
On an Ordering Problem in Weighted
Hypergraphs

Peter Damaschke

1 Department of Computer Science and Engineering,
Chalmers University, 41296 Göteborg, Sweden

2 Fraunhofer-Chalmers Research Centre for Industrial Mathematics
ptr@chalmers.se

Abstract. We consider the problem of mapping the n vertices of an
edge-weighted hypergraph to the points 1, . . . , n on the real line, so as
to minimize the weighted sum of the coordinates of right ends of all
edges. This problem naturally appears in warehouse logistics: n shelves
are arranged in one row, every shelf can host one type of items, the
edges are sets of items requested together, their weights are the request
frequencies, and items must be picked from the shelves and brought to
a collection point at the left end of the row. The problem is to place
all items so as to minimize the average length of the collection tours.
It is NP-complete even for graphs, but it can be solved in O∗(2n) time
by dynamic programming on subsets. In the present work we focus on
hypergraphs with small connected components, which also has a practical
motivation: Typical requests comprise related items from only one of
many small disjoint groups. As a first result we solve, in polynomial time,
an auxiliary problem with prescribed ordering in every component. For
the unrestricted problem we conclude some worst-case time bounds that
beat O∗(2n) for components of sizes up to 6. Some simple preprocessing
can further reduce the time in many instances. Furthermore, the case of
star graphs can be solved via bipartite matchings. Finally, there remain
various interesting open problems.

Keywords: Hypergraph linear arrangement · Dynamic programming
on subsets · Convex hull · Bipartite matching · Warehouse logistics

1 Introduction

Let G = (V,E) be a given hypergraph, consisting of a set V of vertices and a
set E of edges, which are non-empty subsets of V . (As this work mainly deals
with hypergraphs, for brevity we prefer the term “edge” to “hyperedge”.) Every
edge e ∈ E has a positive weight w(e). For edges with only one vertex, such
as e = {v}, we may simply write w(v) instead of w(e) or w({v}), and we say
that the vertex v has this weight, without risk of confusion. We will study the
following arrangement problem. We first introduce it technically, because it is
then easier to explain its motivation.

MinSumEnds

Given: a hypergraph G = (V,E) with n vertices, and positive weights w(e) of
all edges e ∈ E .

Find: a bijective mapping π of V onto the set of integers {1, . . . , n} that min-
imizes the sum

∑
e∈E w(e) · µ(e), where µ(e) := max{π(v) : v ∈ E} for every

edge e ∈ E.

Informally, our problem is to place the n vertices of V on n distinct points
1, . . . , n on the real line, so as to minimize the weighted sum of the right ends of
all edges. We can also view π as an ordering of V from left to right.

The objective function
∑
e∈E w(e) · µ(e) can be rewritten as

∑n
i=1 i · L(i),

where L(i) denotes the total weight of all edges that end in point i, that is,
L(i) =

∑
e:µ(e)=i w(e). For any ordering π we also define a function Lπ on V by

Lπ(v) := L(i) when π(v) = i. Hence the value Lπ(v) is the total weight of all
edges having v as their rightmost vertex.

A hypergraph is called connected if, for any two vertices u and v, there exists
a sequence u = u0, e0, u1, e1, u2, . . . , uk−1, ek−1, uk = v with ui ∈ ei for all i with
0 ≤ i ≤ k − 1, and ui ∈ ei−1 for all i with 1 ≤ i ≤ k. For brevity, connected
components of a hypergraph are just called components in this paper.

The main motivation of MinSumEnds comes from efficient warehouse oper-
ations. In one scenario, n types of items shall be located in n equidistant shelves
along a wall. At a collection point to the left of all shelves, a collector (robot or
human worker) is waiting for requests. When a subset of items is requested, the
collector must retrieve the requested items from the shelves and bring them to
the collection point. Hence the length of the walk is twice the distance to the
farthest requested item, whereas the positions of the other items are irrelevant,
and so are the amounts of requested items of each type. The weighted hyper-
graph models the typical requests and their frequencies. More precisely, every
edge is a set of (types of) items in a request, and its weight is proportional to the
frequency of exactly this request. Thus, placing the items in the shalves so as to
minimize the average walking distance leads to the MinSumEnds problem.

