
The Solution Space of Sorting with Recurring
Comparison Faults

Peter Damaschke

Department of Computer Science and Engineering
Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. Suppose that n elements shall be sorted by comparisons,
but an unknown subset of at most k pairs systematically returns false
comparison results. Using a known connection with feedback arc sets
in tournaments (FAST), we characterize the solution space of sorting
with recurring comparison faults by a FAST enumeration, which rep-
resents all information about the order that can be obtained by do-
ing all

(
n
2

)
comparisons. An optimal parameterized enumeration algo-

rithm for FAST also works for the more general chordal graphs, and
this fact contributes to the efficiency of our representation. Then, we
compute the solution space more efficiently, by fault-tolerant versions of
Treesort and Quicksort. We need O(n logn+ kn+ k2 logn) comparisons
and O(n logn+kn+k2 logn+kF (k2, k)) time, where F (n, k) is any pa-
rameterized time bound for finding a FAST with at most k arcs. Thus,
for rare faults the complexity is close to optimal.

1 Introduction

In the model of recurring faults in computations as introduced in [10], operations
on certain items yield false results even when repeated. As opposed to transient
or probabilistic failures, this model accounts for systematic errors. One of the
problems investigated in [10] is to sort a set of n elements by comparisons, where
at most k pairs return false comparison results; let us denote this assumption
Ak. Recurring comparison faults can result from software bugs. One can also
think of applications where the elements are real entities rather than data items
in computer memory. For instance, archaeological finds or historical events may
be brought into chronological order by pairwise comparisons, say by comparing
style characteristics or by causal dependencies, respectively, but for a few pairs
the comparison criteria may be misleading.

It is impossible to verify Ak from the comparison results only, since false but
consistent answers might pretend any order. The best we can do is to determine
all orders compatible with Ak, and then we know: If Ak holds true, then these
are the possible orders. Only if no compatible order exists, we recognize that
Ak is false. Hence the problem belongs to the category of promise problems: We
must know in advance that comparisons are reliable, subject to a certain “small”
number of at most k false pairs.

In [10], quality measures for alleged sorted sequences are defined and related
to each other. This is done from the approximation point of view, asking: How
much does an order obtained by doing all comparisons and some postprocessing
differ from the unknown sorted order? What is not considered is the full solution
space obtained from the comparisons, and the number of comparisons actually
needed. A fault-tolerant search for the minimum element is provided, which
returns an element of rank O(k) by using O(

√
kn) comparisons and time. Here

we aim at similar results for the sorting problem. We separate the number of
comparisons and auxiliary computations, as comparisons may be more expensive,
depending on the nature of elements to compare.

Our contributions. We answer two different questions: 1. What can we learn
at all about an unknown order by faulty comparisons? 2. How can we efficiently
extract this entire information? Specifically, how can we infer all comparison
results by doing only a minority of them, ideally in a time close to O(n log n)?

Starting from a version of the reversal lemma for minimal feedback arc sets
(MFAS), we enumerate in O(3kk(n+m)) time all MFAS with at most k arcs in
a directed graph of n vertices and m edges whose underlying undirected graph
is chordal. This extends an early algorithm [11] for finding smallest MFAS in
tournaments, called FAST. While a single minimum FAST can be computed
faster, base 3 is optimal for explicit enumerations. Next, the MFAS enumeration
characterizes the solution space, i.e., the orders compatible with all comparisons.
While there can be nO(k) such orders, it suffices to know at most 3k MFAS, as
all other compatible orders are obtained from them by simple transposition se-
quences. Next we observe: If we know already a compatible order, we can certify
it with only O(kn) comparisons that form a chordal graph, hence the MFAS
that describe all compatible orders can be enumerated in O(3kk2n) time. Fi-
nally we give efficient algorithms that actually find a compatible order and the
information needed to reconstruct the solution space. A building block is a pro-
cedure to insert another vertex in an existing order with a minimum number of
backward arcs. This leads to fault-tolerant sorting algorithms based on Treesort
and Quicksort, that essentially need O(n log n) comparisons for fixed k, which
is optimal in a sense. The time is larger by just some “FPT term” in the pa-
rameter k. These are the first subquadratic algorithms for sorting with recurring
comparison faults.

