
A Toolbox for Provably Optimal Multistage
Strict Group Testing Strategies

Peter Damaschke and Azam Sheikh Muhammad

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

[ptr,azams]@chalmers.se

Abstract. Group testing is the problem of identifying up to d defectives
in a set of n elements by testing subsets for the presence of defectives. Let
t(n, d, s) be the optimal number of tests needed by an s-stage strategy in
the strict group testing model where the searcher must also verify that
no more than d defectives are present. We develop combinatorial tools
that are powerful enough to compute many exact t(n, d, s) values. This
extends the work of Huang and Hwang (2001) for s = 1 to multistage
strategies. The latter are interesting since it is known that asymptoti-
cally nearly optimal group testing is possible already in s = 2 stages.
Besides other tools we generalize d-disjunct matrices to any candidate
hypergraphs, which enables us to express optimal test numbers for s = 2
as chromatic numbers of certain conflict graphs. As a proof of concept
we determine almost all test numbers for n ≤ 10, and t(n, 2, 2) for some
larger n.

1 Introduction

In the group testing problem, a set of n elements is given, each being either
defective (positive) or non-defective (negative). Let P denote the unknown set of
positive elements. A group test takes any subset Q of elements, called a pool. The
test (or pool) is positive if Q∩P 6= ∅, and negative otherwise. In the latter case,
obviously, all elements in Q are recognized as negative. The goal is to identify P
using few tests. A group testing strategy may be organized in s stages, where all
tests within a stage are executed in parallel. In adaptive group testing s is not
limited, hence tests can be done sequentially. Case s = 1 is called nonadaptive.
Small s are desired in applications where the tests take much time.

It is expected that |P | ≤ d, for some fixed bound d, with the understanding
that |P | > d is unlikely but not impossible. A searcher wants to identify P if
|P | ≤ d, and just report “|P | > d” otherwise. This setting is called strict group
testing, in contrast to hypergeometric group testing where |P | ≤ d is “promised”
to the searcher. It was argued in, e.g., [1] that strict group testing is preferable.
It does not rely on the assumption |P | ≤ d.

In a few lines one cannot possibly give even a cursory overview of the appli-
cations of group testing in biology and computer science, and of the main com-
plexity results. We only refer to the books [7, 8] and a few recent papers [2, 5, 11,

16, 19] as entry points to further studies. As is well known [9], O(d log n) tests
are not enough if s = 1. The breakthrough result in [6] showed that O(d log n)
tests are sufficient already if s = 2, followed by improvements of the hidden
constant factor [10, 3]. However, such asymptotic results are designed for opti-
mal behavior as n goes to infinity, but even asymptotically optimal strategies
do not necessarily entail the optimal strategy for specific input sizes n. Another
motivation of the quest for optimal strategies for specific n is that the pool sizes
of asymptotically optimal strategies increase with n, but in some applications,
large pools may be infeasible (because of technical obstacles, chemical dilution,
etc.). Still we can split an instance into many small instances and solve them in-
dependently, now each with optimal efficiency. To mention a practical example,
screening blood donations for various infectious diseases is performed at some
labs in instances (“minipools”) of, e.g., 16 samples [18], and group testing is
proposed [20] to reduce the waiting times (can be days) and the considerable
costs (for millions of donations annually).

Due to the preceding discussion, we define t(n, d, s) to be the optimal worst-
case number of tests needed by a strict group testing strategy for n elements,
up to d defectives, and s stages. Some monotonicity relations hold trivially: If
n ≤ n′, d ≤ d′, and s ≥ s′ then t(n, d, s) ≤ t(n′, d′, s′). If t(n, d, s) = t(n, d, n), we
write t(n, d, s+) to indicate that more stages would not lower the test number.

The work closest to ours is [15] from which the exact t(n, d, 1) values follow
for all n ≤ 14 and arbitrary d, as well as some test numbers for larger n. The
novelty of the present work is that we extend the scope to s > 1 stages, which
saves tests compared to s = 1. To our best knowledge, this terrain has not been
systematically explored, with a few exceptions: t(n, 1, 1) = log2 n + o(log2 n) is
the smallest k with

(
k

k/2

)
≥ n due to [17], t(n, 1, 2+) = dlog2 ne + 1 is a side

result in [4], and [12] gives partial results on adaptive strategies. The focus in
[12, 15] is on the question for which n, d group testing saves tests, compared to
trivial individual testing.

While an upper bound on a specific t(n, d, s) is established once a strategy
is found, the main challenge is to prove matching lower bounds. We stress that
this cannot be done naively by considering all possible pooling designs in every
stage, as their number is doubly exponential in n. Instead we have developed
several combinatorial tools. Each of our lemmas viewed in isolation is relatively
simple, but together they enable us to determine many t(n, d, s) values exactly,
by a branch-and-bound approach. Yet they should also be of independent in-
terest as structural results. Due to severe space limitations, this paper version
demonstrates the use of the theory only for n ≤ 10 (and all d, s) and for t(n, 2, 2),
although even more t(n, d, s) could be managed with our current techniques.