One may doubt that the problem arises in exactly this form in practice, as
a single line of shelves is a special case, the problem may be intertwined with
other types of constraints, data on frequencies may only be rough estimates,
etc. However, combinations of workflow and layout planning in factory halls and
warehouses are definitely a subject of industrial projects, where users want to
optimize layouts for work sequences and vice versa, possibly in several iterations.
Extracting basic combinatorial optimization problems and trying to understand
their complexity is a meaningful activity accompanying the practical develop-
ments.

MinSumEnds is NP-complete even for graphs, i.e., the case when all edges
have at most two vertices. On the positive side, it can be solved in O∗(2n) time
by dynamic programming on subsets [4]. Naturally, we are interested in relevant
special cases that can be solved faster. One such practical case appears when the

items are partitioned into small disjoint groups of related items, and only these
items are typically requested together. In such cases, the sizes of the components
of our hypergraphs are small integers, however, the frequencies of requests are
still arbitrary numbers. Therefore we will study the complexity of MinSumEnds
for weighted hypergraphs whose components have some limited fixed size k.

A problem being closely related to MinSumEnds has been studied much
more extensively: The Minimum Linear Arrangement (MLA) problem asks
to order the vertices of a graph or hypergraph so as to minimize the sum, over
all edges, of the distances between the leftmost and rightmost vertex in the edge.
Key results can be found, e.g., in [1–3, 5, 8–12]. (Here we do not summarize them
all.) Apparently, the use of dynamic programming on subsets for that problem
was first discovered in [3].

The vast majority of graph and hypergraph problems, including MLA, can
be solved independently on the components. A remarkable issue it that this is no
longer the case for MinSumEnds. Loosely speaking, since all vertices compete
for the best positions, there is heavy interaction between the components, which
makes the problem tricky even in hypergraphs with components of fixed size,
which we mainly consider in this work.

Our contributions can be outlined as follows. Using some exchange arguments
we solve, in polynomial time, a restricted version of MinSumEnds that we call
MinSumEnds<. In that auxiliary problem, the vertices within every component
must appear in some prescribed ordering (whereas all permutations are allowed
in MinSumEnds). The MinSumEnds< problem also has some nice geometric
interpretation in terms of convex functions. With the help of MinSumEnds< we
obtain time bounds that beat the standard O∗(2n) bound in hypergraphs with
components of at most 6 vertices. For concrete instances, the actual running
times can be further improved by excluding several candidate orderings within
the components, as candidates for optimal solutions have to pass some simple
tests with linear inequalities in the given weights. Besides small components it
is also worth considering structural restrictions. The case of star graphs can be
solved via bipartite matchings, and this idea can be generalized. We conclude
with various open problems.

2 An Exchange Property

The following lemma is simple, but it will be central to our approach.

Lemma 1. Let π be an ordering, and let P and Q be the sets of vertices at
points i+ 1, . . . , i+ p and i+ p+ 1, . . . , i+ p+ q, respectively. Suppose that no
u ∈ P , v ∈ Q, and e ∈ E exist with u, v ∈ e. Then we have: If the inequality∑

u∈P
Lπ(u)/p ≥

∑
v∈Q

Lπ(v)/q

is violated, then placing the vertices of Q at points i+1, . . . , i+q and the vertices
of P at points i+ q+ 1, . . . , i+ q+p while preserving the orderings within P and
Q, will make the objective smaller.

Proof. Let us swap P and Q. Since no edge contains vertices from both P and Q,
every vertex u ∈ P and v ∈ Q is the rightmost vertex of the same edges as it was
before the swap. Hence all Lπ(u) and Lπ(v) are preserved. Thus, the objective
function changes by adding the amount q

∑
u∈P Lπ(u) − p

∑
v∈Q Lπ(v). From

this, the assertion obviously follows. ut

In words, Lemma 1 says that neighbored and consecutive sets P and Q of
sizes p = |P | and q = |Q|, such that no edge contains vertices from both P and
Q, can be swapped if the mentioned inequality is violated. Hence, this inequality
must hold in any optimal ordering π. If the inequality is an equation, then P
and Q can also be swapped without destroying optimality.

