeit word frequencies are very different in various text corpora, which makes
estimates of priors rather questionable. In contrast, typos can be assumed to be
independent local events with characteristic conditional probabilities. Further-
more, the average performance on a large amount of text is relevant. Altogether
this matches the assumptions behind Search Cost Minimization. In prac-
tice, reasonably small clusters of (both correct and misspelled) words that are
close with respect to edit distance could be represented each by an onw matrix
of conditional probabilities P (D|h), since every word gives rise to only a few
different misspellings, while all other variants have negligible probabilities.

Actually, our interest in ranking local hypotheses in strings emerged from a
bioinformatics project aiming at heuristics for the prediction of protein backbone
torsion angles from measured spectroscopic data that are correlated to these
torsion angles [3]. There, the input and output “characters” are discretized
intervals of values, and probabilities of measured values given a torsion angle are
known empirically. Meaningful strings S are sequences of torsion angles that
are geometrically and energetically possible. Good local estimates of torsion
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angles as early hypotheses would speed up the reconstruction of 3D structures
of proteins. It can be assumed that correlations between torsion angles and
measurements follow some fixed conditional probabilities, while frequencies of
torsion angles can be vary a lot between different protein chains S, depending
on whether helix, strand, or coil structures abound.

Other application domains one may think of are technical and medical di-
agnosis. Here, each hypothesis h is a possible failure scenario or an underlying
disease, and each observation D is a complete system response or a syndrome,
respectively. Again, we may assume that the P (D|h) are stable, coming from
causal dependencies that can have probabilistic elements but do not change over
time, whereas the frequencies of failures or diseases vary, for previously unknown
systematic reasons (defective technical equipment, epidemics, etc.). Therefore
we do not assume that the target distribution can be learned from the past.
It may appear counterintuitive to compute a ranking of hypotheses, given a
particular D, with help of the conditional probabilities of all D (which have
not been observed right now). However, note that the goal is still to minimize
average examination costs or time for a large number of cases, and no prior or
posterior target probabilities exist in this model that could be connected to a
single D. (A different discussion is to what extent decisions in medicine can
be based on quantitive reasoning at all, other than using it as a first guideline.
Every “case” has special circumstances that appear in no model, and experience
and intuition are required, too.)

The assumption that hypotheses and observations, respectively, are mutu-
ally exclusive and exactly one is present is not a proper restriction. Multiple,
structured or overlapping hypotheses or observations can be reformulated as
disjoint cases, so that we can work with a single target. (This is also customary
in Bayesian inference.) For example, if multiple diseases can occur, some hy-
potheses may represent possible combinations, besides the hypotheses for single
diseases. However, a restriction is that we assume costs that merely depend on
the rank of the target.

The cr are in general not supposed to be exactly proportional to actual
search costs or times, rather they can reflect estimated typical costs when the
target is at position r in the list. In string reconstruction as proposed above, the
cr just act as weights in the scores and determine the order in which candidate
strings are considered. In applications with independent problem instances like
medical testing, the optimization problem with cr = r is most appropriate if
tests are made sequentially, and a specific test is available for every disease (in
the set of hypotheses) that gives no negative side information excluding other
hypotheses. Otherwise, sublinear cr can account for such extra information that
makes subsequent diagnostics cheaper.

Rank-dependent costs can also be used in a natural way to deal with unre-
liable tests. Suppose that each test gives the wrong answer with some known
maximal error probability. False positives are simply handled by repeating a
positive test until the desired confidence is reached. More interesting are false
negatives. Instead of going through the ranked list only once, we need to specify
(algorithmically) a sequence of tests that returns to every rank arbitrarily often,
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until a positive response is received. To be concrete, let us assume that we get
false negatives with probability ε, that is, each test on the target fails to say yes
with probability ε. Then we can formulate the following result. Note that ε is
previously known, whereas r is not.

Theorem 1 Given an ordered set of hypotheses and a verification test that
wrongly gives a negative answer on the true hypothesis with probability ε. Then
we can find the target with an expected number of (1+2

√
ε+O(ε))r tests, if the

target has rank r in the sequence.

Proof. For simplicity, our test sequence will even work for an infinite sequence
of hypotheses r = 1, 2, 3, . . . If we have only a finite number n of hypotheses, we
may use the tests assigned to r > n on the existing hypotheses instead, which
can only improve the performance.