2 Notation

A k-set (≤ k-set, ≥ k-set) is a set with exactly (at most, at least) k elements. We
use this notation also for pools, hyperedges, and other sets with special roles. A
hypergraph is a set of vertices equipped with a family of subsets called hyperedges.

A hypergraph with only ≤ 2-hyperedges is a graph with edges. A 1-hyperedge is a
loop. Note that we allow parallel hyperedges, that is, hyperedges being identical
as sets may occur multiple times. Two sets are incomparable if neither is a
subset of the other one. A family of pairwise incomparable sets is an antichain.
We use standard graph-theoretic symbols: Kn, Cn, Km,n is the clique, cycle,
and complete bipartite graph, respectively, with the indicated vertex numbers.
A forest (union of trees) is a cycle-free graph, and a leaf is a vertex incident to
only 1 edge.

During the course of applying a group testing strategy, an element which
has not appeared in any negative pool so far is called a candidate element. A
candidate set is a set of up to d candidate elements that is consistent with all
previous test outcomes. That is, any candidate set is possibly the true set P . The
name candidate element reflects the searcher’s knowledge: An element is possibly
positive until it is discarded, as the member of some negative pool. Therefore we
can have candidate elements outside all candidate sets, called dummy elements.
For example, if n = 5 and d = 2, and we test 2 disjoint 2-pools with positive
outcome, then the 5th element was in no negative pool so far, but any candidate
2-set must take one element from both pools.

In the candidate hypergraph, the candidate elements are the vertices and the
candidate sets form the hyperedges. For d = 2, the candidate hypergraph is just
a candidate graph, possibly with loops. From the definitions it follows that an
instance of the strict group testing problem is solved if and only if the candidate
hypergraph has exactly one hyperedge and no dummy elements.

A pool hypergraph represents a set of pools in dual form: Vertices p1, p2, p3, . . .
are the pools, and hyperedges are the candidate elements. A vertex belongs to a
hyperedge if the corresponding pool contains the corresponding element. Dummy
elements are represented as loops at a symbolic null vertex p0.

3 Lower-Bound Tools

The simple counting bound says that the number of tests is at least log2 of
number of outcomes. In particular we have t(n, d, n) ≥ log2(1+

∑d
i=0

(
n
i

)
) where

the summand 1 accounts for the outcome “|P | > d”. First we give a more
powerful lower bound, which often guarantees one more test.

Lemma 1. If m > 2r candidate sets exist which form an antichain, then strict
group testing requires at least r + 2 tests, even adaptively.

Proof. It suffices to consider m = 2r + 1. We use induction on r. We first prove
that at least 2 tests are required for the base case r = 0, that is, m = 2. Let
C and C ′ be incomparable candidate sets. Assume that one pool is enough. If
it intersects either none or both of C and C ′, it cannot distinguish between
these candidate sets. Thus the pool must intersect C and be disjoint to C ′ (or
vice versa). Now a positive outcome leaves the searcher unsure about the status
(defective or not) of the elements in C ′ \ C. For the inductive step assume that
the claim is true for r, and let m = 2r+1 +1. In one test outcome, the majority of

candidate sets remain. Therefore, after the first test we would keep at least 2r +1
candidate sets. Using the inductive hypothesis the claim holds for r + 1. ut

Examples. For d = 2 we list, for some pool hypergraphs, the test numbers
enforced by Lemma 1 if all pools respond positively. Note that candidate sets
of the same size form an antichain. These test numbers will be used to get our
specific t(n, d, s) results.

2 loops at a vertex: 2 candidate 1-sets, 2 tests.
2 loops at a pool vertex and 1 loop at p0: 3 candidate 2-sets, 2 tests.
3 loops at a vertex: 3 candidate 2-sets, 3 tests.
4 loops at a vertex: 6 candidate 2-sets, 4 tests.
2 loops at distance 1 or 2: 3 candidate sets, 3 tests.
C3: 3 candidate 2-sets, 3 tests.
C4: 2 candidate 2-sets, 2 tests.

The following lemmas are evident monotonicity observations (proved by a
“the searcher gets less information”-argument), but they are extremely useful
for limiting the strategies that must be considered in lower-bound proofs. Recall
that we consider strict group testing in a prescribed number s of stages.

Lemma 2. In response to a given deterministic test strategy, consider a test
answering strategy A that enforces t tests in the worst case. If the searcher re-
places some pool Q, that is negative (positive) in A, with a subset (superset) of
Q, then still at least t tests are needed in the worst case. ut

Lemma 3. Suppose that the outcomes of some pools of a stage are revealed
to the searcher, and then she may redesign her other pools from scratch. If t
further tests are not sufficient despite redesign, then they are not sufficient for
the original problem instance either. ut

Pools can be arranged as a Boolean matrix. It is well known that a pooling
design solves strict group testing for s = 1 if and only if it forms a d-disjunct
matrix. We withhold the definition of d-disjunct, as we present a straight gener-
alization to arbitrary candidate hypergraphs. (This should not be confused with
the concept in [13] which addresses a different group testing problem.)

Theorem 1. A nonadaptive strategy solves strict group testing for a given can-
didate hypergraph if and only if, for every pair of a candidate set C and a can-
didate element v /∈ C, it has a pool Q such that v ∈ Q and C ∩Q = ∅.