Other related literature. As much work exists on fault-tolerant searching
and sorting (see the survey [5]), it is important to pay attention to similari-
ties. Liar models are also deterministic fault models with a maximum number
of false answers, but they count repeated false answers, and the searcher can
reconstruct the true results. Sorting in a model where some elements can be
corrupted (but comparisons are correct) is considered in [8], where the goal is
to sort the uncorrupted elements. Sorting under probabilistic errors is studied
in [3, 4]. Some steps of our insertion procedure resemble some of their lemmas,
as well as arguments from the kernelization of FAST [1]. Enumeration problems
find attention in various fields (see, e.g. [2]). The number of comparisons needed
to decide properties of partial orders is studied in [7].

2 Preliminaries

Orders are ascending from left to right. We use the terms vertex and element
interchangeably. Suppose that k is fixed. In a directed comparison graph D =
(V,A), where V is the set of the n elements to be sorted, every arc (u, v) indicates
a comparison that claimed u < v. We call the arc (u, v) true if actually u < v,
and false if v < u. With respect to an order σ of V , an arc is forward (backward)
if it points to the right (left). We denote the set of backward arcs B(σ). The
length of an arc (u, v) is the absolute difference of the positions of u and v in σ.
Provided that at most k comparisons are false, clearly, an order σ is a candidate
for the correctly sorted sequence if and only if |B(σ)| ≤ k. As in [10] we call such
σ compatible.

A transposition flips the positions of two neighbored vertices u, v in an order.
It turns the arc (u, v), if there is one, from forward to backward or vice versa,
while all other arcs are not affected. For two orders π and σ of the same set, an
inversion is a pair of elements u, v such that u is to the left of v in π but v is
to the left of u in σ. The Kemeny distance d(π, σ) is the number of inversions.
Starting from π, consider any sequence of transpositions with the property that
each transposition removes an inversion. Every maximal sequence of this kind
has length d(π, σ) and ends in σ.

As usual, n and m denotes the number of vertices and arcs of a graph. A
directed graph D = (V,A) is acyclic if it has no directed cycles. As is well known,
a directed graph is acyclic if and only if it admits an order without backward
arcs, called topological order, and one can construct a topological order or output
a directed cycle in O(n + m) time. For general D = (V,A) we call an order σ
of V a minimal backward order if no other order τ has B(τ) ⊂ B(σ). Hence,
in acyclic graphs, minimal backward and topological orders are the same. A
minimum backward order also has a minimum number of backward arcs.

A computational problem is fixed-parameter tractable (FPT) if instances of
size n and with an additional input parameter k can be solved in f(k) · nO(1)

time, with some computable function f . A feedback arc set (FAS) is a subset of
arcs whose removal makes the graph acyclic, and a minimal FAS (MFAS) is a
FAS such that no proper subset of it is a FAS, too. A tournament is a complete
directed graph D = (V,A). A (directed) triangle is a (directed) cycle of three
vertices. The FAST problem requires to find a minimum FAS in a tournament.
Let F (n, k) be a time bound of an FPT algorithm for FAST, for graphs with
O(n) vertices and solution size k. Note that F (n, k) is well-defined for any FPT
algorithm: Since the dependency of the time bound on n is polynomial, a constant
factor in n only affects the constant factor in F (n, k). We can use F (n, k) =

2O(
√
k)nO(1) [6, 9]. We will give time bounds in terms of F (n, k), not in order

to hide the exponential part, but in order to state the bounds in a generic way,
independently of the current state of FAST.

The undirected underlying graph of a directed graph is obtained by ignoring
the orientations of arcs. An undirected graph is chordal if every cycle C is a
triangle or has a chord, that is, an edge joining two non-consecutive vertices in
C. Every chordal graph has a perfect elimination order (PEO), defined by the

following property: If u is the first of u, v, w in the order, and uv and uw are
edges, then vw is an edge, too. A PEO is constructed in O(n+m) time [12].

3 Characterizing and Enumerating MFAS

The “reversal lemma” was used in [11] and already discovered several times in
the 1960s. It states that reversing the arcs of an MFAS makes a directed graph
acyclic. The following extended version also considers orders.