Let q be an integer depending on ε that we fix later. Tests are indexed
1, 2, 3, . . .. Each rank r ≥ 1 can be uniquely represented as r = i(q − 1) + j,
where i ≥ 0 and 1 ≤ j ≤ q − 1. We check hypothesis r with the tests indexed
(iq + j)q0, (iq + j)q1, (iq + j)q2, (iq + j)q3, . . . In fact, every test is assigned to
exactly one hypothesis. This is seen as follows. Indices iq + j of the initial
tests on all hypotheses are exactly those positive integers not divisible by q.
Furthermore, by elementary number theory every positive integer has a unique
representation sqk where s is not a multiple of q.

If the target has rank r, it will be identified after an expected number of
tests given by:

(1− ε)(iq + j)
∞∑

k=0

(εq)k =
(1− ε)(r + i)

1− εq
≤

(1− ε)(1 + 1
q−1 )r

1− εq
.

With q = b1/
√

εc we get the result. �

That is, we have devised a test sequence which, for any fixed error probability
and every possible r, detects the target at rank r after O(r) expected tests. By
visiting the lower ranks more (less) frequently than in this sequence, we can
obtain arbitrary sublinear (superlinear) cost functions cr instead.

We finish this introductory part with some related literature. The widely
used maximum-likelihood inference principle works with a table of conditional
probabilities P (D|h). What is different in the present paper is that we want to
support the search for the true hypothesis rather than proposing a single, “most
likely” hypothesis, and that we do not work with priors. (In Bayesian inference,
prior probabilities are often chosen by symmetry or simplicity considerations.
They might have little to do with the actual target frequencies in a set of
instances.) The approach may complement, but not replace, Bayesian inference.

We did earlier work on this topic, but mainly in the framework of competitive
analysis of decisions under incomplete information, and for problem settings
where the verification of different hypotheses may need different periods of time,
see [7, 8]. Mathematically most similar to the present paper is a work [3] about
the “orthogonal” problem: select a minimum weight subset of hypotheses that
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misses the target with a given error probability. Ranking was not considered in
[3]. See the editorial [2] for other optimization models for hypothesis selection.
In general, treating decision making as optimization problems (e.g., expected
utility maximization) is an established point of view.

Searching for hidden objects has been extensively studied in graph theory
and computational geometry as well. We mention competitive analysis of the
cow-path problem and its variants, against a malicious adversary (worst case)
as in [1, 14, 15, 16] or under probabilistic assumptions [12]. There, the object is
found when the Searcher, walking along paths, hits the object, that is, Searcher
must rank the possible locations he wants to visit, and verify the true location.
The cost is the total distance walked. Problems of this type in graphs are
addressed, e.g., in [11, 18]. Online construction of hybrid algorithms for search
tasks is another motivation of this line of research [16, 13]. The linear ordering
(or: binary choice) polytope has been well studied for many years, however in
connection with discrete optimization problems; see [9] for further hints.

3 Efficient Solution with n Rankings

We return to Search Cost Minimization as specified in Section 1. The key
idea leading to polynomial complexity is the following reformulation. Instead
of the too many variables xπk we introduce mn2 rank variables zk

rj ≥ 0 for
all observations k, ranks r, and hypotheses j, and the following constraints for
every fixed k:

∀j :
n∑

r=1

zk
rj = 1, (3)

∀r :
n∑

j=1

zk
rj = 1. (4)

That is, the rank variables form a doubly stochastic matrix for every k. We
refer to (3) and (4) as the rank constraints. Variable zk

rj shall indicate the prob-
ability that the Searcher assigns hypothesis j the rank r if observation k has
shown up. Since hypotheses and ranks are mapped one-to-one in a (determinis-
tic) schedule, the rank constraints are obvious. By linearity of expectation, the
expected cost of a strategy solely depends on the rank variables. we can now
express our objective (2) as:

minmax
j

m∑
k=1

pkj

n∑
r=1

crz
k
rj . (5)

Recall that (3)-(5) can be easily rewritten as an LP. As for the description
complexity of an optimal strategy, we start with a preliminary result because it
has a very short proof.

