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Abstract. We study the complexity of editing a graph into a target
graph with any fixed critical-clique graph. The problem came up in prac-
tice, in mining a huge word similarity graph for well structured word
clusters. It also adds to the rich field of graph modification problems.
We show in a generic way that several variants of this problem are in
SUBEPT. As a special case, we give a tight time bound for edge dele-
tion to obtain a single clique and isolated vertices, and we round up this
study with NP-completeness results for a number of target graphs.

1 Introduction

Graphs in this paper are undirected and have no loops or multiple edges. In an
edge modification problem, an input graph must be modified by edge insertions
or deletions or both, into a target graph with some prescribed property. Edge
editing means both insertions and deletions. Edge insertion is also known as fill-
in. The computational problem is to use a minimum number k of edits. There is
a rich literature on the complexity for a number of target graph properties, and
on their various applications. Here we cannot survey them, we only refer to a few
representative papers on hardness results [1, 10]. Ironically, results are missing
on edge modification problems for some structurally very simple target graphs.
Informally, “simple” means that the graph becomes small after identification of
its twin vertices (see Section 2). For any fixed graph H, our target graphs are
all graphs obtained from H by replacing vertices with bags of true twins.

Our motivation is the concise description of graphs with very few cliques
(that may overlap) and some extra or missing edges. They appear, e.g., as sub-
graphs in co-occurence graphs of words, and constitute meaningful word clusters
there. Within a data mining project we examined a similarity matrix of some
26,000 words, where similarity is defined by co-occurence in English Wikipedia.
By thresholding we obtain similarity graphs, and we consider subgraphs that
have small diameter and only few cut edges to the rest of the graph. Words
occurring in the same contexts form nearly cliques. These are often not dis-
joint, as words appear in several contexts. Synonyms may not always co-occur
(as different authors prefer different expressions), but they co-occur with other
words. Relations like this give rise to various cluster structures. As opposed to
partitioning entire graphs into overlapping clusters (as in [6]), we want to sin-
gle out simple subgraphs of the aforementioned type. Experience in our project



shows that some existing standard clustering methods generate poor word clus-
ters which are either too small or dragged out and not internally dense. This
suggested the idea to define the clusters directly by the desired properties, and
then to determine them by edge editing of candidate subgraphs. Next, instead
of describing the clusters naively as edge lists we list their vertices along with
the few edited edges (to achieve cliques). Altogether this yields very natural
word clusters, and by varying the threshold we also obtain different granulari-
ties. Applications of word clusters include sentence similarity measures for text
summarization, search query result diversification, and word sense disambigua-
tion. Thus, we believe that the problems are of importance, but they are also
interesting as pure graph-algorithmic problems.

For any fixed H, our edge modification problems are (easily) in FPT. As our
main result we get in Section 3 that they even belong to SUBEPT. (Not very
many natural SUBEPT problems are known so far, as discussed in [7].) Every

such problem has a 2
√
k log k time bound. The special case of p-Cluster Edit-

ing, where H is the graph with p vertices and no edges, was recently treated
in [7], using techniques like enumeration of small cuts. Our result is more gen-
eral, and the quite different algorithm looks conceptually simpler, at the price
of a somewhat worse time for the special case. Therefore it remains interesting
to tighten the time bounds for other specific graphs H as well. Consequently,
we then turn to the absolutely simplest graphs H: In Section 4 we study the
(NP-complete) edge deletion problem towards a single clique plus isolated ver-
tices. We give a refined FPT time bound where the target clique size c appears
explicitly. Intuitively, 2k/c2 is an “edit density”. Using an evident relationship
to vertex covers we achieve, for small edit densities, essentially O∗(1.2738k/c)
time. For large enough k/c we invoke a naive algorithm instead, and the time

can also be bounded by O(1.6355
√
k ln k). The base 1.2738 is due to the best

known Vertex Cover algorithm from [3]. Moreover, the bound is tight: We
show that the base of k/c cannot beat the base in the best FPT algorithm
for Vertex Cover. Section 5 gives a similar FPT time bound for edge edit-
ing towards a single clique plus isolated vertices. Here, NP-completeness is an
intriguing open question. However, in Section 6 we make some progress in prov-
ing NP-completeness systematically, for many graphs H. The results indicate
that almost all our modification problems, with rather few exceptions, might be
NP-complete. But recall that, on the positive side, they are in SUBEPT.