Lemma 1. An arc set F ⊆ A is an MFAS in a directed graph D = (V,A), if and
only if F = B(σ) for some minimal backward order σ. Moreover, the possible σ
are exactly the topological orders of (V,A \ F).

Proof. For any order σ, trivially, B(σ) is a FAS. Let F be any FAS. Then (V,A\
F) is acyclic. We take any topological order σ and re-insert the arcs of F . Clearly,
B(σ) ⊆ F . If F is an MFAS then, since B(σ) is a FAS, it also follows B(σ) = F .
Now assume that σ is not minimal backward. Then there exists another σ′

with B(σ′) ⊂ B(σ). But F ′ := B(σ′) is also a FAS, and F ′ ⊂ F contradicts the
minimality of F . Thus, every topological order of (V,A\F) is minimal backward.

Conversely, let σ be any minimal backward order, and F := B(σ). Then F is
a FAS. Assume that a smaller FAS F ′ ⊂ F exists. As we saw above, there exists
a topological order σ′ such that B(σ′) ⊆ F ′ ⊂ F = B(σ), which contradicts the
assumed backward minimality of σ. ut

Lemma 2. A directed graph with an underlying chordal graph is acyclic if and
only if it has no directed triangle. Furthermore, we can confirm that the graph
is acyclic or find a triangle in O(n+m) time.

Proof. We run a standard O(n+m) time algorithm that constructs a topological
order or outputs a directed cycle. If the graph is acyclic, trivially it has no
directed triangle. If we get a directed cycle C, represented as a doubly linked
circular list, it remains to find a directed triangle in O(n + m) time. To this
end we construct in O(n+m) time a PEO of the underlying chordal graph and
mark the vertices of C therein. We scan the PEO from left to right until we find
the first vertex u ∈ C. Let v and w be its neighbors in C (in the circular list).
Then u, v, w form a triangle, due to the PEO. If this triangle is directed, we can
stop. If not, then we update C by removing u and its two incident arcs, and
inserting the arc (v, w) or (w, v) instead. The shortened cycle is still directed,
and the update is done in O(1) time. We keep on scanning the PEO until the
next vertex of C is found. Since the cycle is shortened each time and remains
directed, eventually we get a directed triangle. ut

Theorem 1. In a directed graph with chordal underlying graph, at most 3k

MFAS of at most k arcs exist, and they are enumerated in O(3kk(n+m)) time.

Proof. We pick any directed triangle T and branch on it. That means, we gen-
erate at most three sub-instances of the problem as follows: In every branch we

choose one arc of T , reverse it and mark it. Marked arcs are not reversed again
in later steps (dealing with other triangles). If all three arcs in T were already
marked, then the sub-instance is discarded. Each of the, at most 3k, paths of
branching steps is followed until k steps are done or the obtained directed graph
is free of directed triangles. We collect the latter graphs. By Lemma 2, each of
them is acyclic, hence the reversed arcs form a FAS. Eventually we throw out
all FAS that are not MFAS or are duplicates of other MFAS.

For correctness it remains to show that every MFAS F with at most k arcs
is found in this collection. We use Lemma 1 and fix an order σ where F = B(σ).
We follow a path of reversals where only arcs of F get reversed. As long as the
obtained graph is not acyclic, by Lemma 2, it retains a directed triangle. The
algorithm picks some; let us call it T . Clearly, some of the three arcs in T is still
backward in σ, thus the arc is in F and not yet reversed and marked, and one
of the branches reverses just this arc. As soon as the obtained graph is acyclic,
the graph without the reversed arcs is acyclic, too, but since F is an MFAS, it
follows that all arcs of F have already been reversed. These two cases show that
our path never gets stuck with a proper subset of F reversed.

We have O(3k) branching steps, and the main work in each of them is to find
a directed triangle. By Lemma 2 this us done in O(n + m) time. Every FAS F
not being an MFAS is detected easily: For every arc e we check whether F \ {e}
is still a FAS, in O(n+m) time. This costs O(3kk(n+m)) time for all collected
FAS. Duplicates are recognized by bucketsorting. ut

One could also make the enumeration repetition-free by sorting the edges in
each triangle and marking the reversed arc and the preceding arcs, but we remove
duplicates anyhow, and the base in the 3k factor is optimal, even for tournaments.
To see this, take for instance k disjoint directed triangles, arrange them in an
order, and insert all possible forward edges between vertices of different triangles.
Then each of the 3k selections of one arc from each triangle is an MFAS. By this
3k lower bound, none of the faster algorithms that compute a minimum FAS can
be turned into a faster algorithm that enumerates all MFAS as an explicit list.