Proposition 2 Every instance of Search Cost Minimization with arbitrary
cost function has an optimal strategy where, for each observation, fewer than n2

permutations of hypotheses appear with positive probabilities.
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Proof. Solve the LP with rank constraints (3),(4) and objective (5). For
every k this gives a matrix of entries zk

rj where all row and column sums are
1. By a classical theorem of Birkhoff [4], every doubly stochastic matrix is a
convex linear combination of fewer than n2 permutation matrices, i.e., such with
exactly one 1 in each row and column, and 0’s else. This yields the existence of
a strategy as claimed. �

In the following we show that Search Cost Minimization has optimal
solutions with only n rankings (permutations) for each observation, and that
such combinatorially simpler optimal strategies are computable in polynomial
time. The next idea is to introduce yet another, smaller set of mn variables xk

j
indicating the expected cost if j is the target and k has been observed. We call
them the cost variables. Note that they are connected to the rank variables by
xk

j =
∑n

r=1 crz
k
rj . Still we will need the rank variables zk

rj to do the optimization
in polynomial time.

A first lemma states some constraints on the cost variables. Note that num-
bers 1, . . . , n serve here only as names of hypotheses, hence we may permute
them arbitrarily, i.e., re-index the hypotheses (to formulate statements about
any ordered sequences of hypotheses). Moreover, in the following we omit su-
perscript k whenever we are dealing with one fixed observation k.

Lemma 3 For any assignment of indices from {1, . . . , n} to the hypotheses,
the rank constraints imply the so-called cost constraints (6) and (7), where j =
1, . . . , n.

∀j :
j∑

i=1

xi ≥
j∑

i=1

ci (6)

n∑
i=1

xi =
n∑

i=1

ci (7)

Proof. For any fixed j we have (with the understanding that a sum is zero
if the lower limit is greater than the upper limit of the summation index):

j∑
i=1

xi =
j∑

i=1

n∑
r=1

crzri

=
j∑

i=1

j∑
r=1

crzri +
j∑

i=1

n∑
r=j+1

crzri

≥
j∑

i=1

j∑
r=1

crzri + cj

j∑
i=1

n∑
r=j+1

zri

=
j∑

i=1

j∑
r=1

crzri + cj

j∑
i=1

(1−
j∑

r=1

zri)

9



=
j∑

r=1

cr

j∑
i=1

zri + cjj − cj

j∑
r=1

j∑
i=1

zri

=
j∑

r=1

cr

j∑
i=1

zri + cjj − cj

j∑
r=1

(1−
n∑

i=j+1

zri)

=
j∑

r=1

cr

j∑
i=1

zri + cj

j∑
r=1

n∑
i=j+1

zri

≥
j∑

r=1

cr

j∑
i=1

zri +
j∑

r=1

cr

n∑
i=j+1

zri

=
j∑

r=1

cr

n∑
i=1

zri =
j∑

r=1

cr

which gives (6). For j = n observe that the two inequalities in this chain are
equations. This yields (7). �

The next lemma which relies only on cost constraints is central for our com-
plexity result:

Lemma 4 For any sequence of costs c1 ≤ . . . ≤ cn and any sequence x1, . . . , xn

satisfying the cost constraints, there exists a polynomial-time computable distri-
bution on the rankings of hypotheses 1, . . . , n such that xj equals the expected
search cost if j is the target, and where at most n rankings appear with positive
probabilities.

We defer the somewhat technical proof and first use Lemma 4 to get the
final result of this section:

Theorem 5 Every instance of Search Cost Minimization with arbitrary
monotone cost function has a polynomial-time computable optimal strategy where,
for each observation, at most n rankings appear with positive probabilities.

Proof. For the given pkj , solve the LP with rank variables zk
rj ≥ 0, specified

by (3)-(5). Since the zk
rj satisfy the rank constraints, Lemma 3 yields that

the xk
j satisfy the cost constraints (6),(7). Finally use the polynomial-time

algorithm delivered by Lemma 4 to construct the m probability distributions
on the rankings that realize these xk

j , and hence the optimal value of the LP
(3)-(5). This step can change the rank variables, but not the costs.

