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Abstract

Group testing aims at identifying the defective elements of a set by testing selected

subsets called pools. A test gives a positive response if the tested pool contains some

defective elements. Adaptive strategies test the pools one by one. Assuming that only a

tiny minority of elements are defective, the main objective of group testing strategies is

to minimize the number of tests. De Bonis introduced in COCOA 2014 a problem vari-

ant where one also wants to limit the number of positive tests, as they have undesirable

side effects in some applications. A strategy was given with asymptotically optimal test

complexity, subject to a constant factor. In the present paper we reduce the test com-

plexity, making also the constant factor optimal in the limit. This is accomplished by a

routine that searches for a single defective element and uses pools of decreasing sizes even

after negative responses. An additional observation is that randomization saves a further

considerable fraction of tests compared to the deterministic worst case, if the number of

permitted positive responses per defective element is small.
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1 Introduction

Group testing aims at identifying the defective elements of a set by testing selected subsets

called pools. That is, some unknown elements are defective, and a test gets a positive response

if and only if the tested pool contains at least one defective element. Group testing is one of

the most extensively studied combinatorial search problems. It has a history dating back to

at least 1943, and has various modern applications including molecular biology [3, 4], fault

detection [5, 8], conflict resolution [2], data compression [6], and computer security [10], to

mention a few.

Usually the main goal is to find all defectives after a minimum number of tests. Countless

variations of group testing differ in the assumptions on the number of defectives, the number
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of rounds of parallel tests, and restrictions on the choice of pools. We must refrain from even

a cursory overview. Given the wealth of results it is amazing that only recently [1] a model

has been introduced where one also limits the number of positive tests. The motivation is

that positive tests can have undesired side effects. As an example, the defective elements

could be radioactive sources or toxic substances, hence one wants to limit exposure to them.

While, for trivial reasons, some positive tests are necessary to solve the search problem, their

number should be kept small.

A test strategy is called adaptive if the tests are performed sequentially, hence the choice of

the next test may depend on all earlier responses. Throughout the paper we use the following

symbols for the parameters of interest.

n: number of elements

d: number of defective elements

t: number of tests

y: number of positive (“yes”) tests

More precisely, n is the given number of elements, and d is a previously known upper

bound on the number of defectives to expect (unless said otherwise). Whether t and y denote

exact or expected numbers, upper bounds, or worst-case lower bounds will be clear from

context or explicitly mentioned. Logarithms are base 2. To avoid heavy notation, rounding

brackets and lower-order terms are omitted in expressions, as long as this does not affect their

asymptotic behaviour. Symbol e denotes Euler’s number 2.718 . . .

It is folklore in the field that t > d log(n/d) is the information-theoretic lower bound on

the worst-case number of tests, and some simple group testing strategies need essentially this

number of tests only, when a bound d is known beforehand. In the model with limited y

we focus on the most relevant case where the allowed y is a small fraction of t. (Any limit

y > t/2 is not a severe restriction, as then we are almost back to the ordinary group testing

problem.) To have a predefined limit we may assume that y is smaller than half the trivial

information-theoretic lower bound on t.

Due to a simple argument [1], any strategy for d defectives must admit y ≥ d positive

tests. Next it is shown in [1] that any strategy needs

y >
d log(n/d)

log(et/y)

where t is the actual number of tests performed. For any prescribed y we solve this inequality

for t and obtain

t >
y

e

(n
d

) d
y
.

Defining f := y/d (note that f ≥ 1) this becomes

t >
fd

e

(n
d

) 1
f
.
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Moreover, a strategy is provided in [1] that needs

t < fd
(n
d

) 1
f

+ fd

tests, at least for integer-valued f . Notice that there remains, essentially, a multiplicative gap

of e. The algorithm in [1] builds upon Li’s classic algorithm [7]. It works in f stages of tests

that can be performed in parallel. Apart from minor technicalities, every stage partitions the

remaining elements (that might still be defective) into the same number of disjoint pools of

equal sizes. Only the positive pools in a stage need to be further searched from the next stage

on. But when a strategy is adaptive anyway, it does not seem optimal to use equally sized

pools within a stage. Intuitively it would be better to let the pool sizes strictly decrease even

after negative tests, because the earlier a positive pool is encountered in a sequence, the more

tests are still available to find a defective element therein. We will derive pool sizes that make

optimal use if this idea. Interestingly, this improvement suffices to close the multiplicative

gap, as we will see. This also establishes asymptotic tightness, that is, subject to a factor

1 + o(1), of the lower bound from [1].

Our second contribution is a simple randomized version of the strategy. A thorough

analysis turns out to be intricate, but we get a few partial results implying that the expected

test number is considerably smaller than the worst-case test number in the case of small y/d.

We end with a conjecture about the optimal randimized test number.

2 An Asymptotically Optimal Adaptive Strategy

Lemma 1. Suppose that a given set of n elements is already known to contain some defective

elements, and we want to identify one of them, permitting at most y positive responses. This

can be accomplished with fewer than n1/y(y/e)V + y tests, where V is some term that goes to

1 as y grows.