3 An Auxiliary Problem with Ordered Components

Now we consider an auxiliary problem named MinSumEnds<. It is defined
exactly as MinSumEnds, but with the extra condition that the vertices within
every component C of the hypergraph must appear in π in some prescribed
ordering. That is, π(v1) < . . . < π(vk) is required, where {v1, . . . , vk} is the
ordered vertex set of C. (We do not repeat the entire formal definition, as the
objective is the same as in MinSumEnds.) Since the orderings of vertices in the
components are given, the components are already part of the input. Of course,
they must be the true components of the input hypergraph G, but consistency
can be checked in linear time.

Within any component C of the input hypergraph G, we call a subset M of
vertices of C a module if the vertices of M appear consecutively in the prescribed
ordering of C, and they remain consecutive also in every optimal ordering π of
our hypergraph G.

Note that, due to the last condition, the modules are not “obvious” from the
input; below we will show how to compute them.

We define the density of any subset M (module or not) of the vertex set of
C as D(M) :=

∑
v∈M Lπ(v)/|M |. Since the ordering of C is fixed, actually the

values Lπ(v), v ∈ M ⊆ C, do not depend on π, therefore D(M) is well defined
and easy to compute from the input. For single vertices v we write D(v) instead
of D({v}) = Lπ(v).

Lemma 2. Let M and N be disjoint modules in C with the following properties:
π(u) < π(v) for all u ∈ M and all v ∈ N , no other vertex of C is between M
and N in the ordering, and D(M) < D(N). Then M ∪N is a module, too.

Proof. Assume for contradiction that π is some optimal ordering where the set
I of vertices between M and N is non-empty. By assumption, all vertices in I
belong to other components than C. We can uniquely partition I into subsets
called bags, where every bag is a maximal subset of vertices of I that are con-
secutive in π and belong to the same component. M and N are considered bags
as well. Let J and J ′ denote any two neighbored bags in this ordering (J to
the left of J ′). By Lemma 1, if D(J) < D(J ′) then we can swap them to make

the objective smaller, which contradicts the optimality of π. (Since J and J ′ are
from different components, they have no common edges, hence they satisfy the
assumptions of Lemma 1, and swapping also yields a valid solution, since the
orderings in the components are not changed.) Hence the bags in the sequence
from M to N have non-increasing densities. But this contradicts D(M) < D(N).
It follows I = ∅ in every optimal ordering π. By the definition of modules this
implies that M ∪N is a module. ut

Whenever two modules M and N satisfy the assumptions of Lemma 2, we
can merge them to the module M ∪N according to the conclusion of Lemma 2.
Consider the following process based on this observation:

We start from the sequence of the single vertices of C (which are, trivially,
modules) in the prescribed ordering, and we merge two arbitrarily chosen neigh-
bored modules that satisfy the assumptions of Lemma 2. This step is repeated
as long as possible. The final result is a sequence of modules that we call blocks.

We claim that the sequence of blocks does not depend on the arbitrary
choices, that is, the resulting blocks are uniquely determined by the densities
D(v) of all single vertices v. Below we give a proof that also yields a geometric
characterization of blocks.

The idea is to represent any partitioning of the ordered vertex set {v1, . . . , vk}
of C into modules as a function f on the interval [0, k), defined as follows: For
every module M = {vi, . . . , vj} in this partitioning, let f(x) := D(M) for all
x ∈ [i− 1, j). Furthermore, let g(x) :=

∫ x
0
f(t) dt.

Note that g is a monotone increasing and piecewise linear continuous func-
tion, where the slopes equal the densities. The initial function f denoted f0
has values f0(x) = D(v) = Lπ(vi) for all x ∈ [i − 1, i), and for all i. Let
g0(x) :=

∫ x
0
f0(t) dt.

Yet another technical definition makes the proof convenient: On the graph
of g we mark all endpoints of the modules. Then, the effect of merging two
modules M and N to the graph of g can be figuratively described as follows.
Let p and q be the left and right endpoint, respectively, of the straight-line
segment corresponding to M and N , and let r denote the point separating these
segments. Remember that the slope increases in the point r. We unmark r and
move the two segments upwards, thereby transforming them continuously into
the straight-line segment connecting p and q, Note that only unmarked points
move upwards to the new segment. With these notations and observations we
can state:

Lemma 3. The endpoints of the blocks are exactly those points (x, g0(x)) with
integer x that are on the upper convex hull h of the graph of the function g0.

Proof. In the following, two functions are said to be in ≤ relation if their function
values are in ≤ relation for every argument.

