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Abstract. The classical and well-studied group testing problem is to
find d defectives in a set of n elements by group tests, which tell us for
any chosen subset whether it contains defectives or not. Strategies are
preferred that use both a small number of tests close to the information-
theoretic lower bound d log n, and a small constant number of stages,
where tests in every stage are done in parallel, in order to save time.
They should even work if d is completely unknown in advance. An essen-
tial ingredient of such competitive and minimal-adaptive group testing
strategies is an estimate of d within a constant factor. More precisely,
d shall be underestimated only with some given error probability, and
overestimated only by a constant factor, called the competitive ratio.
The latter problem is also interesting in its own right. It can be solved
with O(log n) randomized group tests of a certain type. In this paper
we prove that Ω(log n) tests are really needed. The proof is based on an
analysis of the influence of tests on the searcher’s ability to distinguish
between any two candidate numbers with a constant ratio. Once we know
this lower bound, the next challenge is to get optimal constant factors
in the O(log n) test number, depending on the desired error probability
and competitive ratio. We give a method to derive upper bounds and
conjecture that our particular strategy is already optimal.

Keywords: algorithm, learning by queries, competitive group testing, nonadap-
tive strategy, randomized strategy, lower bound

1 Introduction

Suppose that, in a set of n elements, d unknown elements are defective, and a
searcher can do group tests which work as follows. She can take any subset of
elements, called a pool, and ask whether the pool contains some defective. That
is, the result of a group test is binary: 0 means that no defective is in the pool, and
1 means the presence of at least one defective. The combinatorial group testing
problem asks to determine at most d defectives using a minimum number of tests;
we also refer to them as queries. Group testing with its variants is a classical
problem in combinatorial search, with a history dating back to year 1943 [8], and
it has various applications in chemical testing, bioinformatics, communication



networks, information gathering, compression, streaming algorithms, etc., see
for instance [3, 4, 7, 9, 11–13].

By the trivial information-theoretic lower bound, essentially d log2 n queries
are necessary for combinatorial group testing. A group testing strategy using
O(d log n) queries despite ignorance of d before the testing process is called
competitive, and the “hidden” constant factor is the competitive ratio. The
currently best competitive ratio is 1.5 when queries are asked sequentially [14].
However, group testing strategies with minimal adaptivity are preferable for
applications where the tests are time-consuming. Such strategies work in a few
stages, where queries in a stage are prepared prior to the stage and then asked
in parallel. For 1-stage group testing, at least Ω((d2/ log d) log n) queries are
needed even in the case of a known d; see [1]. Clearly, 1-stage competitive group
testing is impossible. As opposed to this, already 2 stages are enough to enable
an O(d log n) test strategy, also the competitive ratio has been improved in
several steps [6, 10, 2]. Still d must be known in advance or, to say it more
accurately, d is some assumed upper bound on the true number of defectives.
Apparently we were the first to study group testing strategies that are both
minimal adaptive and competitive, i.e., they are suitable even when nothing
about the magnitude of d is known beforehand [5]. Unfortunately, any efficient
deterministic competitive group testing strategy needs Ω(log d/ log log d) stages
(and O(log d) stages are sufficient). The picture changes when randomization is
applied. If we can estimate an upper bound on the unknown d within a constant
factor, using a logarithmic number of nonadaptive randomized queries, then
we can subsequently apply any 2-stage O(d log n) strategy for known d, and
thus obtain a randomized 3-stage competitive strategy. If we, instead, append a
randomized 1-stage strategy with O(d log n) queries [2], we obtain a competitive
group testing strategy that needs only 2 stages. Determining d exactly is as hard
as combinatorial group testing itself [5], thus it would require Ω((d2/ log d) log n)
nonadaptive queries. But an estimate of d within a constant factor is sufficient
(and also necessary) for minimal adaptive competitive group testing. We call the
expected ratio of our estimate and the true d a competitive ratio as well; it is
always clear from context which competitive ratio is meant.