Proof. To prove necessity, let C be a candidate set and v /∈ C a candidate
element. If C = P then v must be recognized as negative. Hence some negative
pool must contain v, in particular, this pool must be disjoint to C. Next we prove
sufficiency. If P = C then clearly all elements outside C will be recognized as
negative, and all elements in P are still candidate elements. Suppose D ⊂ P is
also a candidate set. Then the searcher can falsify the assumption P = D, since
then all elements in C \ D would be negative and be recognized as such, too.
Hence P is the only remaining candidate set, and no dummy elements remain.
The case when P is none of the candidate sets (but |P | > d instead) is also easily
recognized by the fact that more than d candidate elements are retained. ut

A partial vector is a vector where any position either has a fixed value 0 or 1,
or remains open, indicated by the ∗ symbol. We index the candidate elements by
i = 1, 2, 3, . . ., and we encode every pair of a candidate set C and a candidate ele-
ment v /∈ C as a partial vector as follows. We assign 0 to all positions of elements
of C, and 1 to the position of v. All other positions are open. Two partial vectors
conflict if one has 0 while the other one has 1 at the same position. Two partial
vectors that do not conflict are compatible. We translate the candidate hyper-
graph into a conflict graph defined as follows. The vertices represent the partial
vectors for all C and v /∈ C, and two vertices are adjacent if the corresponding
partial vectors are in conflict. A pool is naturally represented as its indicator
vector, that is, a bit vector with 1 at all positions of elements in the pool, and
0 elsewhere. A pool is said to cover a partial vector if all fixed positions in the
partial vector have the same value, 1 or 0, as in the pool’s indicator vector. The
smallest number of colors needed to color a graph G, such that adjacent vertices
get distinct colors, is known as chromatic number χ(G). We refer to χ(G) of a
conflict graph G as conflict chromatic number.

Theorem 2. Solving the strict group testing problem nonadaptively for a given
candidate hypergraph is equivalent to coloring the conflict graph. Consequently,
the conflict chromatic number equals the number of tests required.

Proof. The condition in Theorem 1 can be equivalently expressed saying that,
for every pair of a candidate set C and candidate element v /∈ C, some pool
must cover its partial vector. Observe that a single pool can cover a set of par-
tial vectors if and only if they are pairwise compatible. In the conflict graph,
compatible partial vectors are represented by nonadjacent vertices. Thus, a sub-
set of partial vectors can be covered by a single pool if and only if the vertices
form an independent set. Since partitioning a graph into a minimum number of
independent sets is equivalent to graph coloring, the assertion follows. ut

Of course, the fact that graph coloring is NP-hard does not stop us from
computing χ(G) for specific conflict graphs G needed for our purposes. As a
first example, the candidate graph C4 = K2,2 has conflict chromatic number 4,
since the partial vectors [010∗], [0∗10], [∗001], [10∗0] conflict pairwise. Therefore,
if d = 2, s = 2, and the pool graph used in stage 1 has 2 vertices with 2 loops
each, then at least 4 more tests are required in stage 2.

A nonadaptive strategy on the candidate graph K1,k requires t(k, 1, 1) tests,
as the central vertex together with either leaf is a candidate set. For instance, if
d = 2, s = 2, and the pool graph used in stage 1 has an edge p1p2 and a total
of k loops at p1, p2, and p0, then we get this situation. Now let K1,k + e denote
the k-star K1,k with one extra edge between two of the leaves. We can prove the
necessity of 1 more test using the conflict chromatic number:

Lemma 4. A nonadaptive strict group testing strategy for the candidate graph
K1,k + e requires t(k, 1, 1) + 1 tests.

Proof. Assume that t(k, 1, 1) tests are enough. Leaving aside the candidate 2-
set represented by the extra edge e, we first consider the partial vectors due
to the k edges of the k-star. (See definitions prior to Theorem 2.) Let the first
position correspond to the center of the k-star, while the further k positions
correspond to the leaves. All partial vectors from the k-star have the form [0 . . .],
since all edges share the center vertex. The second defective is either of the k
leaves. Thus we need already t(k, 1, 1) pools to cover (or “color”) all these partial
vectors. Without loss of generality let e be the edge between the 2nd and 3rd
vertex. Among the partial vectors due to e, we have in particular [100∗ . . .]. This
conflicts all earlier partial vectors with 0 at the 1st position. Thus, another color
(i.e., pool) is needed to cover this partial vector. ut

Example. Let n = 4, d = 2, s = 2, let the pool graph in stage 1 be C3 with
1 loop at 1 vertex, and these pools are positive. Then the candidate graph is
K1,k + e, hence t(3, 1, 1) + 1 = 4 tests are needed in stage 2.