Initially, the marked points on g0 are all points (x, g0(x)) with integer values
x, because the modules we start from are all single vertices. Trivially we have
g0 ≤ h. If g ≤ h, and we replace two incident straight-line segments in the graph

of g with increasing slopes by one straight-line segment connecting the same
endpoints, then this modified function g still satisfies g ≤ h, since h is an upper
convex hull (and hence a concave function).

As long as g = h does not yet hold, another merge operation can be done,
and the total number of merge operations is finite (actually, at most k). Thus
we always eventually obtain g = h, regardless of the choice of merge operations
in every step.

All marked points that were strictly below the graph of h got unmarked, since
otherwise they could not have moved upwards to the graph of h. Furthermore,
marked points on the graph of h never got unmarked. Thus, exactly those marked
points that were already initially on the graph of h are still marked. Together
this yields the assertion. ut

Note that the blocks have non-increasing densities, in the prescribed ordering
in the component C. We arrive at the complexity result for our auxiliary problem:

Theorem 1. MinSumEnds< can be solved in O(e+n log n) time, for arbitrary
hypergraphs with n vertices, edges of total size e, and ordered components. More-
over, every sequence of the blocks from all components, sorted by non- increasing
densities (where ties are broken arbitrarily), is an optimal ordering.

Proof. First we compute all densities D(v), v ∈ V , in O(e) time. Then we
compute the blocks in every component, by pairwise merging of modules, starting
from the single vertices. The blocks are uniquely determined due to Lemma 3,
and with some care this part can be implemented to run in O(n) time in all
components.

Recall that the blocks are modules. Hence, in an optimal ordering, every block
is a consecutive set, and due to Lemma 1, also blocks from different components
appear in non-increasing order of densities, where the order of blocks with equal
densities is arbitrary. Thus, it only remains to sort the blocks by their densities
and concatenate them. In the worst case of many small blocks this incurs a
logarithmic factor. ut

Due to the non-increasing densities we refer to the algorithm in Theorem 1
as the sedimentation algorithm.

The arbitrary tie breaking in Theorem 1 suggests to slightly re-define the
notion of blocks as follows:

Whenever blocks from the same component have equal densities, we can place
them consecutively and merge them to one block, without missing an optimal
solution.

The advantage is that now the blocks from the same component appear with
strictly decreasing densities. From now on we use the concept of blocks in this
stricter sense, without risk of confusion.

4 Domination Relation

Next we apply the sedimentation algorithm for MinSumEnds< to the solution of
the original MinSumEnds problem. A very naive way would be to exhaustively
try all combinations of orderings of the vertices in the components of the input
hypergraph G, solve every case in polynomial time, and finally take the solution
with the best objective value. In the following we try to reduce the large number
of orderings to examine.

In an instance of MinSumEnds<, let v1, . . . , vk again denote the vertices of
some component C in their prescribed ordering, that is, π(v1) < . . . < π(vk)
is required. Recall that the densities D(vi) uniquely determine the blocks of C,
and the D(vi) in turn depend only on this internal ordering of C. We abbreviate
the densities by di := D(vi).

Now let (d1, . . . , dk) and (d′1, . . . , d
′
k) be two different sequences of densi-

ties (resulting from different possible orderings of C in an instance of Min-
SumEnds). We say that (d1, . . . , dk) dominates (d′1, . . . , d

′
k) if their prefix sums

satisfy
∑j
i=1 di ≥

∑j
i=1 d

′
i for all j = 1, . . . , k, and the inequality is strict for

some index j. An equivalent characterization is that (d1, . . . , dk) is obtained from
(d′1, . . . , d

′
k) by “moving some amounts” from some positions to other positions

to the left, i.e., with smaller indices, while preserving the sum. We also say that
the ordering of C with densities (d1, . . . , dk) dominates the ordering of C with
densities (d′1, . . . , d

′
k). Finally, we call two orderings equivalent if they yield the

same sequence of densities; note that they do not dominate each other.

From the objective function of MinSumEnds, the following is obvious:

Lemma 4. In an optimal ordering π solving an instance of MinSumEnds, the
ordering of the vertices of any component C is not dominated by any other
ordering of the vertices of C.

