
Incremental Haplotype Inference,

Phylogeny, and Almost Bipartite

Graphs∗

Peter Damaschke
Department of Computer Science and Engineering

Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract

We address the combinatorial problem of inferring haplotypes in a
population that forms a perfect phylogeny (PP) given a sample of geno-
types. The problem is relevant because, in DNA sequencing, genotypes
are easier to obtain than haplotyping by DNA sequencing. Since PP’s
appear naturally and frequently on DNA sequences of restricted length,
PP haplotyping is a favourable approach to facilitate reliable haplotype
inference. Since Gusfield’s seminal paper from 2002, a number of different
algorithms have been proposed. Here we give an algorithm that identi-
fies haplotypes incrementally (along the sequence). Under the random
mating assumption, all sufficiently frequent haplotypes are inferred from
a random genotype sample of asymptotically optimal size. By its extreme
simplicity, the idea of the algorithm easily extends to more general popula-
tion structures. This can be beneficial because the strict PP assumption is
easily violated in reality. Missing data can also be recovered by incremen-
tal haplotyping, if they are not too prevalent. In a more graph-theoretic
part of this work we solve a problem we call almost-2-coloring of graphs,
which arises in an enhanced version of our haplotyping algorithm. We
show that the solution space of this graph problem can be computed in
linear time.

1 Introduction

Somatic cells of diploid organisms such as higher animals and plants contain two
copies of genetic material, in pairs of homologous chromosomes. The genetic

∗An early version has been presented at the 2nd RECOMB Satellite Workshop on Com-
putational Methods for SNPs and Haplotypes, Pittsburgh 2004.

1

data on a fixed part of a single chromosome is called a haplotype. Formally
we may describe a haplotype as a vector (a1, . . . , am) where m is the num-
ber of sites considered, and ai is the genetic data at site i. Here the term
site (or synonymously, locus) can refer to a gene, a short subsequence, or even
a single nucleotid. The ai are called alleles. The vector of unordered pairs
({a1, b1}, . . . , {am, bm}) resulting from haplotypes (a1, . . . , am) and (b1, . . . , bm)
on homologous chromosomes is called a genotype.

Usual sequencing methods yield only genotypes but not the pairs of haplo-
types they are built from, the so-called phase information. Haplotyping tech-
niques exist, but they are more expensive. On the other hand, haplotype data is
needed for analyzing the background of hereditary dispositions and prediction
of traits: A hereditary trait often originates from mutations on a chromosome
that has been transmitted over generations, with further silent mutations (with-
out effect) supervened. This way the trait is associated with a certain subset
of haplotypes, even if the observed loci do not contain the trait gene. Hence
one can observe correlations between the presence of certain haplotypes and the
trait. Especially when a trait appears or disappears several times in the evolu-
tionary tree, it is not associated with a single mutation at the observed loci but
with combinations of them. If only genotypes are known, it is more difficult to
see correlations. Once the frequent haplotypes in a population are determined,
it is a straightforward procedure to find the haplotype pair that constitutes a
given genotype. Recent methods for association analysis [1, 2, 3] use haplotypes.
Other applications include questions from population dynamics.

Generally speaking, haplotypes are much more informative than genotypes,
since they change only slowly over generations, whereas genotypes are just the
results of random pairings of haplotypes. Therefore it is important to recon-
struct haplotypes from observed genotypes. A genotype with i > 0 ambigous
sites can be explained by 2i−1 distinct haplotype pairs, and reconstruction is
impossible as long as isolated genotypes are considered. However, with a large
enough genotype sample and a proper assumption about the structure of the
population it is sampled from, one can often infer the haplotypes with high
accuracy.

One such assumption is that every new mutation affects a new site never
changed before, and pointwise mutations are the only way haplotypes are mod-
ified, which is very likely to be true for nearby loci on DNA from relatively
young populations. In this case, at most two alleles appear at every site. The
two possible values of every allele are usually denoted by 0 and 1 (where the
naming is arbitrary). Moreover, and more substantially, the haplotypes are in
an obvious sense vertices of a tree:

Definition 1 A perfect phylogeny (PP) is a tree whose vertices are labeled by
bit vectors of length m such that every bit changes at most once in the tree,
along one edge. In other words, every bit ai either has the same value in the

2

whole tree, or there is exactly one edge ei such that ai = 0 on one side of ei,
and ai = 1 on the other side.

The PP haplotyping problem is: Given a set of n vectors of m pairs {0, 0},
{1, 1}, {0, 1}, explain each of them by two haplotypes, so that all these 2n (not
necessarily distinct) haplotypes fit in a PP. The first published result by Gusfield
[4] was an almost linear-time algorithm, however this algorithm relies on deep
results from matroid theory and is by far too complicated for implementation.
Alternative algorithms [5, 6] are slower but elementary and practical. Indepen-
dently, we had proposed in [7] an algorithm that differed from the others in both
the approach and the goal. Whereas the former algorithms are purely combi-
natorial and generate a description of all possible haplotyping results for any
set of genotypes, we concentrated on the haplotypes that can be inferred safely
(perhaps the most important information). We obtained a better expected run-
ning time under the natural assumption of random mating, and we estimated
the sample size being sufficient for inferring all haplotypes above some desired
frequency threshold. The problem has also been considered under probabilistic
assumptions in [8]. An almost linear-time algorithm has been given there, based
on a result of Pe’er et al. [9]. It can also cope with missing information, and
it works under the rich data hypothesis which demands, roughly speaking, that
enough combinations of alleles be present in the data matrix, which is true with
high probability in a large enough sample under the random mating assumption.
All algorithms mentioned above are not very simple.