Let G1 and G2 be any two candidate hypergraphs on disjoint sets of vertices
(elements). We define their product G1×G2 as the candidate hypergraph whose
vertices are all elements from G1 and G2, with the hyperedges e1 ∪ e2 for any
pair of hyperedges e1 from G1, and e2 from G2. Let ti be the optimal number
of tests for nonadaptive strict group testing when Gi is given (i = 1, 2), that
is, the respective conflict chromatic number. Trivially, G1 × G2 needs at most
t1 + t2 tests, since we may consider G1 × G2 as two independent “parallel”
problem instances. A natural conjecture is that t1 + t2 is also optimal. However
the difficulty is that the searcher is free to use pools intersecting both vertex sets,
which may cleverly save some tests. In fact, we are able to prove the conjecture
in special cases only, yet they are powerful for our purposes. The prototype is
the following case that uses similar reasoning as in Lemma 4.

Lemma 5. Let G1 be the candidate graph with hyperedges {v1} and {v2} (that is,
exactly one of these 2 elements is defective), and G2 arbitrary. Then nonadaptive
strict group testing on G1 ×G2 needs t2 + 2 tests.

Proof. Let v3, v4, . . . denote the elements of G2. Pools must cover all partial
vectors according to Lemma 1 and Theorem 2. First consider the candidate sets
of G1 × G2 where v1 is positive. Their partial vectors have the fixed value 0
at the 1st position. Hence t2 pools are needed to cover already these partial
vectors. Assume that t2 + 1 pools are sufficient for G1×G2. Every partial vector
of the form [10 . . .], with further 0s at the positions of some candidate set from
G2, conflict with the t2 former pools. Hence all partial vectors [10 . . .] must be
covered by the same last pool. Since all vi, i > 2, are candidate elements in G2

and give rise to 0s, it follows that this last pool can only be {v1}. The key step
is that, by symmetry, the pool {v2} must also exist. Now the indicator vectors
of these pools, [100 . . . 0] and [010 . . . 0], conflict with all t2 pools needed to cover
the partial vectors from G2, since each of these has fixed value 1 at some position
vi, i > 2. In total we need t2 + 2 pools. ut

We can similarly prove a more general version of Lemma 5, however with
a rather technical condition to G1. We omit this elaboration. In the reported
examples we will only apply the above basic case. One consequence that we use
is that the candidate graph K2,n needs t(n, 1, 1)+2 nonadaptive tests. The power
of Lemma 5 is also illustrated by the following example: Consider the product of
k copies of the above G1, that is, k disjoint pairs of elements, where one element
of each pair is defective. Since 2k candidate k-sets exist, the counting bound
is only k tests, whereas inductive application of Lemma 5 gives the tight lower
bound 2k.

4 Upper-Bound Tools (Sub-Strategies)

Lemma 6. Any candidate hypergraph of m candidate sets permits a nonadaptive
strict group testing strategy with at most m tests.

Proof. Test all complements of candidate sets. These m pools completely adhere
to Theorem 1: For every candidate set C and candidate element v /∈ C, the
complement of C includes v and is disjoint to C. The assertion follows. ut

Lemma 7. Let G be a candidate hypergraph with n > d vertices where all can-
didate sets are d-sets. Let G′ be obtained from G by adding dummy elements.
Then the optimal test number on G′ (for unchanged d, s) is the same as for G.

Proof. Add the dummy elements to every pool of an optimal strategy for G.
Since n − d > 0 elements must be discarded, in every possible application of
the strategy (i.e., for any test outcomes), at least one pool is negative, or we
recognize |P | > d. This negative pool also discards the dummy elements. ut

For instance, candidate graph K1,3 + e can be solved with 3 tests when we
allow 2 stages: Let the candidate 2-sets be the edges v1v2, v1v3, v1v4, v2v3. We
only test {v2} in stage 1. Either positive or negative, there remain 2 candidate
2-sets for stage 2 and perhaps dummy elements, which requires by Lemma 6 and
Lemma 7 only 2 more tests in stage 2.

5 Optimal Strategies for Small Instances

Our aim is now to get exact values t(n, d, s) for as many feasible combinations of
n, d, s as possible. Recall that the t(n, 1, 1), and t(n, 1, 2+) are already completely
known, thus we study d ≥ 2 only. The methodology can be summarized as
follows. In the pool (hyper)graphs in stage 1 we identify certain subsets W of
vertices. If all pools in W are positive and the others negative, the candidate
elements are precisely the edges in the subgraph induced by W , and the defective
edges must cover W . Then we show that the resulting candidate (hyper)graphs
enforce too many further tests, by our lower-bound techniques. – This “practical”
section is intended to be a proof of concept. Readers may skip any items without
losing their thread. Strategy descriptions are highlighted by (S).

t(3,2,1+) = 3, t(4,2,1+) = 4, t(5,2,1+) = 5 hold by the counting bound. For
n = 6 the counting bound gives only t(6, 2, 1+) ≥ 5, nevertheless we can prove:

t(6,2,1+) = 6. It suffices to consider adaptive strategies. If we begin with a
1-pool and it is negative, we need t(5, 2, 1+) = 5 further tests. If we begin with
a 2-pool and it is positive, there remain 9 > 23 candidate 2-sets, hence Lemma
1 requires 5 more tests. Due to Lemma 2 we need not consider more cases.