2 Preliminaries

The number of vertices and edges of a graph G = (V,E) is denoted n and m,
respectively. For a graph G, the complement graph Ḡ is obtained by replacing
all edges with non-edges, and vice versa. We also use standard notation for some
specific graphs: Kn, Cn, Pn is the complete graph (clique), the chordless cycle,
the chordless path, respectively, on n vertices, and Kn1,n2,...,np

is the complete
multipartite graph with p partite sets of ni vertices. The disjoint union G + H
of graphs G and H consists of a copy of G and a copy of H on disjoint vertex



sets. G− v denotes the graph G after removal of vertex v and all incident edges.
Notation G−X is similarly defined for any subset X ⊆ V . The subgraph of G
induced by X ⊆ V is denoted G[X].

By definition, a graph class G is hereditary if, for every graph G ∈ G, all
induced subgraphs of G are also members of G. Any hereditary graph class
G can be characterized by its forbidden induced subgraphs: F is a forbidden
induced subgraph if F /∈ G, but F − v ∈ G for every vertex v.

The open neighborhood of a vertex v is the set N(v) of all vertices adjacent
to v, and the closed neighborhood is N [v] := N(v) ∪ {v}. For a subset X of
vertices, N [X] is the union of all N(v), v ∈ X. Vertices u and v are called true
twins if uv is an edge and N [u] = N [v]. Vertices u and v are called false twins
if uv is a non-edge and N(u) = N(v). The true twin relation is an equivalence
relation whose equivalence classes are known as the critical cliques of the graph.
(The false twin relation is an equivalence relation as well.) In the critical-clique
graph H of a graph G, every critical clique of G is represented by one vertex
of H, and two vertices of H are adjacent if and only if some edge exists (hence
all possible edges exist) between the corresponding critical cliques of G. For
brevity we refer to the critical cliques as bags, and we say that G is a “graph H
of bags”. (Similarly one could also consider target graphs with small modular
decompositions.)

For every graph H we define three edge modification problems called H-Bag
Insertion, H-Bag Deletion, H-Bag Editing, as follows: Given an input
graph G and a parameter k, change G by at most k edge insertions, deletions, or
edits, respectively, such that the resulting graph has H or an induced subgraph
of H as its critical-clique graph. We allow induced subgraphs of H in order to
allow bags to be empty. Similarly we define the problems H[0]-Bag Deletion
and H[0]-Bag Editing. The difference is that the target graph may additionally
contain isolated vertices, that is, false twins with no edges. Thus, not all vertices
are forced into the bags. Problem H[0]-Bag Insertion easily reduces to H-Bag
Insertion. (As only insertions are permitted, the isolated vertices in an optimal
solution are exactly the isolated vertices of G.) We also consider problem variants
where the bags have prescribed sizes. We sometimes refer to all the mentioned
problems collectively as bag modification problems. We say that editing an edge
uv affects its end vertices u and v. A vertex is called unaffected if it is not affected
by any edit. Without loss of generality we can always assume that H has no true
twins, because they could be merged, which leads to the same problems with a
smaller graph in the role of H. For a fixed graph H understood from context,
let H be the class all graphs whose critical-clique graph is H or an induced
subgraph thereof. Let H[0] be the class of graphs consisting of all graphs of H
with, possibly, additional isolated vertices. All these classes are hereditary.