The method presented here achieves the goals of our earlier work in a more
natural way and has several other advantages: The basic algorithm is extremely
simple. The very idea is to solve the problem incrementally on increasing sub-
sequences of k sites (k = 1, 2, 3, . . .) and to extend the haplotyping results,
so-called k-haplotypes. This extension step works with a few local rules in a
suitably defined sample graph. The rules can be applied to the known data even
if some small fraction of data items is missing. The algorithm itself is determin-
istic and runs in time linear in the size of the data. Given a random sample of
genotypes, it identifies with high probability all haplotypes that appear with a
frequency above some user-defined threshold. We analyze its resolution perfor-
mance under the random mating assumption. A very mild extra assumption is
that no k-haplotype makes up for the majority of the population, therefore we
start at some site where the number of 0’s and 1’s is as balanced as possible.
The necessary size of the random sample is close to a provable lower bound. Ac-
tually, the algorithm makes use of an assumption that is properly weaker than
PP, hence it works accurately for more general populations violating the very
strict PP assumption. The algorithm in its basic form does not even explicitly
use any tree structure of the population. Next, one can easily add data in both
directions, i.e., new genotypes and new sites of already considered genotypes,
because the very idea is to add new sites and to extend the haplotyping results

3

incrementally. The basic scheme can be smoothly enhanced if the random sam-
ple is not large enough to make the local rules work. In the extreme case, the
local rules may be replaced with some global computation. (We will characterize
and completely solve the arising graph coloring problem.)

More recently, the PP haplotyping problem for complete data has been
solved by a practical and deterministic linear-time algorithm [10]. (We also
refer to that paper for pointers to other recent developments.) Still, the ex-
treme simplicity, extendability, and tolerance of missing data seems to render
our algorithm an interesting alternative. Coping with missing data is important
for practicality [11].

Organization of the paper: In Section 2 we introduce the overall idea. Sec-
tion 3 outlines a “parameterized” probabilistic analysis of the algorithm on a
random sample of genotypes under the random mating assumption. In the more
informal Section 4 we discuss how our scheme can cope practically with incom-
plete data. In Section 5 we turn to pure combinatorics and develop a linear-time
algorithm for the aforementioned graph coloring problem that may be used in-
stead of the simple local rules if the necessity arises. Section 6 is devoted to
extensions to not so perfect phylogenies. Section 7 reports an implementation,
and Section 8 concludes the paper.

2 The Basic Algorithm

The following well-known characterization of PP has been discovered several
times (cf. [4, 5]):

Lemma 1 A population of haplotypes has a PP if and only if, for no pair of
sites, all four combinations 00, 01, 10, 11 of alleles appear in the population. 2

Let H be a population of haplotypes of length m that build a PP. For any
integer k, 0 ≤ k ≤ m, denote by Hk the set of prefixes of length k of the
haplotypes in H. Note that, since H has a PP, every Hk and every subset of
Hk forms a PP as well. This follows trivially from Lemma 1. For k = 0, by
definition Hk contains only the empty string.

Suppose that H is unknown to us, but we are given a (random) sample S of
genotypes of length m, each formed by two haplotypes from H. In the following
we develop an algorithm that takes this sample and outputs haplotypes from
H. We will show that this algorithm is correct in the sense that all returned
haplotypes really exist in H. Since the input is a random sample S of genotypes,
in general not all haplotypes in H will be found and not all genotypes in S will
be resolved, but in Section 3 we show that all haplotypes above some frequency
threshold are found with high probability, given a large enough S. (Note that
no haplotyping algorithm can guarantee to reconstruct the whole of H from

4

a random sample S, already for the trivial reason that some rare haplotypes
might not even appear in S.)

A k-haplotype is any binary sequence of length k. Our algorithm will, for
every k = 0, . . . ,m, return a set of k-haplotypes and keep a certain subset
Sk ⊆ S for the remaining steps.

More specifically, we will establish the following inductive hypothesis: All
returned k-haplotypes exist in Hk, and all genotypes g ∈ Sk are resolved until
site k. The latter expression means that the two k-haplotypes in Hk that build
the prefix of length k of g are correctly reconstructed. From the inductive
hypothesis it follows, with k = m, that all returned haplotypes exist in H, as
claimed.

We begin specifying our algorithm. For k = 0 we output only the empty
string, and let S0 = S. This makes the inductive hypothesis vacuously true for
k = 0, as H0 contains the empty string.

For the main loop of the algorithm, suppose that we have a set of k-
haplotypes that exist in Hk, and a set Sk ⊆ S of genotypes resolved until site k
(inductive hypothesis). In the following, letters x, y, z, etc. denote k-haplotypes,
and a letter with Boolean value 0 or 1 attached denotes a (k+1)-haplotype in the
obvious sense. Now the algorithm takes this known subset of Hk and constructs
a sample graph:

Definition 2 We define the sample graph Gk as follows. The vertices of Gk

are the known k-haplotypes. For every genotype in Sk, the two vertices (k-
haplotypes) contained therein are joined by an edge. There is one edge for every
genotype (hence loops and multiple edges can occur in Gk). Every edge is labeled
by an unordered pair, namely one of 00, 11, and 01, corresponding to the Boolean
values at site k + 1 of the genotype.

By the inductive hypothesis, every vertex of Gk represents some k-haplotype
that exists in Hk. Now consider any edge uv in Gk (possibly with u = v). If
uv is a 00-edge then, obviously, the (k + 1)-haplotypes u0 and v0 must exist
in Hk+1. Similarly, if uv is a 11-edge, then the (k + 1)-haplotypes u1 and v1
must exist in Hk+1. Finally, if the edge uv is a loop (u = v) labeled with 01,
then clearly the (k+1)-haplotypes u0 and v1 must exist in Hk+1. (These trivial
implications hold for arbitrary populations, not only for PP.) The only problem
is with 01-edges uv that are not loops. In this case we know that either u0, v1
or u1, v0 must exist in Hk+1, but from the edge alone we cannot decide which
option is true.

Here the PP assumption comes into play. The following is an immediate
consequence of Lemma 1:

Lemma 2 For at most one vertex v of Gk, both v0 and v1 can exist in Hk+1.

