
Pareto Complexity of Two-Parameter FPT
Problems: A Case Study for Partial Vertex

Cover

Peter Damaschke

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. We propose a framework for the complexity of algorithms for
FPT problems with two separate parameters k, m and with exponential
time bounds O∗(xkym) where x, y > 1 are constant bases. An optimal
combination of bases x, y can be chosen depending on the ratio m/k. As
a first illustration we apply the framework to the problem of finding, in
a graph, a vertex cover of size k that leaves at most m edges uncovered.
We report the best branching rules we could find so far, for all ranges of
ratio m/k.

1 Introduction

Parameterized computational problems may have multiple parameters of differ-
ent nature. To be concrete, this paper will focus on an examplary problem that
we call Vertex Cover with Missed Edges (VCME): Given a graph G and
integers k, m, find a set S of at most k vertices and at most m edges such that
every edge either belongs to S or has a vertex in S.

We use it only as a first illustration for the framework, however, VCME
(and more generally, partial hitting sets in hypergraphs) is interesting in itself
as a formulation of certain error-resilient inference problems: Every vertex is a
positive boolean variable, and every edge is a clause, here with two variables. (In
the hitting set problem with missed hyperedges, clauses can be larger.) We want
to satisfy all clauses by a small number k of true variables. Clauses represent
observations and variables are possible alternative “explanations” of them. Due
to noise in the data, at most m clauses may be erroneously in the formula and
need not be satisfied, but it is unknown which clauses are spurious. Thus we
first ask whether there exists a solution with k true variables violating at most
m clauses. In the enumeration problem we would like to get all solutions with
parameter values at most k and m.

VCME differs from weighted covering problems with one parameter: We may
assign weights to vertices and edges and seek a minimum-weight covering. (The
problem introduced in [2] is a special case.) Once we have an algorithm for the
weighted version, we can get solutions with several ratios m/k by adjusting the
weights. However, since the two parameters can have a very different meaning



(see above), we want to have them under control separately and explicitly. The
“weighting approach” can easily miss solutions with the prescribed parameter
values. By treating the parameters separately we can also develop efficient al-
gorithms tuned to specific ranges of k, m. VCME also differs from the Partial
Vertex Cover problem with parameters k, t and the goal to cover at least
t edges by k vertices [7, 9]. While VCME and Partial Vertex Cover are
equivalent as optimization problems (since m+ t is the edge number of the input
graph), we are interested in cases where few edges are uncovered. Note that in
[9] the time bounds are exponential in t, hence are not directly comparable to
ours. In general, complexity results for one parameterization do not say much
about others.

By now there is apparently no formal theory of problems that are NP-hard
but fixed-parameter tractable (FPT) and have two or more parameters. Usually
they are handled in an ad hoc way. Some framework is helpful, e.g., when it
comes to comparison of two-parameter algorithms.

Algorithms for one-parameter FPT problems often have time bounds O∗(xk)
where x > 1 is a constant base. (To keep the discussion simple we leave out
polynomial factors and use the O∗-notation which suppresses them. In our con-
crete examples they are always moderate.) Any two O∗(xk) algorithms can be
directly compared, and the one with smaller base x is superior, at least from
sufficiently large k on. In the case of two (or more) parameters k, m, etc. the
situation becomes more complicated, even if polynomial factors are neglected.

In this paper we restrict attention to time bounds of the form O∗(xkym) with
constants x, y > 1. Clearly, time bounds are not necessarily of this form, and
we do not insist on it, but for many problems like VCME it naturally comes up
and appears as a reasonable and not too narrow generalization of O∗(xk) (see
details later on).

While the complexity of an O∗(xk) algorithm is mainly characterized by
one number x, in the two-parameter case we may combine several available
algorithms with different pairs of constant bases (x, y), and either one can be
the best for different ranges of parameters k, m. The O∗ complexity of such a
compound algorithm is then appropriately described by a set of optimal points
(x, y) in the quadrant x, y > 1 of the (x, y)-plane. (Here, optimal is always meant
with respect to the given algorithm; there might exist faster but yet unknown
algorithms for the problem in question.)