To show that this solution from the LP also minimizes maxj

∑n
k=1 pkjx

k
j

among all strategies (as desired), consider any set of distributions on the rank-
ings, one for each observation k, and let x̂k

j be the expected cost if j is the
target and k has been observed. Let zk

rj be the probability to find hypothesis j
at rank r. Clearly, these variables are nonnegative, fulfill the rank constraints,
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and x̂k
j =

∑n
r=1 crz

k
rj . Hence there exists also a feasible solution to LP (3)-(5)

where the objective function value is maxj

∑n
k=1 pkj x̂

k
j . But this value can-

not be smaller than in the optimal solution to the LP. That means, any other
strategy can only be worse. �

4 Construction of the Ranking

It remains to prove Lemma 4 that constructs the randomized rankings from the
values of cost variables. First we introduce the notation and sketch the plan of
the proof, then we fill in the details.

Let c1 ≤ . . . ≤ cn be the given monotone cost sequence. Let x1, . . . , xn be a
sequence satisfying the cost constraints (6),(7). On the real axis we mark points
with coordinates xj , in the following called cost points. Next, we place n pebbles
indexed i = 1, . . . , n at points yi := ci, i = 1, . . . , n. If several xj or several ci,
respectively, are identical, such cost points are marked with their multiplicities
and, similarly, the proper number of pebbles is placed at one point.

Recall that xj is the expected cost of identifying hypothesis j as the target
(if j is actually the target). Pebbles shall represent hypotheses, however, the
assignment of hypotheses to pebbles will be decided later. The expected cost of
a hypothesis is the coordinate of the pebble representing this hypothesis. Since
initially the pebbles’ coordinates are the ci, the initial placement corresponds
to a trivial distribution (deterministic strategy) consisting of one ranking with
probability 1. In order to make the multiset of expected costs of hypotheses
equal to the desired xj ’s we will match pebbles and cost points. This is done
by moving pebbles to cost points in such a way that the pebbles’ coordinates
yi satisfy the cost constraints all the time. (Note that this condition is trivially
satisfied in the beginning.) Simultaneously with the moves we will adjust our
probability distribution on the rankings in such a way that the coordinate of
each pebble still equals the expected cost of the hypothesis represented by that
pebble.

We say that a cost point and a pebble are matched if the pebble is on that
point and we have explicitly declared them as matched. Yet unmatched cost
points and pebbles are called free. Only when everything is matched we rename
the pebbles and eventually assign index (hypothesis) j to the pebble at point
xj . Thus, each hypothesis gets the desired expected cost in the end.

We have to show that these moves can be carried out, respecting the afore-
mentioned invariants, and using only the assumption that the xj fulfill the cost
constraints. For the probability distribution we have to show that at most n
different rankings of hypotheseses get positive probabilities. Next we describe
one generic step of our procedure in detail.

We take the leftmost free cost point x. If there is a free pebble at x, we
match one such pebble with x, and nothing else is changed. In the other case,
we take the nearest free pebble s and t to the left and to the right, respectively,
of x.

Claim: Pebbles s, t as specified exist.
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For the moment suppose that this is true. We start moving the pebbles s
and t towards x at equal speed, until at least one arrives at x. Whenever a
moving pebble passes a matched pebble, we rename the pebbles so that they
always appear in the order 1, . . . , n on the axis. (That is, index s and t of a
moving pebble may increase and decrease, respectively, but s < t remains true
all the time.) As soon as some pebble arrives at x, we match one with x.

Considering the leftmost j pebbles at any moment, we see that the cost
constraints do always hold for their y-coordinates: This was trivially true in
the beginning (yi = ci), and later a pebble is moved to the left only if another
pebble with smaller index is moved to the right, so that the prefix sums

∑j
i=1 yi,

which are the left-hand sides of (6), can only increase, and
∑n

i=1 yi, which is
the left-hand side of (7), remains fixed.

In order to adjust the probability distribution on the rankings of hypotheses
during a move, recall that the pebbles’ positions are the expected costs of the
assigned hypotheses, and costs depend monotonically on the ranks. Since s < t,
there exists some ranking π with positive probability, where the hypothesis
assigned to s is to the left of that assigned to t. Define π′ as the ranking
obtained from π by swapping s and t. While moving the pebbles, we decrease
the probability of π and increase that of π′ at the same speed, so that the
pebbles’ coordinates always equal the expected costs. (Since the expected cost
of s increases and that of t decreases at the same rate, this is consistent, i.e.,
the sum of probabilities remains constantly 1.) Whenever we have to rename
the pebbles, we also change the assignment of pebbles to hypotheses so that
always the same two hypotheses remain assigned to the moving pebbles. In fact,
this is possible, as the exchange happens only between pebbles with identical
coordinates (costs).