In simpler words, only non-dominated orderings of components may appear
in an optimal solution π. Among equivalent orderings we need to consider only
one, since the objective value solely depends on the densities. This suggest the
following definition and observation:

A set of orderings of a component C is said to be a candidate set if every
optimal solution to MinSumEnds uses one of these orderings of C, or an equiv-
alent ordering. We refer to the orderings in a fixed candidate set as candidate
orderings.

Clearly, some candidate set for C can be obtained as follows: Take the set
of all orderings not dominated by others, but for any equivalent orderings, keep
only one arbitrarily selected representative.

An obvious idea is now to compute candidate sets in advance, which reduces
the total number of orderings to consider. We elaborate on this idea in the next
section.

5 Hypergraphs With Small Components

One use of the concept of blocks and of the above results would be to simplify
some proofs from [6] (and rewrite them from a more general perspective). In
that work we considered the case of unweighted graphs. However, in the follow-
ing we derive new results for another class of hypergraphs, namely such with
components whose size is bounded by some constant, but where the weights are
arbitrary positive numbers.

Let {u, v} be the vertex set of some component where w(u) ≥ w(v). Then,
obviously, the ordering (u, v) dominates (v, u), unless w(u) = w(v), in which
case the orderings are equivalent. Thus, in either case we have to consider only
one candidate ordering, and since e = O(n), Theorem 1 yields immediately:

Theorem 2. MinSumEnds in weighted hypergraphs where all components have
at most two vertices can be solved in O(n log n) time.

Already components with three vertices turn out to be more tricky. However,
we will obtain some upper bounds on the number of candidate orderings. We use
the following convenient notation. Let v1, . . . , vk be the vertices of the considered
component C. We abbreviate the weights by wi := w(vi) and wij := w({vi, vj}),
and similarly, we use more subscripts for larger edges. Furthermore, we can
assume w1 ≤ . . . ≤ wk by re-indexing.

Lemma 5. Let ck denote a number with the property that every component with
k vertices admits a candidate set with at most ck orderings. Then we have:

c2 = 1, c3 ≤ 2, c4 ≤ 5, c5 ≤ 16, c6 ≤ 62.

Moreover, for any fixed k and given weights, these candidate sets can be identified
in constant time.

Proof. Before we stated Theorem 2 we have already shown c2 = 1. Generalizing
the exchange argument used there we see: Any ordering of C beginning with
(vi, vj , . . .), where i < j, is dominated by or equivalent to the ordering (vj , vi, . . .)
obtained by swapping the first two vertices.

Assume that some prefix of the ordering of C is already fixed. Let P denote
the vertex set of this prefix. We consider the residual hypergraph defined as
follows. Every vertex v ∈ P becomes an edge whose weight is the sum of all
original weights of edges with v as the rightmost vertex. Every subset e ⊆ C \P
gets the weight

∑
Q⊆P w(Q ∪ e), where w(.) denotes the original weights, and

with the understanding that a non-existing edge is the same as an edge with
zero weight. The rest of the hypergraph outside C is not affected. We remark
that C \ P in the residual hypergraph is not necessarily connected, but we will
not make use of connectivity.

Since, in MinSumEnds with the restriction that the ordering of C begins
with the assumed prefix P , the costs of all vertices in C \ P depend only on
the residual hypergraph, the exchange argument also applies to C \ P and the

new weights. This allows us to bound the numbers ck recursively as follows. The
claimed constant time bound is trivial.

For k = 3, a candidate ordering starting with v2 must continue with v1, and
any other candidate ordering starts with v3, which yields c3 ≤ 1+c2 ≤ 1+1 = 2.
For k = 4, a candidate ordering starting with v2 must continue with v1, and the
other candidate orderings start with either v3 or v4, which yields c4 ≤ c2 +2c3 ≤
1 + 4 = 5. For k = 5, a candidate ordering must start with one of (v2, v1),
(v3, v1), (v3, v2), (v4), (v5), which yields c5 ≤ 3c3 + 2c4 ≤ 6 + 10 = 16. For k = 6,
a candidate ordering must start with one of (v2, v1), (v3, v1), (v3, v2), (v4, v1),
(v4, v2), (v4, v3), (v5), (v6), which yields c6 ≤ 6c4 + 2c5 ≤ 30 + 32 = 62. ut

Now we can beat the standard O∗(2n) time bound that holds for arbitrary
hypergraphs (via dynamic programming on subsets), in the case when all com-
ponents are small. In order to focus on the interesting exponential part only, we
use the O∗ notation that suppresses polynomial factors.