t(7,2,3+) = 6. The lower bound follows from t(6, 2, 3) = 6. (S) For the upper
bound, use 3 mutually disjoint 2-pools in stage 1. If at most 1 of them responds
positive, at most 3 candidate elements are left, that can be tested individually
in stage 2. If all 3 of them respond positive, we conclude |P | > 2. If exactly 2
of them respond positive, then, in stage 2, we query separately 1 element from
each positive pool (2 tests). A negative outcome means the other element is
positive, whereas a positive outcome renders the queried element positive. Thus,
one positive element is recognized in both cases. A 6th test in stage 3 on the
remaining candidates confirms they are negative, or yields |P | > 2.

t(7,2,2) = 7. We assume for contradiction that t(7, 2, 2) ≤ 6 and consider the
pool hypergraph of stage 1. Assume that some ≥ 3-hyperedge e exists. If e is
positive, e explains 3 or more positive pools. Since t(6, 1, 2) = 4, the searcher
needs 4 more tests for the 2nd defective. Hence the pool hypergraph is merely a
graph. Next, let p be a pool vertex with degree 1. Let p be negative and apply
Lemma 3. The edge incident to p is negative, hence still 2 defectives among 6
elements must be found, and 1 pool is used up. Thus t(6, 2, 2) + 1 = 6 + 1 = 7
tests are needed. Hence the minimum degree is 2. Assume that parallel edges
exist, that is, 2 pools share 2 or more elements. Declare these 2 pools positive
and and apply Lemma 3 together with 1. Since still at least 11 > 23 candidate
2-sets remain, and 2 pools are used up, the searcher needs 2 + 3 + 2 pools.
Altogether, the pool hypergraph must be a graph of minimum degree 2 without
parallel edges. It has at most 5 pool vertices, since 6 pools would forbid a 2nd
stage and require t(7, 2, 1) = 6, contradicting the known t(7, 2, 1) = 7 [15].

Next we can show that cycles C3, C4, C5 together with edges or loops for the
other elements always create bad induced subgraphs that enforce too many tests
in stage 2 due to our Lemmas. Therefore the pool graph is a forest, perhaps
with loops, and all leaves must have loops due to the minimum degree 2. Again,
leaves at any distance create bad induced subgraphs, thus no edges other than
loops can exist. (Details are omitted due to lack of space.)

It follows that all pool vertices are isolated and have at least 2 loops each.
Since 2 such vertices imply already 4 more tests, we can have at most 2 pool
vertices and p0. By the pigeonhole principle, 2 vertices have at least 2 and 3
loops, respectively (or even 1 vertex has 5 loops). Hence the candidate graph
contains K2,3. Using Lemma 5, at least t(3, 1, 1) + 2 = 5 more tests are required.
Thus we can have only one pool vertex p1. Since at least 2 loops are at p1, the
candidate graph contains K2,5, and t(5, 1, 1) + 2 = 6 more tests are needed by
Lemma 5.

t(7,3,1+) = 7. Follows from the 35 candidate 3-sets by Lemma 1.

t(8,2,2+) = 7. First we show that 7 tests are needed even adaptively. If we
begin with a 2-pool and it is negative, then t(6, 2, 6) = 6 enforces 6 further tests.
If we begin with a 3-pool and it is positive, the 18 > 24 candidate 2-sets and
Lemma 1 enforce 6 more tests. Due to Lemma 2 we need not consider more
cases. (S) To manage with 7 tests in 2 stages, we test only one 2-pool in stage
1. If negative, we test the other 6 elements individually in stage 2. If positive,
we test the 2 elements in this pool individually, and simultaneously we find up
to 1 defective among the other 6 elements using t(6, 1, 1) = 4 tests. Note that
this strategy also reports if |P | > 2.

t(8,2,1) = 8 is implicit in [15].

t(8,3,1+) = 8. Consider the first test of an adaptive strategy. A negative 1-pool
enforces 7 more tests since t(7, 3, 7) = 7. A positive 2-pool leaves us with 36 > 25

candidate 3-sets. Apply Lemma 1 and finally Lemma 2.

t(9,2,2+) = 7. Clearly we only have to show the upper bound for s = 2. (S)
Let the pool graph in stage 1 be K4 (6 edges) plus 3 loops at p0. It is impossible
that exactly 1 pool responds positive. If all pools are negative, then so are the
edges in the K4. If exactly 2 pools are positive, then exactly the edge between
them is positive. In the above cases there remain only 3 candidates (loops) in
stage 2. If 3 or 4 pools are positive, then we get exactly 3 candidate 2-sets, using
edges of the K4 vertices only. Thus Lemma 6 applies.

t(9,2,1) = 9 is known from [15].

t(9,3,1+) = 9. We systematically check the tree of all adaptive strategies and
give test answers + or − to the searcher’s disadvantage. For certain paths in the
search tree we find that the searcher is forced to apply too many tests, using
earlier bounds and Lemma 1. By Lemma 2 and exploring symmetric cases we
can prune most of the tree. Details are omitted due to lack of space, however
we remark that our proof has to check just 11 paths, compared to the host of
possible strategies and answers.