5

Proof. Suppose that u0, u1, v0, v1 are in Hk+1, for two distinct vertices u and
v of Gk. Since, by the inductive hypothesis, u and v represent different k-
haplotypes in Hk, there must be a site i ≤ k where u has 1 and v has 0, or vice
versa. But now all pairs 00, 01, 10, 11 appear at sites i, k + 1, so that Hk+1 is
not a PP. This contradicts the assumption that the whole population is PP. 2

We refer to a vertex v such that both v0, v1 ∈ Hk+1 as a split vertex.
Now we formulate two rules for inferring certain (k+1)-haplotypes in Hk+1.

Let x, y, z be k-haplotypes that are vertices in Gk (and hence belong to Hk, by
the inductive hypothesis).

Rule 1: If x is incident to some 00-edge or 01-loop in Gk, then x0 ∈ Hk+1.
Similarly, If x is incident to some 11-edge or 01-loop in Gk, then x1 ∈ Hk+1.
Rule 2: Suppose that x is joined to distinct vertices y and z by 01-edges.
If y0, z0 ∈ Hk+1 then also x1 ∈ Hk+1. Similarly, if y1, z1 ∈ Hk+1 then also
x0 ∈ Hk+1.

Lemma 3 Rule 1 and 2 are sound.

Proof. As we have already seen above, Rule 1 is obviously correct, even without
the PP assumption. Correctness of Rule 2 follows from Lemma 2 (we show only
the first part, as the second part is symmetric): Since y0, z0 ∈ Hk+1, at most one
of y1, z1 can be in Hk+1 as well. Without loss of generality, assume y1 /∈ Hk+1.
But since xy is a 01-edge, it must be the case that x1 ∈ Hk+1. 2

In each extension step (going from Hk to Hk+1) we first apply Rule 1 wher-
ever possible, and then we apply Rule 2 to vertices x that have two neighbors
y, z such that either y0, z0 ∈ Hk+1 or y1, z1 ∈ Hk+1 has been already inferred
by Rule 1.

Now we have determined a set of (k + 1)-haplotypes which, by Lemma 3,
surely belong to Hk+1. Finally we define Sk+1 ⊆ Sk and resolve the genotypes
in Sk+1 until site k + 1. In the language of Gk that means, we explicitly assign
the two Boolean labels of edge uv to its vertices u and v, for edges uv that we
want to keep in Sk+1. (The problem is that not necessarily all edges of Gk have
been involved when we applied the rules.)

For 00-edges and 11-edges this step is trivial, and we keep all the correspond-
ing genotypes in Sk+1. Consider any 01-edge uv where u0, v1 are returned and
thus u0, v1 ∈ Hk+1 (or the symmetric case with 0 and 1 switched). Then it
is clear that the genotype until site k + 1 consists of u0, v1. The other option
u1, v0 is impossible because then we also have u1, v0 ∈ Hk+1, which contradicts
Lemma 2. Thus, we keep such genotypes in Sk+1 as well. In all other cases we
simply throw out the edge uv and do not include the corresponding genotype
in Sk+1.

6

We conclude with a high-level description of the algorithm. Note that the
algorithm is computationally very simple. Using basic data structures for ma-
nipulating graphs, it runs in O(nm) time.

Algorithm “Incremental Haplotyping”
Background: a PP population H of unknown haplotypes of length m.
Input: a sample S of n genotypes, each formed by two haplotypes from H.
Output: a subset of H.

Summary of the Algorithm:
1. Arrange the sites in any linear order, but start with a site where the maximum
frequency of 0s and 1s is minimal. Trivially, the empty string is known to be a
0-haplotype in H0. Let S0 := S. Do the following steps for k = 0, 1, 2, . . . ,m−1.
2. Construct graph Gk from Sk and the known k-haplotypes in Hk. 3. Apply
Rule 1 to Gk. The inferred (k + 1)-haplotypes are in Hk+1.
4. Apply Rule 2 to Gk and the already known haplotypes in Hk+1. The inferred
(k + 1)-haplotypes are in Hk+1.
5. Put all genotypes in Sk+1 which are represented by 00-edges and 11-edges
where both vertices represent inferred (k + 1)-haplotypes.
6. Put all genotypes in Sk+1 which are represented by 01-edges uv where either
u0, v1 or u1, v0 are inferred (k + 1)-haplotypes.

From Lemma 3 and the subsequent discussion it follows:

Theorem 1 Provided that the given population is PP, Incremental Haplotyping
outputs only correct haplotypes that exist in the population.

On the other hand, the analysis in Section 3 we will show that the simple
rules of Incremental Haplotyping are sufficient to infer all frequent k-haplotypes
(above some frequency threshold) with high probability, from a random geno-
type sample S whose size is close to a trivial lower bound. To explain a detail
in the initial step: The analysis needs that on the starting site there is no vast
majority of 0s or 1s. This is a very mild and easy-to-check additional assump-
tion. In real populations it should even hold for many sites, so that we are not
in trouble getting a starting point.

Another remark is that we applied Rule 2 only to those (k + 1)-haplotypes
inferred before by Rule 1. Of course, one could choose to iterate Rule 2 as long
as it is applicable, and possibly infer even more (k + 1)-haplotypes. However,
our analysis will not take advantage of this cascading effect, therefore we have
described the simplest variant.