In Section 2 we develop our framework for the complexity of two-parameter
problems with time bounds O∗(xkym). In Section 3 we apply this concept and
provide some basic two-parameter algorithms for VCME, focussing on the stan-
dard technique of bounded search trees. The results cover the whole range of
ratios m/k. This is only a starting point. The aim of this paper is to bring for-
ward the approach, whereas the specific results for VCME deserve refinement
and improvement. Section 4 points out some questions for further research. The
main suggestion is to study other natural two-parameter problems in this frame-
work.



2 Pareto Complexity of Two-Parameter Problems

For a general introduction to FPT algorithms and parameterized complexity we
refer to [6, 10]. Now we list a number of definitions and facts for two-parameter
problems.

Geometric definitions:
A point (x0, y0) in the (x, y)-plane is said to be dominated by point (x1, y1)

if x0 ≤ x1 and y0 ≤ y1. Consider any algorithm for a problem with input
parameters k, m, and let B be the set of points (x, y) such that O∗(xkym) is an
upper bound for its time complexity. Trivially, if (x, y) ∈ B then every point
that dominates (x, y) is also in B.

For any specific problem instance with parameters k and m we want to
minimize the algorithm’s time bound, that is, choose some (x, y) ∈ B that
minimizes xkym. (As said earlier, we can disregard polynomial factors, at least for
large enough instances.) Since xkym = (xym/k)k, all parameter pairs (k, m) with
the same ratio m/k have the same optimal points (x, y) ∈ B. (We say “points”
because the optimal one is not necessarily unique; see the remark below.) We can
characterize the optimal points geometrically. Define X = log x and Y = log y,
with any fixed logarithm base. Points in the x, y > 1 quadrant of the (x, y)-plane
and in the X, Y > 0 quadrant of the (X, Y )-plane correspond to each other in
the obvious sense. For convenience we do not distinguish them notationally if
the reference is clear from context. In particular, B is also considered a set of
points in the positive quadrant of the (X, Y )-plane. Let the X- and Y -axis be
directed to the right and upwards, respectively. Since log(xkym) = kX +mY , an
optimal point for parameter ratio m/k is any point in the (X, Y )-plane where a
sweep line with slope −k/m moving upwards meets B first. This gives rise to the
following notions in the (X, Y )-plane which we also call the logarithmic plane.

Any non-vertical line splits the (X, Y )-plane obviously in a lower and an
upper halfplane. A lower tangent to B is a line T with negative slope such that
T goes through some point of B, and no point of B is in the lower halfplane of
T . The lower convex hull of B is the intersection of all upper halfplanes of lower
tangents to B. The Pareto curve of B is the boundary of the lower convex hull of
B. It is easy to see that Pareto curves are graphs of monotone decreasing convex
functions (with X and Y as the independent and dependent variable, or vice
versa). The maximum of two or more Pareto curves is defined as the boundary
of the intersection of the corresponding lower convex hulls. Equivalently, if we
interpret Pareto curves as functions, we take their argument-wise maximum.
The minimum of two or more Pareto curves is defined similarly, by first taking
the union of the lower convex hulls, but after that we build the lower convex
hull again, as the union of convex regions is in general not convex. Finally, if B
describes a set of upper bounds of a two-parameter FPT algorithm, we simply
speak of the Pareto curve of the algorithm, with respect to these known time
bounds. Any collection of algorithms for the same two-parameter problem, tuned
to several ranges of the ratio m/k, can be merged into a new algorithm whose
Pareto curve is the minimum of Pareto curves of the single algorithms. Thus we



can formulate our goal as follows: Given a problem, devise an algorithm whose
Pareto curve is minimal.
Remark: In can be proved that, in the logarithmic plane, points on the straight
line segment between two valid bounds are valid bounds, too. However we do
not even need this fact. Points in the interior of a straight line segment L on
the Pareto curve are futile in the sense that they are optimal only for the same
spefific ratio m/k, but then any of the two endpoints of L can be used instead
to express the same time bound, as kX + mY is constant on L.