t(10,2,3+) = 7. We have t(10, 2, 3) ≥ t(8, 2, 3) = 7. (S) For the upper bound
we use the following pool graph in stage 1. Take a K4, but delete the edge p1p4

and insert a loop at p1 and p4 instead. These 7 elements are complemented with
3 loops at p0. (Here we particularly emphasize that this pooling design is far
from being obvious, we found it after excluding other options with the help of
our lower-bound methods. The same remark applies to other cases as well.) As
can be quickly checked one by one, all conceivable test outcomes yield one of
the following cases (possibly with further dummy elements): at most 3 candidate
sets; or 1 recognized defective and at most 4 candidates for a 2nd one; or the
candidate graph K1,3 + e. Using t(4, 1, 2) = 3, Lemma 6, and Lemma 7 for the
next 2 stages, we can solve all cases in 2 more stages with 3 more tests.

t(10,2,2) = 8. (S) For t(10, 2, 2) ≤ 8 use K5 as the pool graph in stage 1. It is
easy to check that 3 more tests are always enough in stage 2.

Now assume that t(10, 2, 2) ≤ 7. In the same way as for t(7, 2, 2) we can show,
due to t(9, 1, 2) = 5, t(7, 2, 2) = 7, and Lemma 1, that the pool hypergraph in

stage 1 is a graph without parallel edges, now with minimum degree 4. The latter
implies that at most 5 pool vertices exist. Since a C3 with loop implies 4 more
tests, no further pool vertices can exist. By minimum degree 4, each vertex has
at least 2 loops. If all 3 pools are positive, the 9 candidate 2-sets yield 5 more
tests by Lemma 1. A C3 without loop would mean that any vertex of the C3

has also 2 neighbors outside, leading to 5 pools. But the C3 requires already 3
more tests. Hence no C3 can exist. Lemma 5 gives that 2 vertices with 2 loops
each require 4 more tests. Thus, in a C4 at least 3 vertices must be incident to
further edges. To avoid C3, at least 6 pool vertices are needed. Hence no C4 can
exist either. A C5 cannot exist, since further edges create smaller cycles, and 2
loops per vertex are too many. Hence the pool graph is a forest, with at least 3
loops at every leaf or isolated vertex. Since 2 vertices with 3 and 2 loops imply
5 tests (Lemma 5), at most 2 pool vertices exist. If p1 and p2 exist, we choose 2
loops at p1 and 4 loops at p2 (or possibly the edge p1p2 instead of 1 loop) to get
a candidate graph K2,4 that needs t(4, 1, 1) + 2 = 6 more tests. If only p1 exists,
we choose 2 loops at p1 and the 8 other loops from p1 or p0 to get a candidate
graph K2,8 that needs t(8, 1, 1) + 2 = 7 more tests.

t(10,2,1) = 9 follows from [15].

t(10,3,3+) = 9. The lower bound holds since t(9, 3, 9) = 9. (S) Our strategy
tests 3 disjoint 2-pools in stage 1. If at most 1 pool is positive, the at most
6 candidate elements are tested individually. If 2 pools are positive, 2 tests
recognize 2 defectives in stage 2 (as in the t(7, 2, 3+) strategy). To find a possible
3rd defective among the other 6 elements in stage 3 we use t(6, 1, 1) = 4. If all
3 pools are positive, we determine the 3 defectives by 3 tests in stage 2, and 1
final test is used to discard the negative elements or report |P | > 3.

t(10,4,1+) = 10. Consider the first test of an adaptive strategy. A negative
1-pool enforces 9 more tests since t(9, 4, 9) = 9. In the case of a positive 2-pool,
even revealing a defective means that 3 defectives out of 9 elements must be
found, but t(9, 3, 9) = 9. By Lemma 2, this case distinction is complete.

6 The Case of Two Defectives and Two Stages

Our t(9, 2, 2) strategy readily extends to larger n as follows. Letm be the smallest
integer with

(
m
2

)
+ 3 ≥ n. Using Km plus 3 loops at p0 (or any subset of this

edge set) as the pool graph in stage 1, the same reasoning as for t(9, 2, 2) yields
t(n, 2, 2) ≤ m+ 3. Although this test number grows as Θ(

√
n), it is optimal (or

close to optimal) for surprisingly many n. Below we report some exact results
and their lower-bound arguments; note that Lemma 3 is silently used.

t(8,2,2) = t(13,2,2) = 8 was already shown.

t(15,2,2) = t(18,2,2) = 9. Assume that t(15, 2, 2) ≤ 8, and consider the pools
in stage 1. A positive ≥ 7-pool allows 70 > 26 candidate 2-sets, hence by Lemma
1 the remaining 7 tests would not be sufficient. A negative ≤ 5-pool together with
t(10, 2, 2) = 8 yields 9 tests. Hence only 6-pools can be used. But 2 intersecting

positive 6-pools allow at least 25 + 14 = 39 > 25 candidate 2-sets, and 2 disjoint
positive 6-pools allow 36 > 25 candidate 2-sets, such that the remaining 6 tests
are not sufficient. Hence only one 6-pool may be used. If it responds positive,
there remain 69 > 26 candidate 2-sets, implying 8 more tests.

t(22,2,2) = t(24,2,2) = 10. Assume that t(22, 2, 2) ≤ 9, and consider the pools
in stage 1. A positive ≥ 8-pool allows 28 + 8 · 14 = 140 > 27 candidate 2-sets,
leading to 10 tests in total. A negative ≤ 7-pool together with t(15, 2, 2) = 9
yields 10 tests, too. Hence no pool size is usable.