Example: As an illustration we give an example with six genotypes (first
column) built from the population of haplotypes 00000, 10000, 01000, 10100,
10010, 01001; it is not hard to see that they form a PP. This sample is large
enough to reconstruct the haplotypes: The other columns are the six edges, i.e.,

7

pairs of vertices, of the sample graph in each step. In Step 3, genotypes b and
e are 01-edges adjacent to vertex 100. Both 101 and 000 are already extended
to 1010 and 0000 elsewhere, hence Rule 2 implies that 100 must be extended to
1001 in b and e. Note that 1000 appears as well (in a and d), thus 100 is a split
vertex. In step 4, c is a 01-loop causing the split vertex 0100, and f is resolved
afterwards by Rule 2, as edges c and f that meet in 0100 are now incident to
two different vertices (0100 and 0000) already extended by 0 elsewhere.

a 20000 0 00 000 0000 00000
1 01 100 1000 10000

b 10220 1 10 100 1001 10010
1 10 101 1010 10100

c 01002 0 01 010 0100 01000
0 01 010 0100 01001

d 10200 1 10 100 1000 10000
1 10 101 1010 10100

e 20020 0 00 000 0000 00000
1 10 100 1001 10010

f 02002 0 00 000 0000 00000
0 01 010 0100 01001

3 Analysis of Incremental Haplotyping

To study the power of Incremental Haplotyping we adopt the random mating
assumption: Every haplotype appears with some fixed frequency in the popu-
lation, and for any ordered pair of haplotypes (x, y), the probability to pick a
genotype composed of x and y is simply the product of their frequencies (and
hence twice as much for the unordered pair {x, y}, if x 6= y). It is equivalent to
say that haplotypes are sampled according to their frequencies in the popula-
tion, independently and with repetition, and paired up to genotypes. Although
the random mating assumption is barely perfectly satisfied in real populations
(e.g. due to mating preferences), it provides a reasonable theoretical model for
analyzing the performance one can expect of a haplotyping method.

Very rare haplotypes will probably not show up in a random sample. On the
other hand, they are also of minor interest. Therefore the following definition
is sensible:

Definition 3 We fix some parameter h and call a haplotype frequent (rare) if
it appears with frequency at least (less than) 1/h. Furthermore, let r be the sum
of frequencies of rare haplotypes.

We aim at discovering all frequent haplotypes. Recall that n denotes the
size of the random genotype sample S. The goal of this section is to estimate

8

a sample size n (depending on h and r) that is sufficient to infer, with some
prescribed probability 1− ε, all frequent haplotypes.

The following technical trick will simplify our analysis. We assume that
some imaginary, omniscient “helper” that knows the haplotype frequencies pre-
processes S and gives us a modified sample S′ ⊆ S instead of S. We analyze
how our algorithm would behave on S′ (which will be simpler), and then we
drop the assumption and conclude the real behaviour on S. Speficically, set S′

provided by the helper is the set of genotypes from S composed of two frequent
haplotypes. Since a randomly picked haplotype is some of the rare haplotypes
with probability r, the random mating assumption yields |S′| = (1 − r)2|S| in
expectation.

Equivalently we can say that S′ has been sampled from the given population
without the rare haplotypes. Note that the frequency of every haplotype in this
“purged” population is at least 1/h(1− r), by the definition of h and r. Based
on these relationships we proceed as follows. First we analyze the special case
that all haplotypes in the population are frequent. (That is, we assume r = 0
and further denote the minimum frequency by 1/h). In the resulting expression
for sample size n, we finally replace h with h(1−r), and multiply the expression
with 1/(1 − r)2. This yields the result for arbitrary r > 0. (Note that rare
haplotypes that are present in the real sample S but ignored by the analysis
can only increase the rate of recognized frequent haplotypes.)

We suppose that, from some small k on, each k-haplotype appears with
frequency at most 1/2, that is, no single k-haplotype has the majority. In the
special case that a majority haplotype x exists, it will be quickly detected by
Rule 1 (in simpler words: at least n/4 genotypes in the sample are just twice
x) and can be removed from S, similarly as rare haplotypes.

Now we begin with the actual analysis. The degree of a vertex in a graph is
the number of edges incident with this vertex, where a loop counts twice. By
the definition of Gk, the degree of any vertex in Gk is the number of occurences
of the corresponding k-haplotype in Sk. Without loss of generality, let 0 be the
more frequent allele at every site (otherwise we switch the names 0 and 1 at
the sites where the majority was 1). By Rule 1 and 2, any v0 is inferred if v
is incident to a 00-edge, and any u1 is inferred if u is incident to two 01-edges
ending in distinct 0-vertices that are already inferred.

Define Z = 2n/h. Consider any fixed haplotype x̂. Trivially, the prefix x of
length k of x̂ has a frequency at least 1/h, since x̂ has. From random mating it
follows that the expected degree of the corresponding vertex x in Gk is at least
Z. For the moment consider vertices whose actual degree is at least Z.

In the following, a 0-vertex in Gk is a vertex representing a k-haplotype that
is prefix of a (k + 1)-haplotype in Hk+1 that has a 0 at site k + 1. A 1-vertex
is defined similarly. Note that a split vertex vertex (see Lemma 2) is both a
0-vertex and a 1-vertex.

9

Suppose that x̂ has a 0 at site k + 1, that is, x is a 0-vertex. Since x has
degree at least Z, the probability that no edge incident with x ends in another
0-vertex is bounded by (1/2)Z . That is, we infer the (k + 1)-haplotype x0 with
probability 1− (1/2)Z .

Suppose (the other case) that x̂ has a 1 at site k +1, that is, x is a 1-vertex.
Then we infer x1 already if some edge incident with x ends at another 1-vertex,
or two edges incident with x end at different 0-vertices. The only bad case is
that all edges incident with x end at a unique 0-vertex. Let b denote the highest
frequency of a k-haplotype in the population. Then the bad case happens with
probability at most bZ . That is, we infer x1 with probability 1− bZ .

Since b < 1/2 (see above), the probability to miss any specific (k + 1)-
haplotype is at most (1/2)Z in either case. Moreover, we do not lose edges
between vertices, once we have inferred the (k + 1)-haplotypes there (see steps
5-6 of the algorithm).

Since we have considered m sites, each with at most h different k-haplotypes,
the union bound yields: The probability that some of the k-haplotypes (k =
1, . . . ,m) is not inferred is at most hm/2Z , provided that all vertices in the Gk

have minimum degree Z. Recall that Z was only a lower bound for the expected
degree of any vertex. However, for arbitrarily small δ > 0, the probability of
degrees smaller than some (1 − δ)Z quickly goes to 0 for growing n (due to
Chernoff bounds). It could simply be added to the failure probability, but since
this term becomes arbitrarily small and does not affect the asymptotic result
below, we skip this technicality.