It is not hard to come up with such a nonadaptive estimator of d [5]. More
precisely, using O(log n) queries we can output a number which is smaller than
d only with some prescribed error probability ε but has an expectation O(d). (If
the alleged d was too small, the subsequent stages will notice the failure, and
we try again from scratch, thus solving the combinatorial group testing problem
in O(1) expected stages.) To this end we prepare pools as follows. We fix some
probability q and put every element in the pool independently with probability
1 − q. Clearly, the group test gives the result 0 and 1 with probability qd and
1 − qd, respectively. We prepare O(log n) of these pools such that the values
1/ log2(1/q) form an exponential sequence of numbers between 1 to n. Note that
these values are the defective numbers d for which qd = 1/2. Then, the position
in the sequence of pools where test results 0 switch to 1 hint to the value of d,
subject to some constant factor and with some constant error probability. (Of



course, the details have to be specified and proved [5].) Note that the expected
competitive ratio of 2-stage or 3-stage group testing is determined by three
quantities: the competitive ratio of the group testing strategy used, and both
the query number and competitive ratio of the randomized d estimator. The
currently best 2-stage group testing strategy [2] uses (1.44 + o(1))d log n queries
(asymptotically for n → ∞). in this paper we focus on the estimator which
requires methods completely different from the combinatorial group testing part
that actually finds the defectives. Estimating d is also an interesting problem in
its own right, as in some group testing applications we may only be interested
in the amount of defectives rather than their identities.

An open question so far was whether O(log n) tests are really needed to
estimate d, in the above sense. Intuitively this should be expected, based on the
following heuristic argument. “Remote” queries with 1/ log2(1/q) far from d will
almost surely have a fixed result (0 or 1) and contribute little information about
the precise location of d. Therefore we must have queries with values 1/ log2(1/q)
within some constant ratio of every possible d, which would imply an Ω(log n)
bound. However, the searcher may use the accumulated information from all
queries, and even though “unexpected” results of the remote queries have low
probabilities, a few such events might reveal enough useful information about d.
Apparently, in order to turn the intuition into a proof we must somehow quantify
the influence of remote queries and show that they actually provide too little
information. To see the challenge, we first remark that the simple information-
theoretic argument falls short. Imagine that we divide the interval from 1 to n
into exponentially growing segments. Then the problem of estimating d up to
a constant factor is in principle (don’t care about technicalities) equivalent to
guessing the segment where d is located, or a neighbored segment. The number
of possible outcomes is some log n, thus we need Ω(log log n) queries, which is
a very weak lower bound. The next idea that comes into mind is to take the
very different probabilities of binary answers into account. The entropy of the
distribution of result strings is low, however it is not easy to see how to translate
entropy into a measure suited to our problem.

A main result of the present paper is a proof of the Ω(log n) query bound,
for any fixed competitive ratio and any fixed error probability. A key ingredient
is a suitable influence measure for queries. The proof is based on a simpler
auxiliary problem that may deserve independent interest: deciding on one of two
hypotheses about which we got only probabilistic information, thereby respecting
a pair of error bounds. It has to be noticed that our result does not yet prove the
non-existence of a randomized o(log n) query strategy in general. The result only
refers to randomized pools constructed in the aforementioned simple way: adding
every element to a pool independently with some fixed probability 1−q. However,
the result gives strong support to the conjecture that Ω(log n) is also a lower
bound for any other randomized pooling design. Intuitively, randomized pools
that treat all elements symmetrically and make independent decisions destroy
all possibilities for a malicious adversary to mislead the searcher by some clever



placement of defectives. Therefore it is hard to imagine that other constructions
could have benefits.

The rest of the paper is organized as follows. In Section 2 we give a formal
problem statement and some useful notation. In Section 3 we study a proba-
bilistic inference problem on two hypotheses, and we define the influence of the
random bit contributed by any query. This is used in Section 4 to prove the
logarithmic lower bound for estimating the defective number by group tests.
In Section 5 we derive a particular O(log n) query strategy for estimating the
defectives, and we have reason to conjecture that its hidden constant factor is
already optimal, for every input parameter. Section 6 concludes the paper.

2 Preliminaries

Motivated by competitive group testing we study the following abstract problem.

Problem 1: Given are positive integers n and L, some positive error probability
ε < 1, and some c > 1 that we call the competitive ratio. Furthermore, an
“invisible” number x ∈ [1, n] is given. A searcher can prepare L nonadaptive
queries to an oracle as follows. A query specifies a number q ∈ (0, 1), and the
oracle answers 0 with probability qx, and 1 with probability 1 − qx. Based on
the string s of these L binary answers the searcher is supposed to output some
number x′ such that Pr[x′ < x] ≤ ε and E[x′/x] ≤ c holds for every x.