We assume that the reader is familiar with the notion of fixed-parameter
tractability (FPT) and basic facts, otherwise we refer to [5, 12]. A problem with
input size n and an input parameter k is in FPT if some algorithm can solve it
in f(k) · p(n) for some computable function f and some polynomial p. We use
the O∗(f(k)) notation that suppresses p(n). The subexponential parameterized



tractable problems where f(k) = 2o(k) form the subclass SUBEPT. In our time
analysis we will encounter branching vectors of a special form. The proof of the
branching number, by standard algebra, is omitted due to lack of space.

Lemma 1. The branching vector (1, r, . . . , r) with q entries r has a branching

number bounded by 1 + log2 r
r , if r is large enough compared to the fixed q.

3 Fixed-Parameter Tractability

Some bag modification problems (in different terminology) are known to be NP-
complete, among them cases with very simple graphs H. Specifically, for H = K1,
problem H[0]-Bag Deletion can be stated as follows. Given a graph G, delete
at most k edges so as to obtain a clique C and a set I of isolated vertices.
Equivalently, delete a set I of vertices incident to at most k edges, and delete
all these incident edges, so as to retain a clique. The problem is NP-complete
due to an obvious reduction from Maximum Clique. Next, for any fixed p, the
p-Cluster Editing problem asks to turn a graph, by editing at most k edges,
into a disjoint union of at most p cliques. p-Cluster Insertion and p-Cluster
Deletion are similarly defined. In other words, these are the bag modification
problems where H = K̄p. It is known that p-Cluster Insertion is polynomial
for every p, and so is p-Cluster Deletion for p = 2, but it is NP-complete for
every p ≥ 3, whereas p-Cluster Editing is NP-complete for every p ≥ 2 [13].

The hardness results provoke the question on fixed-parameter tractability. By
a well-quasi ordering argument based on Dickson’s lemma [4] one can show that
H and H[0] have only finitely many induced subgraphs, and then the general
result from [2] implies that the bag modification problems are in FPT. Although
the argument is neat, we omit the details, because we will prove a stronger
statement: membership in SUBEPT. The following observation is known for
Cluster Editing (H = K̄p) due to [8]; here we show it for general H.

Proposition 1. Any bag modification problem has an optimal solution where
any two true twins of the input graph belong to the same bag (or both are isolated)
in the target graph.

Proof. First we consider H-Bag Editing. For a vertex v, an input graph, and
a solution, we define the edit degree of v to be the number of edits that affect
v. For any class T of true twins, let v ∈ T be some vertex with minimum edit
degree. Consider any u ∈ T \ {v}. If u is put in a different bag than v, we undo
all edits that affect u, and instead edit each edge uw, w 6= v, if and only if
vw is edited. We also move u to the bag of v and undo the deletion of edge
uv (if it happened). Clearly, this yields a valid solution and does not increase
the number of edits between u and vertices w 6= v. Since we do not incur an
additional edit of uv either, the new solution is no worse. We proceed in this
way for all u ∈ T \ {v}, and also for all T . This proves the assertion for H-Bag
Editing.



For H[0]-Bag Editing we treat the set of isolated vertices as yet another
bag. The same arguments apply. What is not covered in the previous reasoning
is the case when v is isolated and u is in a bag. But then u and v are not
adjacent, neither before nor after the move, hence the number of edits does not
increase. For the Insertion and Deletion problems, again the same arguments
go through in all cases. Just replace “edit” with “insert” or “delete”. The only
change is that, in Insertion, the edge uv cannot have been deleted. ut

We make another simple observation. In the following let p always denote
the number of vertices of our fixed H.

Lemma 2. In any bag modification problem, the input graph has at most 2k+p
critical cliques (isolated vertices not counted), or the instance has no solution.