Let ε be the user-defined failure probability. Now n = hZ/2 and Z =
log2(hm/ε) gives the sample size n = 1

2hZ = h
2 log2(hm/ε) for the case r = 0.

As we discussed above, for general r > 0 we have to replace h with h(1 − r),
and to multiply the result eventually by 1/(1− r)2. Altogether we conclude:

Theorem 2 For a parameter h > 1, let r be the total frequency of rare hap-
lotypes in a given population, i.e., those haplotypes with frequencies below 1/h.
Suppose that, from some fixed k on, no k-haplotype has the majority, and geno-
types are formed by random mating. Then Incremental Haplotyping recognizes
with probability at least 1 − ε all haplotypes of frequency at least 1/h, using a
sample of

n =
h

2(1− r)
log2((1− r)hm/ε)

genotypes, subject to a factor that tends to 1 as 1/ε grows. 2

For fixed r, ε and h = Ω(m) this sample size is O(h log h). Remarkably, this
bound cannot be improved, because Θ(h log h) random genotypes are already
needed to hit all haplotypes of frequency at least 1/h, by the well-known “coupon
collector” result from basic probability theory. By adding more complicated
local rules besides Rule 1 and 2, one could only reduce the constants hidden in
O(h log h), but not the asymptotics.

10

4 Missing Data

In real data, a fraction of data items in the genotype sample may be missing or
unreadable, that is, we read symbol “?” instead of 0,1 or 2. For the kth step in
Incremental Haplotyping this means that we may not know the labels of some
edges in Gk; let us call them ?-edges. But Rule 1 and 2 are still sound and can
be applied to the available 00-, 01- and 11-edges, and we can also resolve the
corresponding genotypes until site k + 1 exactly as before.

Moreover, we can reconstruct the missing labels of certain ?-edges. Remem-
ber that Lemma 2 guarantees the existence of at most one split vertex. If the
split vertex has been recognized, that is, the (k + 1)-haplotypes v0 and v1 have
been inferred for some v, then we also know the label of any ?-edge not incident
to v, from the uniquely determined alleles at site k+1 of their endvertices. How-
ever, ?-edges incident to the split vertex v remain unresolvable and are excluded
from Sk+1.

The more cumbersome case is that no split vertex has been recognized. Note
that there may still exist a hidden split vertex v, but we may have failed to infer
v0 or v1. In order to avoid the loss of all ?-edges, we restrict the split vertex
candidates as follows. The PP tree of the known k-haplotypes can easily be
reconstructed incrementally [12], and this can be done synchronously with the
haplotyping. Once the tree is known, the only split vertex candidates are the
two vertices of the tree edge where the (k + 1)st bit changes. Thus, we exclude
only those ?-edges from Sk+1 which are incident to these two candidate vertices.

Still, discarding unresolvable ?-edges can lead to substantial loss in the sam-
ple, if the (candidate) split vertices always represent haplotypes with high fre-
quencies and the rate of missing data items is high. But this loss seems to be
unavoidable in the worst case. (We remark that an algorithm of Kimmel and
Shamir [11] needs n = ω(m2) genotypes in the random mating model, in or-
der to guarantee a complete solution with high probability in Õ(m2n) expected
time, if missing entries appear independently and with constant probability.)
However, we observed in simulations that typically a considerable fraction of
genotypes is kept in the sample.

5 All Colorings of Almost Bipartite Graphs

The step from k-haplotypes to (k + 1)-haplotypes in Incremental Haplotyping
gives rise to a certain graph coloring problem. Remember that our inferred
k-haplotypes are represented as vertices of a graph Gk. Now let us interpret
the alleles at site k + 1 as two colors that we still denote 0 and 1. Every vertex
has one color, except a possible split vertex having both colors. We attempt to
infer the vertex colors from the edge labels. We call a vertex precolored if it is
incident to a 00- or 11-edge and must therefore receive the corresponding color,
see Rule 1. Then the following nontrivial problem remains, due to Lemma 2.

11

Almost 2-Coloring:
Given a graph with uncolored and precolored vertices (colored either 0 or 1
or both 0 and 1) and 01-edges, assign colors 0 and 1 to the vertices of every
01-edge, in such a way that at most one split vertex exists in the whole graph.

The precise connection to Incremental Haplotyping is as follows. Due to
Lemma 2, we can infer a (k + 1)-haplotype v0 if vertex v gets color 0 in all
solutions to Almost 2-Coloring, and similarly with color 1. What we have
shown is that vertices representing frequent haplotypes fulfill this condition with
high probability in a large enough sample and, moreover, the simple Rules 1
and 2 are then sufficient to actually determine the color. However, if only
a smaller sample is available, many vertex colors may still be identical in all
almost 2-colorings, but Rules 1 and 2 become too weak. In this situation we
may compute all solutions to Almost 2-Coloring in the graph and finally
determine the unambiguously colored vertices. The question is how difficult
this graph problem is.

This is a possible enhancement of Incremental Haplotyping, but no longer
simple. However, we show in this section that all solutions to Almost 2-
Coloring can still be computed and represented in linear time. This result
might also find independent interest, as recognition of graphs that “almost”
have certain properties is an established field of research, also in connection with
other computational biology problems. More specifically, Almost 2-Coloring
is related to bipartization problems [13, 14].