The actual problem is to place the L queries, and to compute an x′ from s,
in such a way that the demands are fulfilled. The optimization version asks to
minimize c given the other input parameters. We will prove that L = Ω(log n)
queries are needed, for any fixed ε and c. Note that randomness is not only in
the oracle answers but possibly also in the rule that decides on x′ based on s,
and even in the choice of queries.

Symbols Pr and E in the definition refer to the resulting probability dis-
tribution of x′ given x. Note that no distribution of x is assumed, rather, the
conditions shall be fulfilled for any fixed x. We might, of course, define similar
problem versions, e.g., with two-sided errors or with worst-case (rather than ex-
pected) competitive ratio and tail probabilities. However we stick to the above
problem formulation, as it came up in this form in competitive 2-stage and 3-
stage group testing, and other conceivable variations would behave similarly. In
the group testing context, an oracle query obviously represents a randomized
pool where every element is selected independently with probability 1 − q, and
x is the unknown number of defectives. However we will treat x as a real-valued
variable. Asymptotically this does not change anything, but it simplifies several
technical issues.

It turns out that some coordinate transformations reflect the geometry of the
problem better than the variables originating from the group testing application.
We will look at x on the logarithmic axis and reserve symbol y for y = lnx.
Note that y ∈ [0, lnn]. Furthermore, we relate every q to that value y which



would make qx = qey

some constant “medium” probability, such as 1/e, the
inverse of Euler’s constant. (The choice of this constant is arbitrary, but it will
simplify some expressions.) We denote this y value by t, in other words, we want
qet

= 1/e, which means q = e−e−t

and ln(1/q) = e−t. Symbol t is reserved for
this transformed q. We refer to t as a query point.

3 Probabilistic Inference of one-out-of-two Hypotheses

Buridan’s ass could not decide on either a stack of hay or a pail of water and
thus suffered from both hunger and thirst. The following problem demands a
decision between two alternatives either of which could be wrong, but it also
offers a clear rationale for the decision. As usual in inference problems, the term
“target” refers to the true hypothesis.

Problem 2: The following items are given: two hypotheses g and h; two nonneg-
ative real numbers ε, δ < 1; furthermore N possible observations that we simply
denote by indices s = 1, . . . , N ; probabilities ps to observe s if g is the target,
and similarly, probabilities qs to observe s if h is the target. Clearly,

∑N
s=1 ps = 1

and
∑N

s=1 qs = 1. Based on the observed s, the searcher can infer g with some
probability xs, and h with probability 1 − xs. The searcher’s goal is to choose
her xs for all s, so as to limit to ε the probability of wrongly inferring h when g
is the target, and to limit to δ the probability of wrongly inferring g when h is
the target.

We rename the observations so that p1/q1 ≤ . . . ≤ pN/qN .
In the optimization version of Problem 2, only one error probability, say ε, is

fixed, and the searcher wants to determine x1, . . . , xN so as to minimize δ. We
denote the optimum by δ(ε). Problem 2 is easily solved in a greedy fashion:

Lemma 1. A complete scheme of optimal strategies (one for every ε) for Prob-
lem 2 is described as follows.1 Determine u such that p1 + . . . + pu−1 ≤ ε <
p1 + . . . + pu, and let f := (ε − p(1) − p(2) . . . − pu−1)/pu. Infer h if s < u,
infer h with probability f in case s = u, and otherwise infer g. Consequently,
δ(ε) = (1− f)qu + qu+1 + . . . + qN .

Proof. We only have to prove optimality. In any given strategy, let us change
two consecutive “strategy values” simultaneously by xs := xs −∆s and xs+1 :=
xs+1+∆s+1, for some ∆s,∆s+1 > 0. If the target is g, this manipulation changes
the probability to wrongly infer h by ps+1∆s+1 − ps∆s. If the target is h, this
manipulation changes the probability to wrongly infer g by qs+1∆s+1−qs∆s. We
choose our changes so that the first term is zero, that is, ∆s/∆s+1 = ps+1/ps.
Now qs+1/qs ≤ ps+1/ps = ∆s/∆s+1 shows qs+1∆s+1 − qs∆s ≤ 0, hence we
only improved the strategy. The manipulation is impossible only if some index
u exists with xs = 0 for all s < u, and xs = 1 for all s > u. Now the lemma
follows easily. ut
1 Corrected version. The proceedings version has some variable mismatch here.