Recurrences:
For a problem with parameters k and m, we call the subproblems with k = 0

and m = 0, respectively, the marginal problems. For example, VCME with m = 0
is the Vertex Cover problem, and k = 0 is the trivial problem of checking
whether at most m edges are left over. The two-parameter problem cannot be
easier than its marginal problems, that is, bases x, y in a bound O∗(xkym) are not
smaller than the corresponding bases from the algorithms used for the marginal
problems.

We can analyze search tree algorithms for two-parameter problems in a
similar way as in the one-parameter case, though with some extra twist. The
branching vector of a branching rule is now a vector of ordered pairs of num-
bers indicating the reduction of parameters k, m in the different branches. Let
T (k, m) be the maximum size, i.e., number of leaves, of a search tree for a
problem instance with parameter values k, m. A branching vector with entries
(k1,m1), . . . , (ks,ms) yields the recurrence T (k, m) ≤

∑s
i=1 T (k − ki,m −mi),

where we set T (0, 0) := 1. If k or m is already smaller than some ki or mi,
respectively, the branching rule is no longer applicable. But then we can, in the
remaining instance, immediately reduce this parameter to 0 in all possible ways:
Even naive exhaustive search costs only polynomial time, since the ki and mi

are constant. (For example, in VCME this simply means to search for a vertex
cover of some constant size.) Afterwards we are left with the marginal problem
for k = 0 or m = 0.

We get solutions of the form T (k, m) ≤ xkym with constant bases x, y > 1
from the characteristic equation x0y0 =

∑s
i=1 x−kiy−mi , which may be mul-

tiplied by xkiymj with the largest ki and mj , so that we get rid of negative
exponents. Any pair of real numbers x, y > 1 satisfying the equation yields an
upper bound xkym on T (k, m). Formally this is proved by bottom-up induction
in the search tree, however the argument is fairly simple: xkym satisfies the re-
currence as long as the branching rule applies, and when k or m is already down
to a constant then the search tree for the marginal problem is no larger than our
ym or xk, respectively, where m or k denotes the residual value at this stage.
In conclusion, these solution pairs determine the Pareto curve of the branching
rule. Accordingly, the Pareto curve of a search tree algorithm working with sev-
eral branching rules is the maximum of the Pareto curves of the branching rules
involved.

An interesting side question is whether the solutions of recurrences of branch-
ing rules always form a convex curve in the logarithmic plane. However, if not,



then the Pareto curve is just the lower convex hull of the solution curve, that is,
nonconvex parts are replaced with lower tangents.

Subgraphs and branching rules:
Given any graph G = (V,E), by a subgraph we mean a graph formed by a

subset of V and E, not necessarily an induced subgraph. The subgraph spanned
by a set F ⊆ E of edges is the graph consisting of F and the set V (F ) of all
vertices incident with F , but without the additional edges that might exist inside
V (F ). For X ⊆ V we denote by E(X) the set of edges inside X.

An FPT algorithm for VCME (or a similar problem) in the bounded search
tree paradigm consists of branching rules, each working on a set F of edges. A
branching rules decides in every branch which vertices and edges of the subgraph
spanned by F shall be added to the solution. We also say that these vertices and
edges are selected. One has to prove that every graph contains some of the
specified subgraphs, i.e., some of the branching rules is applicable, or that the
graph is simple in the sense that the problem can be solved in polynomial time.

We call a branching rule on F exhaustive if, for every valid solution S to
VCME restricted to the subgraph spanned by F , the rule has a branch that
selects only vertices and edges from S. Search tree algorithms with exhaustive
branching rules is somehow the simplest type of FPT algorithms. Clearly, ex-
haustiveness guarantees that a rule cannot miss possibles solutions to VCME on
the entire graph G. On the other hand, exhaustiveness is not necessary for cor-
rectness. The simplest example is the following degree-1 rule on F = {uv}: If u is
a degree-1 vertex and v its only neighbor, either select vertex u or select edge uv.
This rule misses solutions containing only u, but u can always be replaced with
v without increasing k or m. The additional information that u has no further
neighbors outside V (F ) implies that u is never needed in an optimal solution.
However, exhaustive rules are essential for enumeration problems where we want
all solutions rather than some arbitrary one.