We reach one of these two cases: Either (a) some pebble arrives at x as
desired, or (b) π vanishes before, i.e., the probability of π goes down to 0. In
case (b) there must exist another ranking π with the aforementioned properties,
and we continue with the corresponding π′. Note that, in π, the hypothesis
assigned to the currently moving s stands to the left of the hypothesis assigned
to the currently moving t, and in π′ it is the other way round. Thus, a ranking
can take on only one role, either π or π′. It follows that case (b) can appear
only once for each ranking π that had positive probability before. Hence we will
end up in case (a) and match one more cost point x with a pebble. The net
effect of the whole procedure to match x is that at most one more ranking than
before got positive probability, and the computational complexity is polynomial
for every cost point.

Together with the initial ranking, iterating the procedure for all n cost points
creates at most n+1 rankings with positive probabilities. Actually, their number
is at most n, because the last two free pebbles match the last two free cost points
simultaneously, which follows from cost constraint (7).

It remains to prove the Claim. Since the sum of coordinates of pebbles and
cost points are equal by cost constraint (7), it is impossible that all free pebbles
are to the left of the leftmost free cost point x. Now consider the first moment
when all free pebbles are to the right of x. Since we have served the cost points
from left to right, and we have always moved the nearest free pebbles towards
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them, only the leftmost free pebble can have been moved so far. Hence, for
some j, the leftmost j− 1 pebbles are matched with cost points, the jth pebble
is free, and all pebbles to the right are yet untouched. Due to the last fact,
the sum of coordinates of the leftmost j pebbles still equals their initial sum,
that is,

∑j
i=1 ci. On the other hand, since cost constraint (6) holds for j, the j

smallest xi have a sum at least
∑j

i=1 ci. This contradicts the assumption that
the jth pebble has a coordinate greater than x. �

5 Further Properties of Optimal Solutions

For the special case of the Search Cost Minimization problem with cost
function c1 = . . . = cg = 0 and cg+1 = . . . = cn = 1, cost constraints (6)-(7)
are equivalent to the simpler constraints 0 ≤ xk

j ≤ 1 and
∑n

j=1 xk
j = n− g. We

refer to this case as

Selecting Hypotheses
Given conditional probabilities pkj for all k, j (1 ≤ k ≤ m and 1 ≤ j ≤ n), a
number g < n, and a particular observation k, select g hypotheses so that the
probability not to select the target is minimized. More specifically, since the
target j is not known, we wish to minimize the failure probability in the worst
case, i.e., maximized over all j.

It is worth noticing that there always exist optimal solutions that are deter-
ministic to a large extent. (Cf. an analogous result for a similar problem with
prescribed error probability and unspecified g in [3].) We start with an obvious
technical lemma.

Lemma 6 For any non-negative numbers p, q, r, s that satisfy, without loss of
generality, ps ≥ qr, there exists x, y 6= 0 such that px−ry ≥ 0 and −qx+sy ≥ 0.
In particular, any x, y with q/s ≤ y/x ≤ p/r will do. �

Theorem 7 Any instance of Selecting Hypotheses has a polynomial-time
computable optimal solution where the matrix of costs xk

j has no 2×2 submatrices
of entries that are strictly between 0 and 1.

Proof. Consider any solution. Since the only constraints are 0 ≤ xk
j ≤ 1

and constant sums
∑n

j=1 xk
j for each k, we may add some number x to xk

j and
subtract x from some other xk

j′ . If, for some other k′, some x′ is added to xk′

j′ and
taken from xk′

j , then the probability to have hypothesis j and j′, respectively,
in the selected set is changed by pkjx−pk′jx