Proof. The unaffected vertices induce a subgraph that belongs to H or H[0],
respectively, hence it has at most p bags. Any affected vertex is adjacent to
either all or none of the vertices of any of these bags (since the latter ones
are unaffected). In the worst case, k edits affect 2k vertices, and each of them
becomes a critical clique of its own. Together this yields the bound. ut

Lemma 2 implies again that all bag modification problems for fixed H are in
FPT: Assign every critical clique in the input graph to some bag of the target
graph (or make its vertices isolated, in the H[0] case). These are at most p + 1
options. For isolated vertices it suffices to decide how many of them we put in
each bag, which are O(np) options. Hence the time for this naive branching is
O∗((p + 1)2k+p). Instead of this poor bound we now show:

Theorem 1. Any bag modification problem with a fixed graph H can be solved

in 2
√
k log k time, hence it belongs to SUBEPT.

Proof. First we focus on H-Bag Editing. Let a, 0 < a < 1, be some fixed
number to be specified later. To avoid bulky notation, we omit rounding brackets
and work with terms like ka as if they were integers.

One difficulty is that the sizes of the p bags are not known in advance. A
preprocessing phase takes care of that. Initially all bags are open. In every bag
we create ka “places” that we successively treat as follows. At every place we
branch: Either we close the bag and leave it, or we decide on a critical clique
of the input graph and put any of its vertices in the bag. (Clearly, the latter
choice is arbitrary. By Proposition 1 we can even immediately fill further places
with the entire critical clique, but our analysis will not take advantage of that.)
Due to Lemma 2 these are at most 2k + p+ 1 branches, hence the total number
of branches is (2k + p + 1)pk

a

= O(k)pk
a

= 2k
a log k. Note that p is fixed, and

constant factors are captured by the base of log. Every open bag has now ka

vertices. We will not add any further vertices to closed bags. Vertices that are not
yet added to bags are called undecided. We also do all necessary edits of edges
between different bags, to stick to the given graph H, and reduce k accordingly.

In the main phase we do branchings that further reduce the parameter k by
edits. The branching rules are applied exhaustively in the given order. In the



following we first consider the special case that all bags are open. Later we show
how to handle closed bags, too.

If there exists an undecided vertex u and a bag B such that u is adjacent
to some but not all vertices of B, then we branch and either insert all missing
edges between u and B, or delete all edges between u and B. (But for now, u
is not yet added to any bag.) The branching vector is some (i, ka − i) with two
positive entries, or a better vector if already more than ka vertices got into B.

Now every undecided vertex u is either completely adjacent or completely
non-adjacent to each bag B. We say that u fits in B, if u is adjacent to exactly
those bags that belong to N [B]. Remember that H has no true twins. It follows
that every vertex u fits in at most one bag.

If there exists an undecided vertex u that fits in no bag, we branch and decide
on a bag for u, put u in this bag, and do the necessary edits. Since u does not
fit anywhere, we need at least ka edits, thus the branching vector, of length p,
is (ka, . . . , ka) or better.

After that, every undecided vertex u fits in exactly one bag B(u). Suppose
that two undecided vertices u and v have the wrong adjacency relation. That is,
either uv is an edge but B(u) and B(v) are not adjacent, or uv is not an edge
but B(u) and B(v) are adjacent or B(u) = B(v). We branch as follows. Either
we edit uv or not. If we don’t, u and v cannot be both added to their designated
bags. Then we also decide on u or v and put that vertex in one of the other p−1
bags, which again costs at least ka edits. Thus, the worst-case branching vector
is (1, ka, . . . , ka) with 2p− 2 entries ka. Finally, all undecided vertices have their
correct adjacency relations, hence the graph belongs to H.

The difficulty with closed bags is that they do not guarantee at least ka

edits. Let U be the set of vertices of H corresponding to the open bags. Note
that H[U ] may have true twins. In that case we merge every critical clique of
H[U ] into one superbag. Trivially, each superbag is larger than ka. On H[U ]
and the superbags we perform exactly the same branching rules as above. Since
we have fewer branches, the branching vectors do not get worse. A new twist
is needed only when we actually add a vertex u to a superbag S. In every such
event we also decide on the bag within S that will host u. This latter choice does
not change the adjacency relations within the union of open bags and undecided
vertices any more. Therefore we can take these decisions independently for all
u, and always choose some bag in S that causes the minimum number of edits
of edges between u and the closed bags.