Theorem 3. MinSumEnds in weighted hypergraphs with n vertices, consisting
only of components with at most k vertices, can be solved in O∗(bnk) time, where

bk = c
1/k
k , in particular:

b3 ≤ 1.26, b4 ≤ 1.5, b5 ≤ 1.7412, b6 ≤ 1.9895.

Proof. The numbers come from Lemma 5. In the special case when all compo-
nents have exactly k vertices, we can apply the sedimentation algorithm to all

c
n/k
k combinations of candidate orderings of the components. The time bounds

for the sedimentation algorithm remain valid also if all components have at most
k vertices, by the monotonicity of the bk and straightforward algebra. ut

For k > 6, the time bounds obtained in this way would exceed O∗(2n).
In order to avoid bases larger than 2 despite some large components we can,
however, combine the benefits of small components with dynamic programming
on subsets. The statement of the following result looks somewhat technical, but
our aim was to make it as general as possible.

Theorem 4. Let C1, . . . , Ch be some components of a given hypergraph G, where
Ci has ki vertices. Suppose that we can, in polynomial time, compute for each
component Ci a candidate set with ai < 2ki orderings. Then some optimal order-

ing of the given hypergraph can be computed in time O∗(
∏h
i=1 ai · 2

n−
∑h

i=1
ki).

Proof. First we compute the mentioned candidate sets and take all
∏h
i=1 ai com-

binations of the candidate orderings therein. For every such combination we ap-
ply Theorem 1 to compute an optimal ordering σ of C1 ∪ . . . ∪ Ch, using the
candidate orderings as prescribed orderings within the components Ci.

We observe that the vertices of C1 ∪ . . . ∪ Ch have the same ordering σ
also within an optimal ordering of the entire hypergraph G. This “context-free”
property holds since, by Theorem 1, an optimal ordering is characterized by

the blocks having non-increasing densities, and neither blocks nor their densities
depend on the remainder R of G outside C1 ∪ . . . ∪ Ch.

To R we apply dynamic programming on subsets: We generate all possible
ordered subsets R incrementally from left to right, insert the resulting blocks
into σ, discard solutions that violate the property that also blocks in R have
non-increasing densities, and most importantly, whenever two ordered subsets
of R are identical as sets and they end at the same position in σ, we keep only
one ordering with minimal cost until that position. Correctness and time bound
are straightforward. ut

Note that the time bound in Theorem 4 is never higher than O∗(2n), but it
can be significantly smaller. Theorem 4 can be used, for instance, with C1, . . . , Ch
being the components with at most 6 vertices (due to Lemma 5), and Theorem 3
is the special case when larger components do not exist. But also large compo-
nents might have much fewer than 2ki candidate orderings due to their specific
edge weights.

6 Linear Inequalities Can Rule Out Candidate Orderings

Lemma 5 provides general upper bounds on the number of candidate orderings
in components of sizes from 3 to 6. However, the given edge weights may rule
out further candidate orderings, and thus some quick and simple preprocessing
can make the main algorithms for MinSumEnds faster, not in the worst case
but for many specific instances. In the following we illustrate these possibilities
for size 3 only, but similar measures can be taken in larger components, too.

Remember from Section 5 that, in a component with three vertices with
weights w1 ≤ w2 ≤ w3, at most two candidate orderings exist: (v2, v1, v3), and
either (v3, v1, v2) or (v3, v2, v1). Assume that the candidate set is, in fact, of
size 2, that is, the two sequences are neither equivalent nor is any of them
dominated by another ordering. By the characterization of dominating sequences
in Section 4, the resulting two sequences of densities of vertices must have the
form (a, b+c+d, e) and (a+b, c, d+e), for some non-negative numbers a, b, c, d, e.
(Actually, b and d are positive.) From these sequences we get the following
necessary conditions for a candidate set of size 2:

a = w2 and a+ b = w3, hence b = w3 − w2.
e = w3 + w13 + w23 + w123.
b+ c+ d = w1 + w12, hence c+ d = w1 + w2 + w12 − w3.
w3 + w23 ≤ w1 + w12, since otherwise (v3, v2, v1) would dominate (v2, v1, v3).