4 MFAS and the Solution Space of Faulty Sorting

In this section we describe the family of all orders of a set being compatible with
a comparison graph, by virtue of an MFAS enumeration and transpositions.

Lemma 3. An order σ of the vertex set of a directed tournament D = (V,A) is
minimal backward if and only if no backward arc has length 1.

Proof. One direction is trivial: If some backward arc has length 1, then a trans-
position makes it a forward arc, hence σ is not minimal backward.

Conversely, assume for contradiction that no backward arc in σ has length
1, but there exists an order τ with B(τ) ⊂ B(σ). Consider an arc (u, v) ∈
B(σ) \B(τ) that has minimum length in σ, among all arcs in this set difference.
Since this length is not 1, there exists a vertex w ∈ V such that v, w, u appear

in this order in σ. Clearly, u appears before v in τ , hence w swaps its position
relative to u or v or both. We look at the conceivable cases:

Assume that w appears before v in τ ; the other case is symmetric. If (v, w) ∈
A then (v, w) /∈ B(σ) and (v, w) ∈ B(τ), which contradicts the choice of τ . If
(w, v) ∈ A then (w, v) ∈ B(σ) and (w, v) /∈ B(τ), but since (w, v) is shorter than
(u, v), this contradicts the choice of (u, v). ut

Theorem 2. For a tournament D = (V,A) and an integer k, every compatible
order can be obtained from a compatible, minimal backward order by a sequence
of transpositions, each turning a (current) forward arc into a backward arc.

Proof. Consider any compatible order σ. If σ is not minimal backward, then,
by Lemma 3, it has a backward arc of length 1. A transposition at this place
removes exactly this arc from B(σ). By an inductive argument, a sequence of
such transpositions ends in some minimal backward order. (We remark that this
final order is not unique.) Trivially, this order is compatible, too. The assertion
follows by reversing the sequence of transpositions. ut

Suppose that we have done all
(
n
2

)
comparisons, that is, the comparison graph

is a tournament. Then, the results provide a simple implicit description of all
compatible orders, which is also practical for rare faults, that is, for small k:

Enumerate all MFAS with most k arcs in the comparison graph, in O∗(3k)
time (as in Theorem 1). For any solution, reverse the arcs in the MFAS, and
output the resulting order, which is a compatible, minimal backward order (by
Lemma 1). If the number of backward arcs is b < k, all other compatible orders
are obtained by up to k− b transpositions that preserve the backward arcs, but
are arbitrary, subject to this condition. Equivalently, these orders have Kemeny
distance at most k − b from the minimal backward orders. We comment that
Theorem 2 is not an isolated observation but an integral part of the characteri-
zation of the solution space. It implies that algorithms for fault-tolerant sorting
need to care about minimal backward orders only.

5 A Certificate for Sorting with Recurring Faults

The next natural question is whether we can get the solution space without
doing all O(n2) comparisons when k is small, in view of the fact that sorting
without faults (the case k = 0) needs only O(n log n) comparisons. Intuitively,
we could first apply any O(n log n)-time sort and then check the result and fix
errors. However, usual sorting algorithms would not notice comparison faults, as
they do not cause inconsistencies. They just continue and output a possibly false
order σ. Another observation is that for any two neighbored elements u and v
in σ we must actually do the comparison between u and v, since otherwise one
could not tell whether u < v or v < u. In order to spot errors we insert some
redundancy, namely all arcs of length at most 2k+1 in σ, and we do these O(kn)
comparisons. We do not take advantage of longer arcs from other comparisons
possibly made before.

Definition 1. Given an order σ of the vertex set V of a comparison graph, let
D(σ) be the subgraph consisting of V and all arcs of length at most 2k + 1.

Suppose that D(σ) has at most k backward arcs. In this case we are in a
good position, as the next theorem says that further comparisons would not add
more information, thus the instance of the sorting problem is then solved after
O(n log n+ kn) comparisons.