Lemma 1 also implies:

Corollary 1. δ(ε) is a monotone decreasing and convex (i.e., sub-additive),
piecewise linear function with δ(0) = 1 and δ(1) = 0. ut

The following technical lemma shows that certain small additive changes in
the probability sequences do not change the error function much (which is quite
intuitive). In order to avoid heavy notation we give the proof in a geometric
language, referring to a coordinate system with abscissa ε and ordinate δ.

Lemma 2. Consider the following type of rearrangement of a given instance of
Problem 2. Replace every ps with ps − ρs, where

∑
s ρs = ρ. Similarly, replace

every qs with qs− τs, where τs = ρsqs/ps and
∑

s τs = τ . Then add the removed
probability masses, in total ρ and τ , arbitrarily to existing pairs (ps, qs) or create
new pairs (ps, qs), but in such a way that

∑
s ps = 1 and

∑
s qs = 1 are recovered.

If such a rearrangement reduces δ(ε), then the decrease is at most τ .

Proof. By Corollary 1, the curve of function δ(ε) is a chain of straight line
segments whose slopes −δ′(ε) get smaller from left to right, and these slopes are
the ratios qs/ps. The rearrangement has the following effect on the curve: Pieces
of the segments are cut out, whose horizontal and vertical projections have total
length ρ and τ , respectively. Then their horizontal and vertical lengths may
increase again by re-insertions (and all these actions may change the slopes of
existing segments), and possibly new segments are created. Finally all segments
are assembled to a new chain connecting the points δ(0) = 1 and δ(1) = 0, and
having a monotone sequence of slopes again.

Consider a fixed ε. Let ρ0 and τ0 be the total horizontal and vertical length,
respectively, of the pieces cut out to the left of ε. Let ρ1 and τ1 be defined
similarly for the pieces to the right of ε. The largest possible reduction of δ(ε)
appears if: (a) some new vertical piece of length τ1 forms the left end, and (b)
some new horizontal piece of length ρ0 and forms the right end of the modified
curve. Note that pieces in (a) were originally located below δ(ε), and pieces in
(b) were originally located to the left of ε. This moves the remainder of the
original curve (a) down by τ1 length units, and (b) to the left by ρ0 length units.
The vertical move (a) reduces δ(ε) by τ1. The horizontal move (b) causes that
the new function value at ε is the old function value at ε + ρ0. Since the slopes
decrease from left to right, the slope at our fixed ε (and to the right of it) can
be at most τ0/ρ0. Thus, move (b) reduces δ(ε) by at most ρ0τ0/ρ0 = τ0. Finally
note that τ1 + τ0 = τ . ut

One should not be confused that ρ does not appear in the decrease bound:
As we have chosen to consider δ as a function of ε, the setting is not symmetric.

We are particularly interested in the special case of Problem 2 where the
N = 2L observations s are strings of L independent bits.

Problem 3: The following items are given: two hypotheses g and h; two non-
negative real numbers ε, δ ≤ 1; and 2L possible observations described by binary



strings s = s1 . . . sL. Furthermore, for k = 1, . . . , L, we are given the probability
ak to observe sk = 0 if the target is g, and the probability bk to observe sk = 0
if the target is h. The sk are independent. The rest of the problem specification
is as in Problem 2.

Clearly, our ps and qs evaluate to ps =
∏L

k=1((1 − sk)ak + sk(1 − ak)) and
qs =

∏L
k=1((1 − sk)bk + sk(1 − bk)). Since the greedy algorithm in Lemma 1

applies also to Problem 3, a complete set of optimal strategies is described as
follows: Infer h for ps/qs below some threshold, infer g for ps/qs above that
threshold, and infer g or h randomized (with some prescribed probability) for
ps/qs equal to that threshold.