Remarkably, the Km plus 3 loops strategy misses the simple antichain lower
bound of Lemma 1 by at most 1 test up to n = 31, and by at most 2 tests up to
n = 58. However, clearly for large enough n some O(log n) tests strategy takes
over, and it is interesting to ask what constant factor we can achieve.

Theorem 3. We have t(n, 2, 2) ≤ 2.5 log2 n + o(log2 n), and the trivial lower
bound t(n, 2, 2) ≥ 2 log2 n− 1.

Proof. We encode the n elements as vectors over an alphabet of 4 symbols. The
code length is m = log4 n = 0.5 log2 n. In stage 1 we test 4 · 0.5 log2 n = 2 log2 n
pools, each consisting of all elements that share a fixed symbol at a fixed position.
At most 2 of the 4 pools for every position can be positive, otherwise |P | > d is
confirmed. Thus we have at most 2m candidate elements, and by construction
they form disjoint candidate 2-sets. (In the case |P | = 1 the only defective is
already recognized.) We have 2m = 20.5 log2 n =

√
n. Thus, searching for the 2

defectives is equivalent to searching for 1 defective in a ≤
√
n/2-set. This requires

t(d
√
n/2e, 1, 1) = 0.5 log2 n+ o(log2 n) tests in stage 2. ut

7 Conclusions

We provided methods that make the construction of provably optimal multistage
group testing strategies for specific input parameters manageable. The ultimate
goal for further research would be a smooth transition from optimal strategies for
small n to asymptotically optimal ones. The tools may be further refined to limit
the case inspections even more. It would also be helpful to partly automatize
the search and leave case inspections to computer programs. However this is not
straightforward. To avoid combinatorial explosion we must generate certain set
families up to symmetries. Among the open theoretical questions we mention the
most intriguing ones: Is the nonadaptive test number additive for the product
of candidate hypergraphs (see Lemma 5)? Does there exist, for every d, some
s such that t(n, d, s) = t(n, d, n)? In [4] we gave an affirmative answer only for
d = 1, namely s = 2.

Acknowledgments. Support came from the Swedish Research Council (Veten-
skapsr̊adet), grant 2010-4661, “Generalized and fast search strategies for parame-
terized problems”. An early version has been presented at the informal workshop
“Search Methodologies III” 2012, organized by Christian Deppe and Ferdinando
Cicalese at the Center for Interdisciplinary Research, University of Bielefeld.

References

1. Balding, D.J., Torney, D.C.: Optimal Pooling Designs with Error Detection. J.
Comb. Theory A 74, 131–140 (1996)

2. Chen, H.B., Hwang, F.K.: Exploring the Missing Link Among d-Separable, d̄-
Separable and d-Disjunct Matrices. Discr. Appl. Math. 155, 662–664 (2007)

3. Cheng, Y., Du, D.Z.: New Constructions of One- and Two-Stage Pooling Designs.
J. Comp. Biol. 15, 195–205 (2008)

4. Damaschke, P.: Optimal Randomized Group Testing: A Canonical Form and the
One-Defective Case. In: Cicalese, F., Porat, E. (eds.) ICALP2011GT (informal
proceedings), 55–67, Zürich (2011)

5. De Bonis, A., Di Crescenco, G.: Combinatorial Group Testing for Corruption Lo-
calizing Hashing. In: Fu, B., Du, D.Z. (eds.) COCOON 2011. LNCS vol. 6842, pp.
579–591. Springer, Heidelberg (2011)

6. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal Two-Stage Algorithms for Group
Testing Problems. SIAM J. Comp. 34, 1253–1270 (2005)

7. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. Series
on Appl. Math. vol. 3. World Scientific (2000)

8. Du, D.Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. Series
on Appl. Math. vol. 18. World Scientific (2006)

9. Dyachkov, A.G., Rykov, V.V.: Bounds on the Length of Disjunctive Codes. Prob-
lems of Info. Transmission (in Russian) 18, 7–13 (1982)

10. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved Combinatorial Group
Testing Algorithms for Real-World Problem Sizes. SIAM J. Comp. 36, 1360–1375
(2007)

11. Fang, J., Jiang, Z.L., Yiu, S.M., Hui, L.C.K.: An Efficient Scheme for Hard Disk
Integrity Check in Digital Forensics by Hashing with Combinatorial Group Testing.
Int. J. Digital Content Technol. and its Appl. 5, 300–308 (2011)

12. Fischer, P., Klasner, N,, Wegener, I.: On the Cut-off Point for Combinatorial Group
Testing. Discr. Appl. Math. 91, 83–92 (1999)

13. Gao, H., Hwang, F.K., Thai, M.T., Wu, W., Znati, T.: Construction of d(H)-
Disjunct Matrix for Group Testing in Hypergraphs. J. Comb. Opt. 12, 297–301
(2006)

14. Goodrich, M.T., Hirschberg, D.S.: Improved Adaptive Group Testing Algorithms
with Applications to Multiple Access Channels and Dead Sensor Diagnosis. J.
Comb. Optim. 15, 95–121 (2008)