′ and −pkj′x+pk′j′x′, respectively.
If both changes are nonnegative, an optimal solution remains optimal after this
modification. Such x, x′ 6= 0 do always exist and are easy to find, using Lemma
6. Hence we can change at least one of xk

j , xk′

j , xk
j′ , xk′

j′ into 0 or 1. This way we
can compute, in polynomial time, an optimal solution with the claimed property.
�
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The lack of 2 × 2 submatrices with “truly probabilistic” entries is as such
an interesting structural property of the solution matrix. From Theorem 7 and
known combinatorial bounds in extremal graph theory [6, 10, 17] we may now
conclude that at most min(m

√
n, n

√
m) + m + n variables have values other

than 0,1. However, a more basic argument gives even stronger bounds:

Theorem 8 Any instance of Selecting Hypotheses has a polynomial-time
computable optimal solution where at most m + n variables xk

j are strictly be-
tween 0 and 1. In case n = 2 there exist at most two such variables.
Any instance of Search Cost Minimization, with arbitrary cost function, has
a polynomial-time computable optimal solution where at most (2m + 1)n vari-
ables zk

rj are strictly between 0 and 1.

Proof. Any instance of Selecting Hypotheses can be written as an LP
with one extra variable u for the objective function, n constraints expressing
that u is at least the failure probability for each target, constraints 0 ≤ xk

j ≤ 1
describing a hypercube, and m nontrivial constraints

∑n
j=1 xk

j = n − g. Some
optimal solution to the LP is a vertex of the polyhedron of feasible solutions.
Since the number of binding constraints in a vertex is at least the dimension
of the space (number of variables), and at most m + n constraints other than
0 ≤ xk

j and xk
j ≤ 1 can be binding, at least mn−m− n hypercube constraints

are binding. Moreover, since only one such constraints of each pair can be
binding, at least mn − m − n different variables are 0 or 1. In case n = 2 we
apply the same reasonoing, but before we rewrite the LP and replace each xk

2

with 1 − xk
1 , hence only two constraints remain. As for the general Search

Cost Minimization problem, recall that we have n constraints involving the
objective variable u, and 2n rank constraints for each observation k = 1, . . . ,m.
�

6 Open Questions

A. Specific open questions:
Applying the “binding constraints argument” to other LP formulations we

get further combinatorial bounds, as in the previous section. Theorem 5 gave at
most n rankings for each of the m observations. From the LP with m constraints
(1) and the n constraints expressing that u is at least the failure probability for
each target, we get that at most m+n rankings in total (for all m observations)
appear with positive probabilities in some optimal strategy. However, since this
LP has mn! variables for the probabilities of rankings, it is not clear whether
we can still compute such a strategy in polynomial time.

According to the proof of Lemma 4, only unmatched (i.e., distinct) ci and xj

create rankings with positive probabilities. Also remember that xj =
∑n

r=1 crzrj .
Together with considerations as in Theorem 8, this may lead to fewer rankings
in polynomial time.

Anyway, we always have optimal strategies with a quite low combinatorial
complexity: Most hypotheses or rankings are chosen with probability 0 or 1, and
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the ranks of most hypotheses are decided deterministically. A valuable aspect of
this very deterministic structure of optimal solutions is some robustness against
changes in the conditional probabilities pkj which are in practice only estimated
and not accurately known.

Are our combinatorial bounds optimal? E.g., is there an example where n
rankings are needed in Theorem 5? This may also depend on the cost sequence.

How difficult is it to compute an optimal strategy which uses also the smallest
possible number of rankings for the given instance?

Our polynomial-size linear program for Search Cost Minimization has a
special structure. Is there an algorithm for this class of linear programs (e.g.,
based on network flows) that runs faster than a generic linear programming
algorithm ?

As for probing ranked hypotheses with unreliable tests, is the competitive
ratio 1 + 2

√
ε + O(ε) in Theorem 1 already optimal?

B. More general and far-reaching questions:
The problem formulation in Section 1 does, of course, not cover every ap-

plication, and some extensions would be natural. For search problems with
multiple targets we have to generalize the linear program if we want accurate
cost assumptions. Another more generalization would be able to assign different
costs to different hypotheses rather than ranks. Also, some information about
likely and unlikely hypotheses might be incorporated, still without using fixed
prior probabilities. However, the challenge for every extended model is to find
polynomial-time algorithms for constructing optimal solutions.

Strategies for the recovery of noisy strings could be studied systematically
for various important types of formal languages, and the approach to spelling
correction could be further developed and tested.
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