Remark: Since the ps and qs are just products of certain probabilities ak or
1 − ak, and bk or 1 − bk, respectively, taking the logarithm reveals a nice and
simple geometric structure of the optimal strategies from Lemma 1: Note that
log(ps/qs) =

∑L
k=1((1 − sk)(log ak − log bk) + sk(log(1 − ak) − log(1 − bk))).

Since log is a monotone function, comparing the ps/qs with some threshold is
equivalent to comparing the log(ps/qs) with some threshold. In other words, the
decision for g or h is merely a linear threshold predicate. We will not need this
remark in our lower-bound proof, still it might be interesting to notice.

In the following we consider any fixed ε > 0, and all notations are understood
with respect to this fixed error bound. Now think of our L independent bits as
L − 1 bits plus a distinguished one, say the kth bit. We define the influence
of this kth bit as the decrease of δ(ε), that is, the difference to the δ(ε) value
accomplished by an optimal strategy when the kth bit is ignored. Trivially, δ(ε)
can only decrease when more information is available.

Lemma 3. With the above notations for Problem 3, the influence of the kth bit
is at most min(max(ak, bk),max(1− ak, 1− bk)).

Proof. The kth bit splits every old observation s, consisting of the L − 1 other
bits and generated with probabilities ps, qs depending on the target, in two new
observations. Their new probability pairs are obviously (psak, qsbk) for sk = 0,
and (ps(1− ak), qs(1− bk)) for sk = 1. In order to apply Lemma 2 we can view
this splitting of observations as cutting out pieces from the segment of slope
qs/ps of the δ(ε) curve in the following way. If qs/ps ≤ bk/ak, a piece of vertical
length qsbk is cut out. If qs/ps > bk/ak, a piece of horizontal length psak is cut
out, corresponding to a piece of vertical length psakqs/ps = qsak. (Note that
we must first “cut out enough length” in both directions, therefore this case
distinction is needed.) This is done for all old s. Since, of course, the old qs sum
up to 1, we have τ ≤ max(ak, bk). The same reasoning applies to 1− ak, 1− bk,
thus we have τ ≤ max(1− ak, 1− bk) as well. ut

Note that the influence bound in Lemma 3 is expressed only in terms of
the probabilities of the respective bit being 0/1, conditional on the hypothesis.
Hence we can independently apply Lemma 3 to each of the bits, no matter in



which order they are considered, and simply add the influence bounds of several
bits (similarly to a union bound of probabilities).

4 The Logarithmic Lower Bound

We further narrow down our one-out-of-two inference problem to a special case
of Problem 3. (Below we reuse symbol q, without risk of confusion.)

Problem 4: The following items are given: two hypotheses r and 1. where r > 1
is a fixed real number; two nonnegative real numbers ε, δ ≤ 1, furthermore 2L

possible observations described by binary strings s = s1 . . . sL. For k = 1, . . . , L,
let qx

k be the probability to observe sk = 0 if the target is x. We also speak of a
“query at qk”. The sk are independent. The rest of the problem specification is
as before. In particular, let ε be the probability of wrongly inferring 1 although
r is the target, and let δ be the probability of wrongly inferring r although 1 is
the target.

Note that the hypothesis x = r generates the string s with probability∏L
k=1((1 − sk)qr

k + sk(1 − qr
k)), and the hypothesis x = 1 generates s with

probability
∏L

k=1((1− sk)qk + sk(1− qk)), in other words, ak = qr
k and bk = qk.

As earlier we fix some error bound ε. From Lemma 3 we get immediately:

Lemma 4. With the above notations for Problem 4, the influence of a query at
q is at most min(q, 1− qr). ut

Problem 4 was stated, without loss of generality, for hypotheses r and 1.
Similarly we may formulate it for hypotheses rx and x (for any positive x),
which merely involves a coordinate transformation. We speak of the “influence
of q on x” when we mean the influence of a query at q, with respect to Problem
4 for hypotheses rx and x. Clearly, the influence of q on x equals the influence
of qx on 1. Therefore Lemma 4 generalizes immediately to:

The influence of q on x is at most min(qx, 1− qrx).

Remember y := lnx from Section 2. By a slight abuse of notation, the phrase
“influence of q on y” refers to the logarithmic coordinates, and Lemma 4 gets
this form:

The influence of q on y is at most min(qey

, 1− qrey

).