Theorem 3. Consider an ordered comparison graph that contains all arcs of
length at most 2k + 1, and at most k of them are backward arcs. Let u and v be
any two vertices such that v appears more than 2k + 1 positions to the right of
u. Then we can safely conclude u < v.

Proof. We use induction on the distance d between u and v in the order. Sup-
pose that the assertion holds for all distances between 2k + 1 and d. Let w be
any of the d − 1 vertices between u and v. We have either (1) u < w by the
induction hypothesis, or (2) (u,w) is a forward arc, or (3) (w, u) is a backward
arc. Similarly, we have either (1) w < v by the induction hypothesis, or (2) (w, v)
is a forward arc, or (3) (v, w) is a backward arc.

Since at most k backward arcs exist, for at least d − 1 − k of the vertices
w, only cases (1) and (2) apply, with respect to both u and v. Since at most k
arcs are false, for at least d− 1− 2k ≥ 1 of the vertices w, we have both u < w
and w < v, where each of the two inequalities holds either by the induction
hypothesis or since the forward arc, (u,w) or (w, v), is true. Note that we do not
know which forward arcs are true, yet we can infer the existence of a vertex w
with u < w < v. This concludes the induction step and the proof. ut

By Theorem 3, a graph D(σ) with at most k backward arcs is a certificate
that all other arcs are forward. Thus, the solution space description from Section
4 can be based on D(σ), as we know the other arcs without testing them. Since
D(σ) has m = O(kn) edges and is chordal, by Theorem 1 we can enumerate
its MFAS already in O(3kk2n) time, which is O(n) for any fixed k. However, in
general we cannot expect to be lucky and get D(σ) with at most k backward
arcs already in one pass of a usual sorting algorithm. The following sections deal
with the actual construction of an order that satisfies the condition in Theorem
3. We conclude this section with another structural property that will be needed.

Definition 2. Consider a tournament and an order of its vertices. We partition
it into components with the following properties: every component is a consecu-
tive set of vertices; every backward arc is within a component; and for every point
between two vertices in a component there exists a backward arc from a vertex
on the right side to a vertex on the left side of this point. A trivial component
has only one vertex, and a nontrivial component has more than one vertex.

The components are uniquely determined. We index them from left to right
by C1, C2, C3, and so on. Let bi denote the minimum number of backward arcs,
in an optimal order of Ci, and b :=

∑
i bi. We define the following routine:

Procedure MB. In every nontrivial component Ci we compute a minimum
FAS. Due to Lemma 1, topological sorting then yields a minimal backward order
of Ci. We rearrange the vertices in every Ci accordingly.

Lemma 4. The order from MB has exactly b backward arcs, which is optimal.

Proof. The minimal backward order of every Ci has bi backward arcs. Since
we keep the order of components, and there exist no backward arcs between
components, the number b is evident. To show optimality, consider any order of
the whole set. The order induced on every Ci still has at least bi backward arcs,
since bi is optimal in Ci. Since the components are disjoint, no backward arcs
are counted twice. It follows that at least b backward arcs are needed. ut

6 Insertion in a Compatible Minimum Backward Order

Suppose that we have already found an order σ of a subset U ⊂ V , such that
D(σ) exhibits at most k backward arcs. Due to Theorem 3 this also implies that
all longer arcs are forward. We can further suppose that the number of backward
arcs in σ, or equivalently, in every component, is minimized (see Lemma 4). Let
us store the sequence σ in an array indexed with consecutive integers. Now we
want to insert another vertex v /∈ U and find an order τ of U ∪ {v} that still
enjoys the same properties. Such an order must exist, if at most k comparison
faults are present, but it is not obvious how to get τ efficiently from σ. We begin
with a transitivity lemma and then establish a fault-tolerant binary search that
runs, so to speak, on an almost sorted set blurred by comparison faults.

Lemma 5. Suppose that u′ stands to the left of u, at a distance larger than
2k+ 1. If (u, v) is true, then u′ < v. A similar assertion holds in the symmetric
case.

Proof. By the assumed distance and Theorem 3, we have u′ < u. Since (u, v) is
true, we also have u < v, hence u′ < v. ut

Lemma 6. We can find elements ` and r with distance O(k) in σ and ` < v < r,
by using O(k log n) comparisons of elements of U with v, in O(k log n) time.