3 Vertex Cover with Missed Edges

In this section we give a first Pareto curve for VCME. First of all, we cannot
expect bounds where y = 1, that is, FPT algorithms with parameter k only. This
is because VCME and Partial Vertex Cover are equivalent as optimization
problems, and Partial Vertex Cover with parameter k is W [1]-complete [7].
In view of this fact it is pleasing that we can achieve O∗(xkym) time, with some
constant x, for any y > 1. In fact, a trivial such algorithm is to branch on single
edges: Either select the edge or one of its vertices. The characteristic equation
xy = x + 2y yields x = 2y/(y − 1) ≈ 2/δ for y = 1 + δ with an arbitrarily small
δ > 0. The more interesting question is: What is the best x for any given (small)
δ? The considered case corresponds to large ratios m/k.

First we study what can be done with exhaustive branching rules if m/k
is large. We can avoid searching for “exotic” branching rules, as the following
observation restricts the possibilities:



Proposition 1. Consider any search tree algorithm with exhaustive branching
rules for VCME, such that for every fixed y = 1 + δ (δ > 0) the algorithm runs
in O∗(xkym) time, with some constant x. Then every rule is, without loss of
generality, of the following form: For a set F of f edges, either select all edges
of F , or select any one of the g vertices in V (F ). (Any other rules make x
worse.) Moreover, for y = 1 + δ, δ → 0, base x behaves as x ≈ g/fδ. Clearly, if
several, but finitely many branching rules are involved, then we have x ≈ g/fδ
for the largest g/f .

Proof. Consider any branching rule working on a set F of edges. Its characteristic
equation can be written as xgyf = xgp(y) + q(x, y), where f, g are defined as
above, p is a polynomial of degree strictly smaller than f , and q is a polynomial
where x appears only with exponents strictly smaller than g. Since the rule must
not enforce that some of the vertices in V (F ) be selected, it must possess at least
one branch where only edges are selected. On the other hand, the rule must not
enforce that only edges be selected, hence it must have at least one branch where
also vertices are selected. It follows that neither p nor q is identical to zero.

Due to the assumptions, the characteristic equation has solutions with y =
1 + δ for all (arbitrarily small) δ > 0. For ease of presentation we use in the
following some asymptotic arguments and neglect lower-order terms: For small
δ > 0 we may replace terms ya with 1 + aδ, neglecting higher-order powers of δ.
Then our characteristic equation becomes xg(1 + fδ) ≈ xgp(1 + δ) + q(x, 1 + δ).
Note that p(1) is the sum of coefficients of p. If p(1) > 1 then obviously the right-
hand side is too large, and no solution (x, y) can exist for small δ > 0. Since the
coefficients of p are positive integers, the only remaining possibility is p(1) = 1.
Hence p(y) = yf−h = (1 + δ)f−h for some integer h > 0, corresponding to the
unique branch where a set H ⊆ F of h edges is selected. (All other branches
have to select also vertices.) Thus, our characteristic equation asymptotically
simplifies to xghδ ≈ q(x, 1 + δ). Since q(x, 1) > 0 for any x > 0, and polynomial
q is a continuous function, we can even write xghδ ≈ q(x, 1). Since limδ→0 x = ∞,
only the term with highest degree in q(x, 1) determines the asymptotic behaviour
of x as a function of δ. Denote this dominating term by axg−c, with some integers
a > 0 and c > 0. Hence xghδ ≈ axg−c. This finally allows us to express x
explicitly as x ≈ c

√
a/hδ.

For exhaustive rules we claim that necessarily c = 1. To see this, recall
that some branch selects H, and all other branches have to select also vertices.
Consider any v ∈ V (H). Since some solution exists that includes v as the only
vertex from V (F ), some branch must select v and no other vertices (but perhaps
some edges along with v), showing that c = 1. In particular we get x ≈ a/hδ.