We first solve the special case without precolored vertices. After that, it
is not hard take also precolored vertices into account. Let us call a graph G
almost bipartite if it is not bipartite but becomes bipartite (2-colorable) after
deletion of some vertex and all its incident edges. Almost bipartite graphs can
be recognized in linear time as shown by Cai and Schieber [15]. Later we have
somewhat simplified the algorithm of Cai and Schieber in [16]. Note that a
graph is bipartite if and only if it has no odd cycles. We identify a cycle with its
vertex set. The results from the aforementioned papers relevant for our purpose
are summarized in:

Theorem 3 Given a graph G, one can recognize that G is bipartite, and oth-
erwise compute the intersection X of all odd cycles in G and a particular odd
cycle C, everything in linear time. The vertices in X are exactly those which
can take the role of the split vertex. X is nonempty if and only if G is almost
bipartite.

For the other prerequisites used below, we refer to standard graph-algorithmic
results as provided in many textbooks.

If G is bipartite then every 2-coloring (computed independently in the con-
nected components of G) is a solution to Almost 2-Coloring. In addition to

12

these solutions, any vertex may be chosen as a split vertex. If the split vertex
is an articulation point, we get further colorings in an obvious way. Since artic-
ulation points and the block-tree structure can be computed in linear time, we
also get a concise description of all possible 2-colorings with at most one split
vertex in linear time.

Now we treat the more tricky case: If G is almost bipartite, exactly one
connected component G′ is almost bipartite, and all other components must be
bipartite. Clearly, the split vertex must be in G′, thus it suffices to study this
component from now on.

Compute X and some C in G′, according to Theorem 3. Note that ∅ 6= X ⊆
C. Removal of any vertex x ∈ X induces two possible colorings of the path
C − x, which differ only by swapping the colors. The vertices of X partition C
in an obvious sense in edge-disjoint paths which we call the segments of C, with
the understanding that every vertex of X belongs to both incident segments.
Now let D be any connected component of G′−C. The contacts of D are those
vertices of C adjacent to some vertex of D. We say that a pair of vertices has
parity 0 (1) if both have the same color (different colors). With these denotations
we formulate and prove:

Lemma 4 All contacts of a component D of G′−C are in one of the segments
of C, possibly including one or both ends of this segment in X. In particular, D
may have exactly one contact x ∈ X, in which case x is an articulation point.

Proof. We claim that two vertices x1, x2 ∈ X and two contacts y1, y2 of D can
never occur in cyclic ordering (x1, y1, x2, y2) on C.

To prove the claim, note that y1 and y2 are connected by an even path and
an odd path on C. If we delete once x1 and once x2 then y1, y2 have the same
color in one rest graph and different colors in the other rest graph. But since
y1, y2 are also connected by some path through D, only one case can be true, a
contradiction.

The claim immediately implies that all contacts of D in C −X must belong
to one segment. Moreover, D cannot have four contacts in X.

Assume D has three contacts in X. If we delete any of them, say x, then
the parity of the two others is determined by their fixed distance in D, but at
the same time by their distance on path C − x. It is easy to check that these
three parities contradict each other, since C is an odd cycle. Hence D can have
at most two contacts in X.

The claim also imposes restrictions on the positions of contacts of D in X
and C − X: Two contacts in X must be ends of the same segment, and the
other contacts must be within this segment (or in the same segment if |X|=2).
Similarly, if D has exactly one contact x in X then the other contacts are
necessarily in one of the segments incident to x. From these observations the
lemma follows. 2

13

The next lemma describing all 2-colorings of G′−x for all x ∈ X in terms of
parities is almost an immediate consequence. Despite its lengthy formulation,
it provides a comprehensive overview of the solution space.

Lemma 5 Given a connected, almost bipartite graph G′ with a set X of k
vertices x0, . . . , xk−1, appearing in this cyclic ordering on some odd cycle C, the
vertex set of G′ − X can be partitioned into disjoint sets Pi, i = 0, . . . , k − 1,
and Qij, j = 1, . . . , j(i) so that the statements below hold for this partition.
Moreover, the partition and the cyclic ordering, which we call the cyclic structure
of G′, is computable in linear time. The Pi, Qij, and {xi} are called parts, and
arithmetic is understood modulo k.
(1) The parity of any pair of vertices inside one part is the same in all G′− xi.
(2) The parity of any pair of vertices, one from Pa and one from Pb, is the same
in all G′−xi, i = a+1, . . . , b, and the same in all G′−xi, i = b+1, . . . , a, and
different in both cases.
(3) Property (2) holds similarly for any pair of vertices, one from {xa}∪

⋃
j Qaj

and one from Pb, excluding case i = a.
(4) Property (2) holds similarly for any pair of vertices, one from {xa}∪

⋃
j Qaj

and one from {xb} ∪
⋃

j Qbj, excluding cases i = a and i = b.
(5) In G′−xi, all the Qij and the rest of G′−xi can be 2-colored independently.

Proof. Every connected component of G′ − C with xi as the only contact
becomes one of the Qij , where j is just a serial number. We define Pi to be
the union of all components D of G′ − C having their contacts on the path
on C from xi to xi+1 in the cyclic ordering (except the components Qij and
Qi,j+1), plus the vertices of this path. Properties (1)-(5) follow easily from the
connectivity relationships and the fact that C is odd. The complexity follows
from Theorem 1 and the linear-time computability of connected components. 2

Finally, Lemma 5 also makes it easy to describe how precolored vertices
in the almost bipartite graph G′ further restrict the possible 2-colorings: Any
precolored vertex v determines the coloring of each G′−xi−

⋃
j Qij completely,

with the exception G′ − xi if v = xi or v ∈ Qij . Moreover, the colorings of
G′ − x and G′ − x′ for x, x′ ∈ X differ exactly on the parts assigned to that
path between x and x′ on C which is disjoint to the contact set of the part
containing v. These observations remain true if, more generally, all precolored
vertices belong to the same part.