Proof. For t ≥ y we define N(t, y) to be the largest n such that it is possible to find one

defective out of n elements using at most t test at most y of which may be positive. In the

case of t < y we define N(t, y) := N(t, t).

Note that any sequential strategy keeps on testing certain pools until the first positive

response is seen. Without loss of generality these pools are pairwise disjoint, since elements

in negative pools need not be tested again. Upon a positive test we know that the tested pool

has some defective element, and it remains to solve the problem restricted to this pool.

If y = 1, we cannot afford testing pools with more than one element, since after a positive

response we have already used up the positive answer but have not yet identified a defective

element. It follows immediately N(t, 1) = t + 1. (If t tests have been negative, we know

without testing that the last element is defective.)

Now consider any y > 1. The ith pool can have N(t − i, y − 1) elements. Indeed, if the

ith pool is positive, we have performed i tests one of which was positive, thus we can still
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solve the residual problem on the ith pool. The last pool, with i = t, has size N(0, y−1) = 1.

We can append another element that will be known to be defective if all t tests are negative.

This shows

N(t, y) = 1 +
t∑

i=1

N(t− i, y − 1) = 1 +
t−1∑
j=0

N(j, y − 1).

Induction on y yields N(t, y) ≥ (t − y + 2)y/y! as follows. For y = 1 we have N(t, 1) =

t+1 = (t−1+2)1/1!, and for y ≥ 2 we bound the sum of a monotone increasing step function

from below by an integral, therefore the argument j is replaced with x− 1:

N(t, y) >
t−1∑
j=0

N(j, y − 1) >
1

(y − 1)!

∫ t

y−2
((x− 1)− (y − 1) + 2)y−1 dx =

(t− y + 2)y

y!

With n = N(t, y) and Stirling’s formula in the upper-bound version of [9] we get

t−y+2 ≤ n1/y(y!)1/y < n1/y
(√

2π · yy+1/2e−ye1/(12y)
)1/y

= n1/y(y/e)
(√

2π · y1/2e1/(12y)
)1/y

= n1/y(y/e)(2πy)1/(2y)e1/(12y
2).

Observe that V := (2πy)1/(2y)e1/(12y
2) tends to 1 as y grows.

We have invoked Stirling’s formula and the “vanishing” factor V only for the sake of a

simple general analysis that will lead to the optimal factor in the test number when y is large,

as we show below in Theorem 2. Actually we improve upon [1] already for small y where

Stirling’s formula is unsuitable: Consider the problem of identifying one defective element in

the smallest “interesting” case y = 2. (Case y = 1 trivially requires n tests.) Using equal

pools of size
√
n in the first stage would result in the upper bound 2

√
n, whereas by using

pools of sizes t, t− 1, t− 2 . . . , 3, 2, 1 we get n = t2/2, hence
√

2
√
n tests are sufficient; notice

that t is here the worst-case test number. This is considerably smaller, by a factor 1/
√

2.

More generally, for fixed y we reduce the test number by a factor (y)1/y/y, which finally goes

to 1/e for y −→∞. This is the key to the main result.

Theorem 2. In a set of n elements we can find d defective elements while permitting at most

y positive responses, with
fd

e
V e1/f

(n
d

)1/f
+ f + d

tests, where f := y/d and V is some term that goes to 1 as y grows. Moreover, this bound is

asymptotically optimal, provided that also d, f , and (n/d)1/f grow.

Proof. We partition the given set into g disjoint pools of size n/g that we call principal pools.

We test the g principal pools, note that at most d of them are positive. Then we extract the

at most d defective elements one by one, allowing f − 1 positive tests for each. We apply
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Lemma 1 d times to n/g elements; note that y in the Lemma becomes f − 1. Together with

the g principal pools, the total number of tests is therefore smaller than

d(f − 1)

e

(
n

g

) 1
f−1

V + g + f + d.

This holds regardless which principal pools contain how many defective elements. The d

additional tests are used to test, after identification of every defective element, the rest of the

principal pool for the presence of further defective elements. Note that for every defective

element we do f positive tests: one test to signal that the principal pool must be further

investigated, and f − 1 positive tests in the actual search. Hence we need y = fd positive

tests as in [1], which does not depend on g. We set

g :=

(
d

e

) f−1
f

n
1
f =

(
1

e

) f−1
f

d
(n
d

) 1
f
.

This also means
n

g
=
(e
d

) f−1
f
n

f−1
f = e

f−1
f

(n
d

) f−1
f
.

We plug in this g and obtain the test number bound

(f − 1)V + 1

e
e

1
f d
(n
d

) 1
f

+ f + d.

The factor V tends to 1 according to Lemma 1. For growing f we note that e1/f tends to 1

as well. Hence, in this case our bound becomes better than the bound in [1] by a factor 1/e,

which also matches the known lower bound.

In the remainder of the paper we concentrate on the identification of a single element in

a principal pool, which is the main new twist in our algorithm. That is, from now on we let

d = 1 and denote by n now the number of elements in a principal pool.