While qey

obviously decreases doubly exponentially with growing y > 0, it
is also useful to have a simple upper bound for 1 − qrey

when y < 0. Since
1 − e−z ≤ z for any variable z, we take z with e−z = qrey

to obtain 1 − qrey ≤
z = − ln qrey

= ln(1/q)rey. Now we have:

The influence of q on y is at most min(qey

, ln(1/q)rey).



Finally we also transform q into t as introduced in Section 2, and we speak
of the “influence of t on y”, denoted It(y). With q = e−e−t

and ln(1/q) = e−t,
our influence lemma is in its final shape:

Lemma 5. It(y) ≤ min(e−ey−t

, rey−t). ut

From this bound we get:

Lemma 6. For every fixed t we have
∫ ln n

0
It(y) dy = Θ(ln r).

Proof. For simplicity we bound the integral over the entire real axis. (Since It(y)
decreases rapidly on both sides of t, this is not even too generous.) The advantage
is that we can assume t = 0 without loss of generality. We split the integral in two
parts, at y = − ln r. As It(y) is a minimum of two functions, we can take either
of them as an upper bound. Specifically we get

∫∞
−∞ It(y) dy <

∫ − ln r

−∞ rey dy +∫∞
− ln r

e−ey

dy =
∫∞
ln r

re−y d(−y)+
∫∞
− ln r

e−ey

dy = re− ln r+Θ(ln r) = 1+Θ(ln r).

The second integral is Θ(ln r) since both e−e− ln r

= e−1/r and (for instance)
e−e0

= e−1 are between some positive constants, the function is monotone de-
creasing, and

∫∞
0

e−ey

dy = Θ(1). ut

The next lemma connects our “bipolar” number guessing problem to the
problem we started from.

Lemma 7. For every r > 1 and 0 < δ < 1 we have: Any strategy solving
Problem 1 with error probability ε and competitive ratio c := 1 + (r − 1)δ yields
a strategy solving Problem 4 with hypotheses rx and x, for every x ≤ n/r, with
error probabilities ε and δ.

Proof. Imagine a searcher wants to solve an instance of Problem 1, and an ad-
versary tells her that the target is either rx or x. Despite this strong help, in case
that rx is the target, the searcher must still guess rx subject to an error proba-
bility ε, due to the definition of Problem 1. In the other case when the target is
x, error probability δ means a competitive ratio of (1−δ)+rδ = 1+(r−1)δ. ut

We are ready to state the main result of this section:

Theorem 1. Any strategy for Problem 1, with fixed error probability ε and com-
petitive ratio c, needs Ω(lnn/ ln c) queries, where the constant factor may depend
on ε.

Proof. Fix some r > c and δ = (c−1)/(r−1), hence c = 1+(r−1)δ. We choose
r = Θ(c) large enough so that D := 1−ε−δ is positive. Due to Lemma 7, the set
of queries must be powerful enough to solve Problem 4 with hypotheses rx and
x, for every x ≤ n/r, with error probabilities ε and δ. In the case of no queries,
the error tradeoff at every x would be simply δ(ε) = 1 − ε. Since we need to
reduce δ(ε) down to our fixed δ, all queries together must have an influence at
least 1− ε− δ on x. In transformed coordinates this means

∑
t It(y) ≥ D for all

0 ≤ y ≤ lnn− ln r, where the sum is taken over all t in our query set (multiple



occurrences counted). Hence
∫ ln n−ln r

0

∑
t It(y) dy ≥ D(lnn−ln r). Since Lemma

6 states
∫ ln n−ln r

0
It(y) dy = Θ(ln r) regardless of t, the number of queries is at

least (lnn− ln r)D/Θ(ln r) = Ω(lnn/ ln r). ut

Note that this integration argument also applies if the queries themselves are
located according to some probability distribution, that is, Theorem 1 also holds
for “fully randomized” strategies.