Case 1. The second candidate ordering is (v3, v1, v2), since w2+w23 ≤ w1+w13.
Then c = w1+w13, hence d = w2+w12−w3−w13, thus also w3+w13 < w2+w12.

Case 2. The second candidate ordering is (v3, v2, v1), since w1+w13 ≤ w2+w23.
Then c = w2+w23, hence d = w1+w12−w3−w23, thus also w3+w23 < w1+w12.

We conclude that the component has only one candidate ordering if some of
the derived inequalities are violated.

Getting back to the case when two candidate orderings exist: Define x to be
the distance (in π) between the first two vertices of the component, and define
y similarly for the last two vertices. Then (v2, v1, v3) is strictly cheaper than the
other candidate ordering (v3, vi, vj), {i, j} = {1, 2}, if and only if b · x < d · y.
In particular, the ordering in the component depends only on the ratios of these
distances. Furthermore, in any optimal ordering using (v2, v1, v3), since w2 ≤
w3 + w23 ≤ w1 + w12, the vertices v2 and v1 are in the same block, thus x = 1
and therefore y > b/d.

By checking these inequalities we can, in concrete instances, efficiently rule
out certain partial solutions before or during dynamic programming when ap-
plying the algorithm from Theorem 4, and thus speed up its execution.

7 The Star Graph

So far we have focused attention on hypergraphs with small components. Another
meaningful direction is to consider hypergraphs with structural restrictions. Here
we provide such an example.

A star graph is a graph with n vertices where one vertex called the center is
joined by n−1 edges to all other vertices called leaves. As a practical motivation
of MinSumEnds in the warehouse context, suppose that the center represents
some main product, and the leaves represent optional accessoires only one of
which may be chosen and used together with the main product. The main prod-
uct as well as each accessoire may also be ordered separately. Hence all possible
requests are the vertices and edges of a star graph.

We denote the center by c and the edge weights by y(v) = w({c, v}). Recall
that c and the leaves v also have vertex weights w(c) and w(v), respectively, as
earlier.

Furthermore, let B(n,m) denote a time bound of a minimum-weight perfect
matching algorithm in bipartite graphs with n vertices on either side, and with
m edges. For instance, we have B(n,m) = O(n2 log n+ nm) from [13].

Theorem 5. MinSumEnds on star graphs with n vertices can be solved witin
O(n ·B(n, n2)) time.

Proof. For all n possible positions π(c) of the center c, we compute an optimal
solution with this fixed π(c), and finally we take the best of these n solutions.
For any fixed π(c) we proceed as follows.

We construct a complete bipartite graph (L,M ;F) with vertex sets L and
M of size n− 1, and edge set F = L×M . The vertices in L represent the leaves
of the star, and the vertices in M represent the positions i ∈ {1, . . . , n} \ {π(c)}.
The weight z(v, i) of any edge {v, i} ∈ F is the cost of placing the leaf v at
position π(v) = i. It is specified by z(v, i) := i ·w(v) +π(c) · y(v) if i < π(c), and
z(v, i) := i · (w(v) + y(v)) if i > π(c). The total cost of a solution is obviously
π(c) · w(c) +

∑
v∈L z(v, π(v)). Since π(c) is fixed, it only remains to compute a

minimum-weight perfect matching in (L,M ;F). ut

We conjecture that MinSumEnds on star graphs can be solved faster than
by doing n unrelated computations of bipartite matchings, encouraged by the
observation that the n bipartite graphs for the different positions π(c) are only
slight variations of each other, and that their edge weights are also far from being
arbitrary, e.g., they have obvious monotonicty properties. It should be possible
to take advantage of that. In fact, the problem looks quite similar to the one
in [7] (which has applications in scheduling), but the structure of edge weights
is somewhat more complicated in our case, as M has vertices of two different
types, namely those before and after π(c). We must leave the question open.

On another front, Theorem 5 can be generalized straightforwardly: In graphs
with a vertex cover of small fixed size γ we can decide on the γ positions of its
vertices and then compute bipartite matchings for the other vertices, as they
form an independent set, and thus the costs of each vertex depends only on its
own position. This yields a time bound O(nγ ·B(n, n2)).