15. Huang, S.H., Hwang, F.K.: When is Individual Testing Optimal for Nonadaptive
Group Testing? SIAM J. Discr. Math. 14, 540–548 (2001)

16. Mézard, M., Toninelli, C.: Group Testing With Random Pools: Optimal Two-Stage
Algorithms, IEEE Trans. Info. Th. 57, 1736–1745 (2011)

17. Spencer, J.: Minimal Completely Separating Systems. J. Combin. Theory 8, 446–
447 (1970)

18. www.redcrossblood.org/learn-about-blood/what-happens-donated-blood/

blood-testing (version as of Jan. 2013)
19. Xuan, Y., Shin, I., Thai, M.T., Znati, T.: Detecting Application Denial-of-Service

Attacks: A Group-Testing-Based Approach. IEEE Trans. Par. Distr.. Syst. 21,
1203–1216 (2010)

20. Zhang, B.: Group Testing Regression Models. Dissertation, Dept. of Statistics,
Univ. of Nebraska, Lincoln (2012)

Appendix

t(7,2,2) = 7. Omitted details:
A C3 with loop implies 4 more tests (by the example after Lemma 4). Thus

a C3 implies that only these 3 pool vertices exist, and the other elements are 4
loops at p0. The latter imply 4 more tests (see Lemma 1). Hence no C3 can be
in the pool graph. Similarly, a C4 implies 2 more tests, hence only these 4 pool
vertices exist. Since a 5th edge would create a C3, the remaining 3 elements are
loops. Loops at distance 1 or 2 imply 3 more tests. Hence the 3 loops are (at
most) at one pool vertex p1 and at p0. Let p2 be some neighbor of p1 in the C4.
If p1 and p2 are positive, the edge p1p2 with any of the 3 loops is a candidate
2-set, thus Lemma 1 yields 3 more tests. This excludes C4. Also a C5 prohibits
both further pool vertices and further edges. The remaining 2 loops cannot be at
distance 1 or 2, hence they are at one pool vertex p1 or at p0. Using a neighbor
p2 similarly as above, Lemma 1 now yields 2 more tests. Altogether, the pool
graph has no cycles.

Therefore the pool graph is a forest, perhaps with loops, and all leaves must
have loops due to the minimum degree 2. If some leaves have distance 4 (path of
5 pools with 6 elements 2 of which are loops at the leaves), we cannot place the
remaining loop without creating a subgraph that incurs at least 2 more tests.
Leaves at distance 2 imply 3 more tests, thus no further pool vertices may exist.
Now every conceivable placement of the loops implies 4 more tests. If some leaves
have distance 3, therefore, only these 3 edges exist, and 4 loops. We cannot add
a 5th, isolated, pool vertex, since it must have 2 loops implying 2 more tests.
But with only 4 pool vertices, every conceivable placement of the 4 loops implies
3 more tests. Leaves at distance 1 require 3 more tests, thus at most 1 further,
isolated, pool vertex may be present. Again this isolated vertex has at least 2
loops, hence the only edge has exactly 1 loop at each end (to avoid 2 vertices
with 2 loops each). But now 4 loops are together at the isolated vertex and p0.
This allows at least 5 candidate 2-sets, and Lemma 1 yields 4 more tests. Thus a
3rd pool vertex is ruled out. The remaining case is 1 edge and a total of 6 loops
at both ends and possibly p0. The candidate graph contains K1,6 + e. Lemma 4
implies t(6, 1, 1) + 1 = 5 more tests.

t(9,3,1+) = 9. Omitted details:
{v1}(−): t(8, 3, 8) = 8.
{v1, v2}(+), {v1}(+): t(8, 2, 8) = 7.
{v1, v2}(+), {v3, v4}(−), {v1}(+): The searcher must find 2 defectives among
v2, v5, . . . , v9, but t(6, 2, 6) = 6.
{v1, v2}(+), {v3, v4}(−), {v5}(−), {v1}(+): The searcher must find 2 defectives
among v2, v6, . . . , v9, but t(5, 2, 5) = 5. Hence it suffices to consider a 4th pool
avoiding v1 and v2.
{v1, v2}(+), {v3, v4}(−), {v5}(−), {v6}(−): 9 candidate 3-sets are left.
{v1, v2}(+), {v3, v4}(−), {v5}(−), {v6, v7}(+): 12 candidate 3-sets are left.
{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v5}(+): There remain 9 candidate 3-sets.
This also rules out any 4th pool with some of v1, v2, v5, v6.

{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v7, v8}(−), {v6}(+): The 5 > 22 candidate
2-sets for the other 2 defectives enforce 4 more tests. This also rules out any 5th
pool with some of v1, v2, v5, v6. It remains to query v9.
{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v7, v8}(−), {v9}(−): Here the counting
bound enforces 4 more tests.
{v1, v2}(+), {v3, v4}(−), {v5, v6}(+), {v7, v8, v9}(+): 12 candidate 3-sets are left.
{v1, v2}(+), {v3, v4, v5}(+): The 33 > 25 candidate 3-sets enforce 7 more tests.