Something interesting happens if two parts, say Pa and Pb, contain pre-
colored vertices: Since fixed colors also imply fixed parities, by Lemma 5 the
elements of either {xa+1, . . . , xb} or {xb+1, . . . , xa} are no longer split vertices.
That is, we can shrink the cyclic structure by merging all parts which have con-
tacts in one of the two paths on C between xa and xb. Similarly we can proceed
if some parts Paj and Qb, or Qaj and Qbj′ have precolored vertices. If some
Qaj and Qaj′ have precolored vertices then either a is the only possible split

14

vertex or the two parts can be merged into one. If several parts have precolored
vertices, we can successively shrink the cyclic structure as above. Details are
straightforward.

Corollary 1 All 2-colorings of a connected, almost bipartite graph are described
by a cyclic structure as in Lemma 5, where at most one part has precolored
vertices.

Altogether we obtain:

Theorem 4 A linear-space description of all solutions of an instance of Al-
most 2-Coloring (the cyclic structure) can be computed in linear time.

The observation that the cyclic structure shrinks so easily in the presence
of precolored vertices indicates that random almost-bipartite graphs (appro-
priately defined) have a unique coloring already for relatively few edges. A
probabilistic analysis might be interesting. The cyclic structure is also use-
ful for describing all possible results of some consecutive non-unique steps in
incremental PP haplotyping.

We conclude the section with a summarizing high-level description of the al-
gorithm, with standard routines and straightforward details omitted. Note that
the (possibly exponentially many) solutions can in fact be completely described
in linear space, due to the independent swapping of colors in different parts of
the graph. By deciding the colors of these parts we can also output explicit
solutions with linear-time delay.
Input: a graph G, where some vertices may be precolored with 0 or 1.
Output: a concise description of all 2-colorings (with 0 and 1) that satisfy the
following: precolored vertices keep their colors; the vertices of every edge get
colors 0 and 1; and at most one vertex (split vertex) gets both colors.

Summary of the Algorithm:
1. Compute the connected components of G.
2. Compute the articulation points and two-connected components of G.
3. Test whether G is bipartite. In this case, 2-color the connected components.
If all possible 2-colorings (with colors 0 and 1 switched independently in the
components) are in conflict with two precolored vertices, then no solution exists.
Otherwise, keep the solutions with at most one split vertex.
4. In the solutions without split vertex, do the following. For each articulation
point v (separately), declare v a split vertex and switch the colors independently
in the components of G − v that have no precolored vertices. For each other
vertex v (separately), declare v a split vertex and just add the other color to v.
STOP.
5. (G is not bipartite). Determine the non-bipartite connected components of
G. If there is more than one, then no solution exists. Compute the solutions in
the bipartite components, without split vertex, as above. Let G′ be the unique

15

non-biparite component.
6. In G′ compute the intersection X of all odd cycles, and distinguish some odd
cycle C.
7. Fix an orientation of C. Denote the vertices of X by x0, . . . , xk−1, in the
order they appear on C. For all i, let Ci be the path of C from xi to xi+1

(addition is understood modulo k).
8. For all i, let the Qij be the connected components of G′ − C with the only
contact xi, where j = 1, 2, 3, . . .
9. For all i, let Pi be the union of Ci and all connected components of G′ − C
that have all their contacts (neighbors in C) in Ci, except the components Qij

and Qi+1,j from Step 8.
10. 2-color every Qij and Pi. (Every part without precolored vertices has two
2-colorings obtained by swapping the colors.)
11. Now the space of all solutions (2-colorings of the parts that go together) is
described by the parity conditions (1)-(5) in Lemma 2. STOP.

6 Beyond Perfect Phylogeny

Incremental Haplotyping only relies on a certain property of PP’s, namely that
at most one k-haplotype is extended by both 0 and 1 (Lemma 2). Let us call
this property the 1-split property. Hence the algorithm already reconstructs
the frequent haplotypes correctly if they come from a population enjoying this
weaker property. The catch is that the 1-split property highly depends on the
order the sites are considered. Actually, we have the following equivalence,
which is yet another formulation of Lemma 1:

Proposition 1 A set of binary strings has a PP if and only if the 1-split prop-
erty holds for every permutation of the sites.

However, even if the population is not PP, a large fraction of permutations
may still have the 1-split property. In this case we would succeed by running
the Incremental Haplotyping algorithm on a random order of sites. If it goes
through, we know that the result is correct. If the algorithm detects more than
one split vertex in some step, we can try another random permutation, etc., for
a certain number of trials. This readily extends the applicability of our method
to not so perfect phylogenies.

Example: Consider the rows of the matrix
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

16

One can verify that only those permutations having the first two sites at place
1 and 2 violate the 1-split property. This is only a fraction of 2!4!/6! = 1/15 of
all permutations.

In an evolutionary history, random mutations may easily affect a few sites
more than once, i.e., some bits may switch forth and back between 0 and 1.[17]
Incremental Haplotyping may also be applied to such populations, by allowing a
limited number of split vertices (rather than only one) in every step. Resolution
rules and analysis would work similarly as in Section 2-3, however we have to
leave this subject for further research.

7 Implementation

The basic Incremental Haplotyping algorithm (Section 2), also for missing en-
tries (Section 4) has been implemented by Michael Ewald and later enhanced
by William Garner. A Java application is available at the author’s homepage.
The user must provide input as a file of equally long words with characters 0,1,2
(standing for {0, 0}, {1, 1}, {0, 1}), any other symbol is treated as a missing
item.

Missing entries are recovered if possible, as described in Section 4: ?-edges
incident to the split vertex are discarded. All ?-edges are discarded in steps
where no split vertex can be identified.

In order to increase the rate of recognized haplotypes for relatively small
sample sizes n and for the case of missing entries, several measures have been
added to the basic algorithm during the course of that work: The program can
run the algorithm on several orders of sites and combine the resulting partial
haplotypes. Also, Rules 1 and 2 have been enriched by a few more local rules.