However, we do not see a way to solve MinSumEnds on graphs with many
such simple graphs as components, as we did with small components. (This
would be interesting for the storage of several products with accessoires.)

8 More Open Problems

Driven by practical questions we have presented algorithms being faster than
standard dynamic programming on subsets, but it remains the intriguing prob-
lem whether MinSumEnds is NP-complete on weighted hypergraphs with com-
ponents of at most three vertices (or any other constant size limit). There might
exist a polynomial-time reduction from a “number problem” like Partitioning,
but we did not manage to establish one.

A potentially interesting combinatorial question related to small components
is whether the bounds in Lemma 5 are already tight. One may either refine the
recurive argument or construct examples that enforce the obtained numbers of
candidate orderings.

Besides graphs with small vertex covers, it would be worthwhile to find other
natural cases (e.g., limited integer edge costs, or components with other restric-
tions such as tree structures) that can be solved in polynomial time or by FPT
algorithms, using the concepts developed here.

Acknowledgment

This work extends initial ideas from Pedram Shirmohammad’s master’s thesis
[14] supervised by the author, and it is also inspired by collaboration with Raad
Salman and Fredrik Ekstedt at the Fraunhofer-Chalmers Research Centre for
Industrial Mathematics.

References

1. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability Results for Maximum
Edge Biclique, Minimum Linear Arrangement, and Sparsest Cut. SIAM J. Comp.
40, 567–596 (2011)

2. Arora, S., Frieze, A., Kaplan, H.: A New Rounding Procedure for the Assignment
Problem with Applications to Dense Graphs Arrangements. Math. Progr. 92, 1–36
(2002)

3. Bhasker, J., Sahni, S.: Optimal Linear Arrangement of Circuit Components. In:
HICSS 1987, vol. 2, pp. 99–111 (1987)

4. Boysen, N., Stephan, K.: The Deterministic Product Location Problem under a
Pick-by-Order Policy. Discr. Appl. Math. 161, 2862–2875 (2013)

5. Cohen, J., Fomin, F.V., Heggernes, P., Kratsch, D., Kucherov, G.: Optimal Linear
Arrangement of Interval Graphs. In: Kralovic, R., Urzyczyn, P.(Eds.) MFCS 2006.
LNCS, vol. 4162, pp. 267–279. Springer, Heidelberg (2006)

6. Damaschke, P.: Ordering a Sparse Graph to Minimize the Sum of Right Ends of
Edges. In: Klasing, R., Gasieniec, L., Radzik, T. (Eds.) IWOCA 2020. LNCS, vol.
12126, pp. 224–236, Springer, Cham (2020)

7. Domanic, N.O., Lam, D.K., Plaxton, C.G.: Bipartite Matching with Linear Edge
Weights. In: Hong, S.K. (Ed.) ISAAC 2016. LIPIcs, vol. 64, pp. 28:1–28:13.
Dagstuhl (2016)

8. Eikel, M., Scheideler, C., Setzer, A.: Minimum Linear Arrangement of Series-
Parallel Graphs. In: Bampis, E., Svensson, O. (Eds.) WAOA 2014. LNCS, vol.
8952, pp. 168–180, Springer, Heidelberg (2014)

9. Esteban, J.L., Ferrer-i-Cancho, R.: A Correction on Shiloach’s Algorithm for Min-
imum Linear Arrangement of Trees. SIAM J. Comput. 46, 1146–1151 (2017)

10. Feige, U., Lee, J.R.: An Improved Approximation Ratio for the Minimum Linear
Arrangement Problem. Info. Proc. Letters 101, 26–29 (2007)

11. Fellows, M.R., Hermelin, D., Rosamond, F.A., Shachnai, H.: Tractable Parame-
terizations for the Minimum Linear Arrangement Problem. ACM Trans. Comp.
Theory 8, 6:1–6:12 (2016)

12. Fernau, H.: Parameterized Algorithmics for Linear Arrangement Problems. Discr.
Appl. Math. 156, 3166–3177 (2008)

13. Fredman, M.L., Tarjan, R.E.: Fibonacci Heaps and Their Uses in Improved Net-
work Optimization Algorithms, J. ACM 34, 596–615 (1987)

14. Shirmohammad, P.: Linear Arrangements with Closeness Constraints, Master’s
thesis, Chalmers and Univ. of Gothenburg, 2020