On the other hand, the branching rule where one branch selects H and, for
every v ∈ V (H), some branch selects only v, is already an exhaustive branching
rule on H. Further branches would only increase a and thus x, and selecting edges
along with a vertex would also increase the right-hand side of the characteristic
equation and thus x. Hence we can restrict the possible branching rules to this
form, and redefine F := H, f := h, g := a. Finally note that x ≈ g/fδ. ut



For an algorithm of the form as in Proposition 1 we would like to utilize
edge sets F with g/f as small as possible. One obvious idea is to choose a
set F of three edges incident to one vertex. Since VCME is straightforwardly
solvable in polynomial time if all vertices have degree at most 2, this yields an
O∗((4/3δ)k(1+δ)m) time algorithm. However, we can get considerably better x:

Theorem 1. For every fixed positive integer c, VCME is solvable in time
O∗(((1 + 1/c)/δ)k(1 + δ)m), for all sufficiently small δ > 0.

Proof. Fix any positive integer c. Find a cycle C in the input graph, which is
possible in polynomial time. If C has at most c+1 vertices, let F denote its edge
set, and apply the branching rule on F as specified in Proposition 1. Using the
earlier denotations we have g/f = 1 in this case. If C has at least c+2 vertices, let
F be the edge set of a subpath of C with c+1 vertices and c edges. Again, apply
the branching rule on F as specified in Proposition 1, now with g/f = 1 + 1/c.
As soon as all cycles are destroyed, the remaining graph is a forest, and VCME
can be solved straightforwardly in polynomial time, by dynamic programming
bottom-up in the trees. (We omit the tedious details.) ut

We remark that search tree algorithms based on exhaustive branching rules
and with x ≤ 1/δ are unlikely to exist: Since the largest g/f determines the
constant factor in x = Θ(1/δ), they would need a collection of “dense” subgraphs
with g/f < 1 such that VCME is polynomial-time solvable on graphs that are
free of such subgraphs. However, since g > f if F forms a forest, every subgraph
F with g/f ≤ 1 must include a cycle. On the other hand, by subviding the edges
of arbitrary graphs we can avoid any fixed-length cycles, but still the graphs
remain arbitrarily complicated, so that VCME probably remains NP-complete
there.

We needed to fix c in Theorem 1, as we can take the maximal x ≈ g/fδ
only from a finite collection of branching rules. However, we may choose the
optimal c depending on δ as follows. Inspecting the algorithm from Theorem
1, observe that we used branching rules with x = byb/(yb − 1), b ≤ c, and
x = (c + 1)yc/(yc − 1). We can approximate x by (1 + bδ)/δ ≤ (1 + cδ)/δ and
(1 + 1/c)(1 + cδ)/δ, respectively. The bound on x is minimized if 1/c + cδ is
minimized, that is, c ≈ 1/

√
δ, rounded to an integer.

Corollary 1. VCME is solvable in O∗(((1+2
√

δ + δ)/δ)k(1+ δ)m) time, for all
sufficiently small δ > 0. ut

Finally we can choose the optimal δ for the given ratio m/k. Straightforward
calculation gives δ ∼ k/m and:

Corollary 2. VCME is solvable in O∗((em/k)k) time, where e denotes Euler’s
number. ut

Recall that this might be already the best possible bound achievable with
exhaustive branching rules of fixed size. Due to Stirling’s formula,

(
m
k

)
for large



m/k behaves roughly as (em/k)k, hence exhaustive search for the vertices in S
on a kernel with fewer than m vertices would yield a faster algorithm in the case
of large m/k.

Here we finish our discussion of the case when y is close to 1. For increasing
y and decreasing x we can afford some branching on the choice of edges while
we must make the choice of vertices more efficient. The best algorithm that we
found until now for the range y ≤ 1.6 is stated in:

Theorem 2. VCME is solvable in O∗(xkym) time, for all (x, y) that fulfill the
equation x3y4 = 2x2y4 + (x + y)3.