Proof. Let us append dummy vertices to σ: one at the left end which is smaller
than all real elements, and one at the right end which is larger than all real
elements. Initially let ` and r be these dummy elements, hence ` < v < r is true.
To query a vertex means to compare it to v. Since σ is stored as an array, we
have access to the indices and can find the center of an interval in O(1) time.

We query consecutive vertices u around the center of the interval [`, r], until
k+1 of them give the same answer, say u < v. Clearly, this happens after at most
2k + 1 comparisons. Since at most k comparisons are false, we know that u < v
is true for some queried vertex u, but we cannot say which. However, Lemma
5 ensures u′ < v for all u′ more than 2k + 1 positions to the left of u. Thus it
is safe to update ` to the vertex at distance 2k + 2 to the left of the leftmost

queried vertex. Similarly we proceed with r in the symmetric case. Thus, the
property ` < v < r is preserved. In each step we halve the interval [`, r] and add
an offset of O(k). Clearly, after O(log n) such steps with O(k log n) comparisons,
the length of [`, r] is reduced down to O(k). ut

Next we finalize the procedure. Recall the FAST time bound F (n, k) from
Section 2, the notion of components in Definition 2, and note that a component
has O(k2) vertices, since at most k backward arcs exist, all of length O(k).

Lemma 7. Given an order σ of U such that D(σ) has a minimum number of
backwards arcs, bounded by k, we can get an order τ of U ∪ {v} with the same
properties, by O(k log n) comparisons in O(k log n+ F (k2, k) + n) time.

Proof. After running the procedure in Lemma 6 we insert v anywhere in [`, r]
and denote by σ′ the resulting order of U ∪ {v}. By Theorem 3, ` is larger than
all vertices to the left, and r is smaller than all vertices to the right, with the
exception of at most 2k + 1 vertices next to ` and r. From Lemma 6 we have
|[`, r]| = O(k) and ` < v < r. Thus v is only involved in backward arcs of length
O(k) in σ′. (Longer backward arcs from comparisons with v that contradict these
relations are now recognized as false and can be reversed.) The backward arcs
with v create a new component that may incorporate some components from σ
and contains only O(k2) vertices.

We have now learned the complete comparison graph of U ∪ {v} by actually
doing only O(k log n) comparisons. By Lemma 4 it remains to apply MB to σ′,
and to take the resulting order τ . Actually it suffices to optimize the component
including v, since all other components were already optimal in σ and have not
changed. At this point, D(τ) has at most k backward arcs (otherwise more than
k faults exist, and we can stop), these are the only true backward arcs in τ , and
their number is minimized. This establishes correctness.

In addition we need F (k2, k) time to optimize the new component of length
O(k2), and O(n) time to update the indices, due to the insertion of v. ut

Lemma 7 is complemented with a simpler and faster procedure for the special
case when backwards arcs did not yet appear. Then we can either insert another
vertex as above, or recognize a fault.

Lemma 8. Given an order σ of U such that D(σ) has no backwards arcs, we
can construct an order τ with the same property, such that either τ is an order of
U∪{v}, or τ is an order of U \{u, u′} for some u, u′ ∈ U where some comparison
among u, u′, v is false, by using O(log n+ k) comparisons and O(n) time.

Proof. First we do usual binary search and temporarily believe the results. We
insert v at the resulting position in σ. Note that all arcs of length 1 are forward.
Only now we compare v to all vertices at distance at most 2k + 1. If we get
only forward arcs, then τ is the obtained order of U ∪ {v}. Otherwise we take
some shortest backward arc. Since its length is not 1, it forms a directed triangle
with two forward arcs. We remove the three involved vertices and let τ be the
resulting order. Trivially, some of the arcs in the directed triangle is false.

The number of O(log n + k) comparisons is obvious. We need O(n) time to
update the indices, and the time for all other operations is no larger. ut

Theorem 4. For k <
√
n, sorting with at most k recurring comparison faults

can be accomplished with O(n log n+ kn+ k2 log n) comparisons.