Theorem 1 only shows that the query number is logarithmic, for any fixed
parameter values. But the proof method is not suited for deriving also good lower
bounds on the hidden constant factor. For instance, this factor should increase
to infinity when ε tends to 0. To reflect this behaviour in the lower bound,
apparently the previous proof must be combined with some reduction between
problem instances with different ε. We leave this topic here. Anyways, in practice
one would apply some reasonable standard value like ε = 0.05 rather than trading
much more queries for smaller failure probabilities. A more relevant question,
addressed in the next section, is which upper bounds we can accomplish.

5 Translation-Invariant Strategies and Upper Bounds

Theorem 1 states that L/ lnn in Problem 1 must be at least some constant,
depending on ε and c. In order to get upper bounds on L/ lnn we consider the
following “infinite extension” of Problem 1. This has merely formal reasons that
will be explained below.

Problem 5: Given are some positive error probability ε < 1, some c > 1 that
we call the competitive ratio, and an “invisible” number x which can be any real
number. A searcher can prepare countably infinitely many nonadaptive queries
to an oracle as follows. A query specifies a number q ∈ (0, 1), and the oracle
gives answer 0 with probability qx and answer 1 with probability 1− qx. Based
on the infinite string s of the binary answers, the searcher is supposed to output
some number x′ such that Pr[x′ < x] ≤ ε and E[x′/x] ≤ c holds for every x.

For Problem 5 we naturally consider the density of queries, i.e., the number
of queries per length unit on the logarithmic axis, corresponding to L/ lnn in
Problem 1. We withhold a precise formal definition of density, because for our
upper bound we will only study a particular strategy for which the notion of
density is straightforward:

Remember that y = ln x, and every query, with probability q of responding
with 0, is matched to a query point t on the logarithmic axis through q = e−e−t

.
If y is the unknown target value (in logarithmic coordinates), the probability of
answer 0 to a query at point t is qx = e−ey−t

. The logarithmic lower bound in
Theorem 1 and the influence argument in its proof suggests that query points t
should be spread evenly over the logarithmic axis. More specifically, we consider
strategies where the query points t are placed equidistantly, with space u between
neighbored points. We place our queries at points t = ju + v, where u is fixed,



j loops over all integers, and v is a random shift being uniformly distributed,
with 0 ≤ v < u. For every two-sided infinite binary sequence s of answers we
also specify an ys such that the output y′ = lnx′ is located ys length units
to the right of the point of the leftmost answer 0 in s (see details below). We
call such strategies translation-invariant with density u−1 because, obviously, all
translations of the y-axis are automorphisms. One should not worry about the
uncountably infinitely many s; in practice we “cut out a finite segment” of this
infinite strategy according to:

Lemma 8. Any translation-invariant strategy for Problem 5 with bounds ε and
c and density u−1 yields a strategy for the original Problem 1 that has asymp-
totically, i.e., for n → ∞, the same characteristics as the given strategy: error
probability ε, competitive ratio c, and u−1 lnn queries.

Proof. (sketch) We simply take the query points in the interval from 0 to lnn,
plus some margins on both sides, whose lengths grow with n but slower than
lnn. Since even the total influence of the (infinitely many!) ignored queries on
any point y, 0 ≤ y ≤ lnn, decreases exponentially with the margin length, the
resulting finite strategy performs as the original strategy for Problem 5, subject
to vanishing terms. ut

The reason for replacing Problem 1 with Problem 5 is its greater formal
beauty. This way we skip some artificial treatment of the interval ends and
obtain “clean” translation-invariance. In particular, in the calculations we can
assume without loss of generality that y = 0, and the searcher does not know
the shift of the coordinates (while in reality the searcher knows the coordinate
system but not y). This will simplify the expressions a lot. Furthermore, the
random shift v that we used to make our strategy translation-invariant does not
sacrifice optimality: If, in any optimal strategy for Problem 5, the query points
are first shifted randomly, the strategy remains optimal. To see this, simply note
that the resulting strategy still respects the bounds ε and c at every y, if the
original strategy did.

Next we show how to obtain the optimal values ys for our specific strategy. For
a given error probability and query density we want to minimize the competitive
ratio. We need to consider only those two-sided infinite strings s that have a
leftmost 0 and a rightmost 1. We call the segment bounded by these positions
the significant segment. Clearly, all other response strings appear with total
probability 0. We (arbitrarily) index the bits in each s so that s0 = 0 is the
leftmost 0, that is, sk = 1 for all k < 0. The point on the y-axis where the
leftmost query t with answer 0 is located is called the reference point.