Proof. Let F be a subgraph with vertices r, s, t, u, v and edges rs, st, tu, tv. First
we show that every graph contains such a subgraph, or VCME is solvable in
polynomial time. In all connected components that are not just paths or cycles,
there exists a vertex t with at least three neighbors s, u, v. Assume that, for
every such t, none of s, u, v has further neighbors outside {t, s, u, v}. If t has
degree exactly 3, then {t, s, u, v} forms already a connected component. Thus
consider t with degree 4 or larger. If some edge connects two of t’s neighbors,
then obviously a (non-induced) subgraph isomorphic to F exists. Otherwise, the
connected component of t is merely a star, that is, all edges therein are incident
with t. Thus we have shown that “F -free” graphs have only trivial connected
components where VCME is easy to solve.

On F we branch as follows. Select s or t or st, and in the last case select, for
each of the other three edges independently, either the edge or the other vertex
distinct from s, t. The characteristic equation is easy to establish. ut

The table shows some points on the Pareto curve:

y 1.02 1.05 1.10 1.15 1.20 1.30 1.40 1.50 1.60
x 63.98 26.49 14.00 9.84 7.77 5.70 4.67 4.06 3.66

For medium y and x we then detected a better algorithm which does not
follow the search tree paradigm:

Theorem 3. VCME is solvable in O∗(2k2m) time.

Proof. If a graph G = (V,E) has a solution S, then G also has a vertex cover
of size at most k + m (take the k vertices of S and any vertex from each of the
m edges in S). We cannot recover a VCME solution S directly from any vertex
cover, however we can use it in the following way. Compute once some vertex
cover C of size k+m, here we may even apply a naive O∗(2k+m) time algorithm.
Then decide on the set C ∩ S, which can be done in 2k+m ways. (Actually we
need to consider only the subsets of C of size at most k, but this would not
improve the bases in the final bound.) For any C ∩ S, the residual problem is
solvable in polynomial time: An edge e ∈ E(C) must be added to S if and only
if e is not indident to C ∩ S. Let k′ and m′ be the number of vertices of C and



edges of E(C), respectively, selected for S. Observe that, since C is a vertex
cover, V \ C is an independent set. Hence it remains to select k − k′ vertices
from V \ C that leave at most m −m′ edges between C and V \ C uncovered.
Clearly, it is optimal to choose those k − k′ vertices from V \ C that have the
largest numbers of neighbors in C \ S, ties are broken arbitrarily. ut

For larger y it becomes advantageous to use fixed-size branching rules again
but slide to “more vertex-efficient” branching, compared to Theorem 2. We found
that the following rule is superior to Theorem 3 from ca. y = 5.0 on.

Theorem 4. VCME is solvable in O∗(xkym) time, for all (x, y) that fulfill the
equation x3y3 = x2y3 + (x + y)3.

Proof. Let F be a set of three edges incident to some vertex t. Graphs without
such subgraphs are trivial. If F exists, then either we select t, or we select, for
each of the other three edges independently, either the edge or the other vertex
distinct from t. ut

For example, we obain (x, y) pairs (5.00, 1.79) and (6.00, 1.73). Note that
the rule in Theorem 4 converges for growing y to the simple x ≈ 1.47 rule for
Vertex Cover with characteristic equation x3 = x2+1: take a vertex of degree
at least 3 or all its neighbors. In particular, x is limited from below by 1.47, for
any y.

It arises the question how small we can make x for instances with small m/k.
Since VCME is a proper generalization of Vertex Cover, a smooth transition
would be desirable: Given a known O∗(bk) time algorithm for Vertex Cover,
we would like to have an O∗(xkym) algorithm for VCME where x tends to b if
m/k goes to 0. We do not have a method that takes an arbitrary Vertex Cover
algorithm as a black box and generates such an algorithm for VCME. We state
the existence of such a method as an open problem. However, for search tree
algorithms that use only exhaustive (and also certain non-exhaustive) branching
rules we can achieve the desired behaviour in a generic way, as we outline below.