Combining results from several orders of sites works as follows. Consider two
partially resolved versions (a′1, . . . , a

′
m) and (a′′1 , . . . , a′′m) of the same haplotype

(a1, . . . , am), that is, every a′i and a′′i is either 0 or 1 or “?”. If at least one of
a′i, a

′′
i has a definite value 0 or 1, then this is the true ai. However, an obvious

problem arises: Let x, y be a pair of haplotypes forming a genotype, and x′, y′

and x′′, y′′ two partially resolved outputs. Then we must be able to recognize
that x′, x′′ and y′, y′′, respectively, are parts of the same haplotype (rather than
x′, y′′ and x′′, y′). A sufficient condition for correct assignment is that at least
one 2 at the same position has been resolved in both x′, x′′ and y′, y′′, since then
0 and 1 will “identify” the two haplotypes.

In particular, one option is the straight-and-reverse mode: It runs the algo-
rithm twice, in original and reverse order, which resolves already most of the
positions where one run of the algorithm got stuck. An explanation is that Rule
2 fails mostly for k-haplotypes with low frequency, which is not so typical in
early steps. The user can also run the algorithm from all start positions k, that

17

is, apply it to the cyclic shifts k . . . , n, 1, . . . , k − 1. Since the basic algorithm
works in linear time, such multiple runs are still fast.

We summarize some simulation results from Ewald’s master thesis. One suite
of experiments was done on sequences of fixed length m = 50 from a randomly
generated PP population. The straight-and-reverse mode worked significantly
better than a single run, and then even cyclic runs with all 50 start positions
did not add much to the performance. The rate of resolved genotypes in this
mode was about 75% for n = 50, 90% for n = 75, and reached nearly 100% for
n > 150. Simulations with randomly deleted entries have been done, e.g., with
length m = 30 and sample size n = 150. For 1% missing data, resolution was
still complete, and every further percent of missing entries reduced the rate of
resolved genotypes by roughly 10%. However, the rate of recognized haplotypes
weighted by their frequencies is in general higher, because the more frequent
haplotype appear in several genotypes. The performance in the case of missing
entries was improved later in Garner’s implementation by a few additional rules
and repeated runs on randomly permuted sites.

8 Conclusions

We proposed a conceptually very simple algorithm for PP haplotyping, work-
ing on increasing prefixes of the given genotypes (in any desired order), that
has provably good resolution power under mild probabilistic assumptions about
the population. For incomplete genotype data the resolution rate of the basic
algorithm drops with growing error rate because of a simple policy of discard-
ing genotypes that are not immediately resolved. But we can overcome this
drawback by multiple runs on different orders of sites. It seems to be a great
advantage of the algorithm that it can be smoothly enhanced in various ways,
in particular to nearly perfect phylogeny cases. It would be nice to elaborate
more on these extensions.

References

[1] Onkamo P et al., Association analysis for quantitative traits by data mining:
QHPM, Annals of Human Genetics 66:419–429, 2002.

[2] Toivonen HT, Onkamo P, Vasko K, Ollikainen V, Sevon P, Mannila H, Herr
M, Kere J, Data mining applied to linkage disequilibrium mapping, Ameri-
can Journal of Human Genetics 67:133–145, 2000.

[3] Zhang S, Zhang K, Li J, Zhao H, On a family-based haplotype pattern min-
ing method for linkage disequilibrium, Pacific Symposium on Biocomputing,
pp. 100–111, 2002.

18

[4] Gusfield D, Haplotyping a perfect phylogeny: Conceptual framework and
efficient solutions, 6th Int. Conference on Research in Computational Molec-
ular Biology RECOMB, pp. 166–175, 2002.

[5] Bafna V, Gusfield D, Lancia G, Yooseph S, Haplotyping as perfect phy-
logeny: A direct approach, Journal of Computational Biology 10:323–340,
2003.

[6] Eskin E, Halperin E, Karp RM, Efficient reconstruction of haplotype struc-
ture via perfect phylogeny, Journal of Bioinformatics and Computational
Biology 1:1–20, 2003.

[7] Damaschke P, Fast perfect phylogeny haplotype inference, 14th Symposium
on Fundamentals of Computation Theory FCT, Lecture Notes in Computer
Science 2751, pp. 183–194, 2003.

[8] Halperin E, Karp RM, Perfect phylogeny and haplotype inference, 8th Int.
Conference on Research in Computational Molecular Biology RECOMB, pp.
10–19, 2004.

[9] Pe’er I, Pupko T, Shamir R, Sharan R, Incomplete directed perfect phy-
logeny, SIAM Journal on Computing 33:590–607, 2004.

[10] Ding Z, Filkov D, Gusfield D, A linear-time algorithm for the perfect
phylogeny haplotyping (PPH) problem, Journal of Computational Biology
13:522–553, 2006.

[11] Kimmel G, Shamir R, The incomplete perfect phylogeny haplotype prob-
lem, Journal of Bioinformatics and Computational Biology 3:1–25, 2005.

[12] Waterman MS, Introduction to Computational Biology, Chapman and Hall,
1995.

[13] Guo J, Gramm J, Hüffner F, Niedermeier R, Wernicke S, Compression-
based fixed-parameter algorithms for feedback vertex set and edge biparti-
zation, Journal of Computer and System Sciences 72:1386–1396, 2006.

[14] Raman V, Saurabh S, Sikdar S, Improved exact exponential algorithms for
vertex bipartization and other problems, 9th Italian Conference on Theo-
retical Computer Science ICTCS, Lecture Notes in Computer Science 3701,
pp.375–389, 2005.

[15] Cai L, Schieber B, A linear-time algorithm for computing the intersection
of all odd cycles in a graph, Discrete Applied Mathematics 73:27–34, 1997.

[16] Damaschke P, Linear-time recognition of bipartite graphs plus two edges,
Discrete Mathematics 262:99–112, 2003.

19

[17] Song YS, Wu Y, Gusfield D, Algorithms for imperfect phylogeny haplo-
typing with a single homoplasy or recombination event, 5th International
Workshop on Algorithms in Bioinformatics WABI, Lecture Notes in Com-
puter Science 3692, pp. 152–164, 2005.

20