The probability density of the event that string s appears, and its reference
point is ju + v (j integer, 0 ≤ v < u), is given by

fs(ju + v) := u−1
∏
k

(
(1− sk)e−e−(k+j)u−v

+ sk(1− e−e−(k+j)u−v

)
)

where k loops over all integers, and the sk are the bits of s as specified above.



Since, for each s, our strategy returns the point located ys units to the right
of the reference point t, the contribution of string s to the error probability (of
having output y′ < 0) amounts to

∫ −ys

−∞ fs(t) dt. Hence our goal is to minimize∑
s

∫ +∞
−∞ et+ysfs(t) dt under the constraint

∑
s

∫ −ys

−∞ fs(t) dt ≤ ε. To summarize:

Proposition 1. For any fixed u, the solution to the problem of minimizing∑
s

∫ +∞
−∞ et+ysfs(t) dt under the constraint

∑
s

∫ −ys

−∞ fs(t) dt ≤ ε yields an up-
per bound on the competitive ratio c for Problem 1 when u−1 ln 2 · log2 n queries
are used. ut

Now these bounds can be calculated by standard nonlinear constraint op-
timization problem solvers. It suffices to consider some finite set of the most
likely strings s whose sum of probabilities is close enough to 1. We implemented
the method using the Matlab features fmincon for optimization and quadgk for
numerical integration. As a little illustration, Table 1 displays the competitive
ratios for ε = 0.01, . . . 0.05 and g log2 n pools, for g = 0.5 and g = 1.

Table 1. Some competitive ratios c.

g e 0.01 e 0.02 e 0.03 e 0.04 e 0.05

0.5 11.87 9.83 8.67 7.89 7.28

1.0 5.31 4.56 4.13 3.86 3.61

Of course, the optimizer also outputs the strategy variables ys, here we do
not show them due to limited space. For larger g it becomes harder to run the
method in this form on a usual laptop computer. The denser the query points
are, the more strings s have non-negligible probabilities, and the resulting large
number of variables leads to slow convergence. However, these technical issues
can be resolved by more computational power. One should also bear in mind
that a strategy needs to be computed only once, for any given pair of input
parameters g and ε, thus long waiting times might be acceptable. The only thing
needed to apply the computed strategy is a look-up table of the ys. Anyways,
some optimality criterion for the problem could enable us to find the optimal
strategies more efficiently than by this “naive” direct use of an optimizer.

For the original problem (of estimating the number d of defectives in an
n-element set by group tests) we have also found and implemented an LP for-
mulation. Clearly, the competitive ratios grow with n and should tend to the
results for Problem 5 when n →∞. This behaviour is confirmed by our empirical
results. Since our methods guarantee optimal competitive ratios for translation-
invariant pooling designs, they improve upon the ad-hoc strategies in [5] where
the problem was studied for the first time.



6 Open Questions

We studied the problem of estimating the number d of defective elements in a
population of size n by randomized nonadaptive group tests, to within a con-
stant factor c, and with a prescribed probability ε of underestimating d. A main
result is that Ω(log n) queries are needed, if the single pools are formed in a
natural way by independent random choices. While this bound is intuitive, it
has not been proved before, and quite some technical efforts were needed. It
remains open how to show this lower bound also for arbitrary pools. A combi-
nation of our influence argument with Yao’s lower bound technique may lead to
an answer. The logarithmic lower bound also suggests that query points should
be placed translation-invariant on the logarithmic axis; see details above. We
gave such a strategy which allows numerical calculation of the output and com-
petitive ratios, for any given query density and ε. One could also think of other
translation-invariant strategies, for instance, query points may be chosen by a
Poisson process, however this seems worse because then the density of actual
query points can accidentally be low around the target value. In summary we
conjecture that our strategy in Section 5 is already optimal, with respect to the
constant factors and parameters, among all possible randomized strategies. But
a proof (if it is true) would apparently require a different mathematical machin-
ery. Disproving the conjecture would give interesting insights as well. Finally,
the method proposed in Section 5 is a numerical one. A challenging question
is whether the dependency of optimal competitive ratio, error probability and
query number can be characterized in a closed analytical form.
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