First, we can transform every exhaustive branching rule for Vertex Cover
working on an edge set F into a branching rule for VCME: Every branch of
the original rule is preserved, i.e., the specified vertices are selected, and for
every edge in F we add a branch where only this edge is selected. Correctness
is evident. For some non-exhaustive rules we can proceed in the same way, but
correctness must be proved separately. For example, consider again the degree-1
rule: If u is a degree-1 vertex and v its only neighbor, we can erase u and put
v in the vertex cover. The only role of u in a vertex cover would be to cover
the edge uv, hence u can always be replaced with v. The corresponding rule for
VCME selects either v or uv. This is still correct, as we discussed earlier.

For the analysis, consider any branching rule in the given Vertex Cover
algorithm, working on a set F of f edges. Let xd = p(x) be its characteristic
equation, where p is a polynomial of degree smaller than d, with nonnegative



coefficients and, in particular, with a positive coefficient of x0. Let b be the
branching number of the rule, that is, bd = p(b). In the following we use some
known basic properties of such equations (we refer to, e.g., [4]): xd = p(x) has a
unique positive root b, and it holds xd < p(x) for x < b, and xd > p(x) for x > b.
It also follows that dbd−1−p′(b) > 0, since if xd−p(x) had derivative zero at x = b
then b would be a root with multiplicity 2 or higher, and a slight perturbation
of the coefficients would yield another polynomial of the considered type with
more than one positive root, which contradicts the mentioned properties. The
branching rule for VCME obtained by the scheme above has the characteristic
equation xdy = p(x)y + fxd. Since fxd > 0, any solution (x, y) must satisfy
x > b, thus xd > p(x). It follows y = fxd/(xd − p(x)). For x = b + δ with small
δ we obviously get y ≈ fbd/(dbd−1 − p′(b))δ. That is, we can bring x as close to
b as desired, still keeping a finite base y for each δ, although with y → ∞ for
x → b. This reasoning holds in particular for the branching rule with the largest
b that determined the O∗(bk) complexity of the Vertex Cover algorithm we
started from. Since y goes to infinity, for all x sufficiently close to b the Pareto
curves of all other rules are below the Pareto curve of this rule with maximum
b. Hence this rule also dominates the complexity of the VCME algorithm, for δ
sufficiently small.

Now we apply this machinery to the Vertex Cover algorithm of [1]. It has
been subsequently improved several times, but its base 1.325 is already fairly
close to the currently best branching number 1.2738 for Vertex Cover [5].
Moreover, we can easily apply our transformation and analysis.

Theorem 5. VCME is solvable in O∗((1.325 + δ)k(3.54/δ)m) time, for all suf-
ficiently small δ > 0.

Proof. We only sketch the proof and refer to [1] for details of the rules. The
Vertex Cover algorithm consists of twelve branching rules. One can easily
check them one by one and verify that they are of the form described above and
thus extendible to branching rules for VCME. As stated in [1], Rule 3 and 7 have
the maximum branching number b < 1.325 in this algorithm. Rule 3 works on a
subgraph with f ≤ 6 edges (while rule 7 involves only 5 edges), which yields the
characteristic equation x3y = xy + y + 6x3 with the claimed solution. ut

For more sophisticated algorithms using other techniques one has to check
whether our assumptions on branching rules are still valid, or weaken the as-
sumptions and enrich the rule transformation method. However, we doubt that
the use of more complicated Vertex Cover algorithms with slighlty improved
b is of much practical value also for VCME: If x approaches b, then y goes up
quickly, so that we need to relax the base x anyway. That is, the smallest possible
b and x does not seem to be the main concern in the VCME context. For very
small ratios m/k we would in practice rather select m edges exhaustively on a
kernel, and then simply apply any Vertex Cover algorithm to the remaining
instances. This type of algorithm does not enjoy constant bases y but is expected
to be simpler and faster for very small m/k.