Proof. We do fault-tolerant Insertion Sort, that is, beginning with the empty
order we insert all n elements one by one in a minimum backward order. If k is
small compared to n, actually the special case of no backward arcs is the more
frequent one. In detail:

Phase 1: We apply Lemma 8 as long as possible. Since in total at most k
comparisons are false and the removed triples are disjoint, at most 3k vertices are
removed from the order. We put these vertices aside. This needs O(n log n+kn)
comparisons and O(n2) time.

Phase 2: We switch to Lemma 7 and insert the remaining O(k) vertices.
This needs O(k2 log n) comparisons and O(k2 log n+ kn+ kF (k2, k)) time. ut

While the number of comparisons is already pleasant, this method would
need O(n2 + k2 log n + kF (k2, k)) computations. As a final step we will do the
insertion procedures in a more economic way, to get rid of the O(n2) term.

7 Fault-Tolerant Treesort and Quicksort

For ease of presentation we did not pay much attention to the data structures so
far. The catch with the use of an array for the order is that O(n2) time is needed
only for updating the indices n times. Of course, fault-tolerant Insertion Sort
cannot be faster than the error-free case. But we can also maintain the order
and at the same time use a balanced search tree for the comparisons. This does
not affect the comparison graphs D(σ) and accelerates the updates.

Theorem 5. Sorting with at most k recurring comparison faults can be accom-
plished with O(n log n + kn + k2 log n) comparisons and in O(n log n + kn +
k2 log n+ kF (k2, k)) time.

Proof. We explain the modifications of the method from Theorem 4
We maintain a partitioning of σ into buckets, which are sets of at least 2k+2

but at most 4k + 3 consecutive vertices. The leftmost vertex of each bucket is
the leading vertex. Since the leading vertices have distances larger than 2k + 1,
by Theorem 3, they are in the correct order.

We store the leading vertices in a balanced binary search tree. Instead of
using indices for the positions of vertices in σ we use the search tree to find the
appropriate position for insertion of the new vertex v. During Phase 1, in every
node of the search tree we compare v to the leading vertex only. During Phase
2, in every node of the search tree we compare v to the leading vertex and its
entire bucket. Since the buckets are larger than 2k+ 1, majority vote sends v in
the correct direction (as we have seen before), and since the buckets have size
O(k), also the last comparisons during this search cost only O(k) time. For every

vertex we used O(log n+ k) comparisons and O(log n+ k) time in Phase 1, and
O(k log n) comparisons and O(k log n+ F (k2, k)) time in Phase 2.

Optimizing and re-ordering the O(k)-sized component of v affects only O(1)
buckets. If the new vertex v exceeds the size limit of buckets, we also split one
bucket in two smaller ones. Then we update the search tree in O(log n) time.
Altogether we get the claimed complexity bounds. ut

A drawback of Treesort is the overhead for tree manipulations which deteri-
orates the constant factor in the the time bound. Therefore we also present an
alternative: to equip Quicksort with fault tolerance. Interestingly enough, it is
possible to invoke our insertion procedure from Lemma 7 also there. The reason
why it works is that Quicksort divides an instance recursively in two smaller
instances that are independent in the error-free setting and interact only a little
in the case of a few faults. We formally state the theorem as follows, although
the (expected) complexity in O-notation is the same as for the deterministic
algorithm. We remark that the expected O(n log n) bound for Quicksort holds
for every instance, and the only randomness is in the choice of pivots; loosely
speaking, there is no “interference” with our comparison faults.

Theorem 6. Sorting with at most k recurring comparison faults can be accom-
plished with O(n log n+ kn+ k2 log n) expected comparisons in O(n log n+ kn+
k2 log n+ kF (k2, k)) expected time.

Proof. First remember how Quicksort works. A random pivot element p is com-
pared to all other elements. A set L (R) collects all elements smaller (larger)
than p, then L and R are sorted recursively, and L, p,R is the sorted order. In
expectation this costs O(n log n) comparisons and time. Now, some extra work is
needed due to possible comparison faults. Instead of sorting L and R completely,
we only produce minimum backward orders recursively. Since some comparisons
with p may be false, some vertices in L should actually be in R and vice versa.
We call them the dislocated vertices. Due to Theorem 3, dislocated vertices can
only exist in a segment of length O(k) at the right end of L and at the left end of
R. Each of the O(k) candidates v for a dislocated vertex in L is compared to the
first 2k + 1 vertices in R. If the majority claims that v is smaller, then Lemma
5 yields that v is actually smaller than all vertices of R, with O(k) exceptions
at the left end. In the other case we insert v in R as in Lemma 7. We proceed
similarly with dislocated vertices in R. To turn the concatenation L, p,R into a
minimum backward order, it remains to optimize the component of p.