3 On Randomized Adaptive Strategies

Next we reduce the test number further, in a sense: We observe that for small y the expected

number of tests is considerably smaller than the worst-case deterministic test number, in a

suitably randomized strategy. For y = 1, by testing the elements in random order, obviously

we need only 1
2n tests in expectation. Standard arguments (such as Yao’s technique) also

show that this is optimal.

A natural idea for general y is now to apply a random permutation on the given set and

then to run the algorithm from Theorem 2. Then the last stage where only one final positive

response is permitted uses, in expectation, only half as many tests as in the worst case. Intu-

itively, randomization should therefore be most effective for small y, whereas for y approaching

log n the problem converges to classical adaptive group testing where randomization is useless.
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We conjecture that the proposed randomized strategy is asymptotically optimal also for

general y. Note that it is not clear whether an optimal deterministic strategy applied to

a random order is already the optimal randomized strategy, as the reduced test number in

the last stage may change the optimal pool sizes to use in previous stages. At least, we can

confirm the optimality conjecture in the case y = 2, too:

Proposition 3. In a set of n elements we can find one defective element while permitting at

most two positive responses, with fewer than 2
3

√
2
√
n tests, and this test number is asymptot-

ically optimal.

Proof. By Yao’s minimax principle, some lower bound for randomzied strategies is the ex-

pected test number of the best deterministic strategy on an adversarial input distribution.

Specifically, let our adversary permute the given set randomly, such that the unknown defec-

tive element is at every position with probability 1/n, and consider any deterministic strategy

on it. As argued earlier, the first stage of a strategy is completely characterized by the sizes

of disjoint pools tested until a positive response is obtained. Let p denote the number of these

pools, and x1, . . . , xp their sizes in the order in which they are tested. Clearly x1+· · ·+xp = n.

Conditional on membership of the defective element in the kth pool, the expected number

of tests is k + 1
2xk. Note that, due to y = 2, the searcher is forced to test single elements

sequentially.

Hence the overall expected number of tests in the deterministic strategy amounts to

p∑
k=1

xk
n

(
k +

xk
2

)
under the constraint x1 + · · ·+ xp = n. Suppose that we take the best p and x1, . . . , xp, that

is, the numbers that minimize this expression. Furthermore, let now the searcher permute the

set at random and test p pools of these sizes. This strategy obviously has the same number of

expected tests until the defective is found, and since this number also equals a lower bound,

this search strategy is optimal. (The argument is not tautologic; note that the adversary and

the searcher have independent sources of randomness.) It remains to solve the aforementioned

optimization problem.

Observe that p = Θ(
√
n), since p of larger (smaller) order of magnitude would imply more

than O(
√
n) tests in the first (second) stage. The only problem is the constant factor. First

we fix p to have a fixed number of variables, and we calculate optimal sizes xk. The Lagrange

function of this restricted problem is

L =

p∑
k=1

xk
n

(
k +

xk
2

)
+ λ

p∑
k=1

xk − λn.

with a Lagrange multiplier λ for the constraint. We set the partial derivatives to zero:

∂L

∂xk
=
k + xk
n

+ λ = 0.
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It follows that all k + xk are equal. Let c denote their common value, thus xk = c − k for

all k. This also means k + xk
2 = 1

2(c + k). Since (c − k)(c + k) = c2 − k2, the expected test

number simplifies to

E[t] =
1

2n

p∑
k=1

(c2 − k2) < c2p

2n
− p3

6n
.

We also have n =
∑p

k=1(c − k). We set n = cp − p2

2 neglecting a linear term in p = Θ(
√
n).

This greatly simplifies the subsequent calculations and does not affect the asymptotic result

for large n. Resolving the last equation for c we get c = n
p + p

2 , thus

c2 =
n2

p2
+ n+

p2

4
.

We substitute c2 in E[t] and obtain

E[t] <
n

2p
+
p

2
+
p3

8n
− p3

6n
=

n

2p
+
p

2
− p3

24n
.

The value p = Θ(
√
n) that minimizes this expression satisfies

− n

2p2
+

1

2
− p2

8n
= 0,

hence p2 = 2n and p =
√

2
√
n. We finally obtain

E[t] <

(
1

2
√

2
+

√
2

2
− 2
√

2

24

)
√
n =

(
1

4
+

1

2
− 1

12

)√
2
√
n =

2

3

√
2
√
n.

This concludes the proof.

Hence the randomized test number is still smaller than the worst-case test number by a

factor of one third. While the above proof takes a general approach, some of the detailed

calculations rely on y = 2 and do not seem to generalize. We must leave the conjecture as

an open question. We argued already that randomization becomes less worthwhile when y is

larger (but remains below log n), yet from a theoretical point of view an optimal randomized

result would be interesting.

4 Conclusions

We have further invetigated a variant of the group testing problem brought up in [1], where

the number y of positive tests needed to identify d defectives is constrained. We got an

asymptotically optimal test number t (including the leading constant factor), and we demon-

strated the savings by randomization for small y/d. All technical results assumed integer y/d,

but, of course, this ratio can also be fractional. However the results give hope that optimal

continuous trade-offs between t and y could be achieved both in the deterministic and in the

randomized setting by a more sophisticated analysis.
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