Related to this discussion, we finally give a simple quadratic kernel for VCME
by straightforward generalization of the O(k2) kernelization for Vertex Cover.
Due to kernel results for Vertex Cover we conjecture that VCME has actually
an O(k + m) size kernel.

Theorem 6. A kernel for VCME with k2 + km + m edges can be computed in
polynomial time.

Proof. Any vertex of degree larger than k + m must be selected, since otherwise
we have to select more than k other vertices or more than m edges. After removal
of the enforced vertices and all incident edges, there remains a graph of maximum
degree k + m. Now k vertices can cover at most k(k + m) edges, hence at most
k(k + m) + m edges remained, or there is no solution. ut

4 Conclusions

We proposed the framework of Pareto complexity for FPT problems with two
parameters k, m, where we want time complexities O∗(xkym) with constant bases
x, y. As an illustration and starting point we gave some basic algorithms for
VCME, the problem of finding vertex covers with k vertices and m missed edges.
The algorithms are tailored to several ranges of m/k. We have not studied minor
technical issues like convexity of their Pareto curves in the logarithmic plane (see
Section 2). There are some natural questions for further research, besides the
ones already brought up in the technical sections:

– Get improvements: Find VCME algorithms with lower Pareto curves. Better
branching rules for some ranges of m/k are likely to exist.

– Despite our discussion of small m/k: Give algorithms for VCME with x <
1.325, possibly with x matching the best known base for Vertex Cover
algorithms.

– Study the Pareto complexity of the corresponding enumeration and counting
problems: How many solutions with k vertices and m edges exist, etc.?

– Extend the approach to hitting sets in hypergraphs of fixed rank 3, 4, 5 . . .
– Study other problems. For instance, some variants of the Cluster Editing and

Cluster Vertex Deletion problem naturally have two parameters: (a) number
of edge deletions and edge insertions, (b) number of vertex deletions and
edge edits, (c) number of vertex deletions and resulting cliques. (The latter
problem was studied in [8], however not in the “Pareto framework”.)

Finally, the principal discussion whether O∗(xkym) is the “right” type of
time bound may be continued.

Acknowledgments

The work is supported by the Swedish Research Council (Vetenskapsr̊adet), grant
2007-6437, “Combinatorial inference algorithms – parameterization and cluster-
ing”. The author thanks the anonymous referees for the points raised in their
reports on the first version, which also inspired some substantial improvements.



References

1. Balasubramanian, R., Fellows, M.R., Raman, V.: An Improved Fixed-Parameter
Algorithm for Vertex Cover. Info. Proc. Letters 65, 163–168 (1998)

2. Bar-Yehuda, R., Hermelin, D., Rawitz, D.: An Extension of the Nemhauser-Trotter
Theorem to Generalized Vertex Cover with Applications. In: WAOA 2009. LNCS,
to appear (2009)

3. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going Weighted: Parameter-
ized Algorithms for Cluster Editing. In: Yang, B., Du, D.Z., Wang, C.A. (eds.)
COCOA 2008. LNCS, vol. 5165, pp. 1–12. Springer, Heidelberg (2008)

4. Chen, J., Kanj, I.A., Xia, G.: A Note on Search Trees. Tecnical Report
TR05-006.pdf on facweb.cs.depaul.edu/research/TechReports/ (2005)

5. Chen, J., Kanj, I.A., Xia, G.: Simplicity is Beauty: Improved Up-
per Bounds for Vertex Cover. Technical Report TR05-008.pdf on
cdm.depaul.edu/research/Documents/TechnicalReports/2005/ (2005)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
7. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized Complexity of Generalized

Vertex Cover Problems. In: Dehne, F., López-Ortiz, A., Sack, J.R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)

8. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-Parameter Algo-
rithms for Cluster Vertex Deletion. In: Laber, E.S., Bornstein, C.F., Nogueira, L.T.,
Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 711–722. Springer, Heidelberg
(2008)

9. Kneis, J., Langer, A., Rossmanith, P.: Improved Upper Bounds for Partial Vertex
Cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)

10. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Math. and its Appl., Oxford Univ. Press (2006)