Only O(n/k) pivots are considered, because segments of length O(k) are
not further split recursively. The dislocation tests require O(k2) comparisons for
every pivot, in total O(kn). Since at most k vertices are dislocated in total (not
only per pivot), all insertions together are done in O(k2 log n+ kF (k2, k) + kn)
time. For every pivot p, the component of p has length O(k2), thus in can be
optimized in F (k2, k) time. We need to call an FPT algorithm at most k times,
since every nontrivial component exists due to a comparison fault. Altogether
the asserted expected complexity follows. ut

8 Conclusions and Further Work

We presented the first efficient algorithms for sorting with recurring faults. The
methods are elementary but not obvious. It is unclear whether the approach of
error detection and correction by majority voting would also work with Merge-
sort. (It works in [8], but in a different error model.) Simplicity should make
it possible to implement the proposed algorithms, which was outside the scope
of this study. We assumed small k, that is, applications with exceptional faults.
For growing k, the dependency on k, which is subexponential but still has k in
the exponent, becomes an issue. Further research may find improved bounds,
e.g., by more sophisticated Quicksort versions. Our aim was mainly to explore
the structure of the solution space. In practice this does not necessarily mean
that one must explicitly enumerate all compatible orders. Faults may appear
independently in different segments, and then succinct enumerations of MFAS
using binary decision diagrams can be much smaller. Some experimentation is
needed to study the practicality.

References

1. Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.:
Kernels for Feedback Arc Set in Tournaments. J. Comput. Syst. Sci. 77, 1071–1078
(2011)

2. Bodlaender, H.L., Boros, E., Heggernes, P., Kratsch, D.: Open Problems of the
Lorentz Workshop “Enumeration Algorithms using Structure”. Techn. Report UU-
CS-2015-016, Utrecht Univ. (2015)

3. Braverman, M., Mossel, E.: Noisy Sorting without Resampling. In: SODA 2008,
268–276 (2008)

4. Braverman, M., Mossel, E.: Sorting from Noisy Information. CoRR abs/0910.1191
(2009)

5. Cicalese, F.: Fault-Tolerant Search Algorithms – Reliable Computation with Un-
reliable Information. Springer (2013)

6. Feige, U.: Faster FAST (Feedback Arc Set in Tournaments). CoRR abs/0911.5094
(2009)

7. Felsner, S., Kant, R., Pandu Rangan, C., Wagner, D.: On the Complexity of Partial
Order Properties. Order 17, 179–193 (2000)

8. Finocchi, I., Grandoni, F., Italiano, G.F.: Optimal Resilient Sorting and Searching
in the Presence of Memory Faults. In: Bugliesi, M., Preneel, B., Sassone, V., We-
gener, I. (Eds.) ICALP 2006. LNCS, vol. 4051, pp. 286–298, Springer, Heidelberg
(2006)

9. Fomin, F.V., Pilipczuk, M.: Subexponential Parameterized Algorithm for Comput-
ing the Cutwidth of a Semi-complete Digraph. In: Bodlaender, H.L., Italiano, G.F.
(Eds.) ESA 2013. LNCS, vol. 8125, pp. 505–516, Springer, Heidelberg (2013)

10. Geissmann, B., Mihalák, M., Widmayer, P.: Recurring Comparison Faults: Sorting
and Finding the Minimum. In: Kosowski, A., Walukiewicz, I. (Eds.) FCT 2015.
LNCS, vol. 9210, pp. 227–239, Springer, Heidelberg (2015)

11. Raman, V., Saurabh, S.: Parameterized Algorithms for Feedback Set Problems and
their Duals in Tournaments. Theor. Comp. Sci. 351, 446–458 (2006)

12. Rose, D., Lueker, G., Tarjan, R.E.: Algorithmic Aspects of Vertex Elimination on
Graphs. SIAM J. Comp. 5, 266–283 (1976)