The worst branching vector we encounter is (1, ka, . . . , ka) with 2p−2 entries

ka. From Lemma 1 we obtain the bound (1 + a log2 k
ka )k = 2k

1−a log k for some

suitable logarithm base. We must multiply this with the bound 2k
a log k from the

first phase. Choosing a = 1/2 yields the product 2
√
k log k.

For H-Bag Deletion and H-Bag Insertion we proceed similarly. Since
only one type of edits is permitted, some of the branches are disabled, which
cannot make the branching vectors worse. In H[0]-Bag Deletion and H[0]-
Bag Editing we can treat the set of isolated vertices like a bag; some necessary
adjustments are straightforward. ut



4 Clique Deletion

If H is the one-vertex graph, then the H[0] edge modification problems aim at
a single clique plus isolated vertices. Instead of “H[0]-Bag ...” we speak in this
case of Clique Insertion, Clique Deletion, and Clique Editing, which is
more suggestive. Clique Insertion is a trivial problem. In this section we study
Clique Deletion: given a graph G, delete at most k edges so as to obtain a
clique C and a set I of isolated vertices. An equivalent formulation is to delete a
set I of vertices incident to at most k edges, and delete all these incident edges
as well, so as to retain a clique. This vertex-deletion interpretation is sometimes
more convenient. The problem is NP-complete due to an obvious reduction from
Clique or Vertex Cover, and in SUBEPT by Theorem 1.

Besides the generic time bound with unspecified constants, we are now aiming
at an FPT algorithm with a tight time bound, as a function of k and c = |C|.
We remark that the smallest possible c can be calculated from the number m
of edges in the input graph. Clearly, we must have m − k ≤ 1

2c(c − 1), thus

c ≥ 1
2 +

√
1
4 + 2(m− k). We may even guess the exact clique size c above this

threshold and try all possible sizes, which adds at most a factor n − c to the
time bound.

Lemma 3. A partitioning of the vertex set of a graph G into sets C and I is
a valid solution to Clique Deletion if and only if I is a vertex cover of Ḡ.
Moreover, a minimum vertex cover I of Ḡ also yields a minimum number of
edge deletions in G.

Proof. The first assertion is evident. For the second assertion, note that Clique
Deletion requests a vertex cover I of Ḡ being incident to the minimum number
of edges of G. Since C is a clique, and every edge of G is either in C or incident
to I, we get the following chain of equivalent optimization problems: minimize
the number of edges incident to I, maximize the number of edges in C, maximize
|C|, minimize |I|. ut

Before we turn to an upper complexity bound, we first give an implicit lower
bound. Let us join our input graph G with a clique K, and define c∗ := |K|.
Joining means that all possible edges between K and G are created. Observe that
an optimal solution for the joined graph consists of an optimal solution for G,
with K added to C. Thus, if k edges are deleted in G, then k+(n−c)c∗ edges are
deleted in the joined graph, the size of the solution clique is c∗+ c. Furthermore,
the size of the vertex cover in Ḡ is n− c. If we choose c∗ “large” compared to n,
but still polynomial in n, then the number of deleted edges and the clique size
are essentially (n− c)c∗ and c∗, respectively. Their ratio is the vertex cover size
n − c. Back to the original notations k and c for these numbers, it follows that
any FPT algorithm for Clique Deletion, that runs in time bounded by some
function f(k/c), could be used to solve also Vertex Cover on Ḡ within time
f(n− c). Therefore, the best we can hope for is a Clique Deletion algorithm
with a time bound O∗(bk/c), with some constant base b > 1 that cannot be



better than in the state-of-the-art Vertex Cover algorithm. This bound is
also tight in a sense, as we will see below.

The exponent k/c can be rewritten as c(k/c2), where the second factor has
a natural interpretation: Since the number of edges in C is roughly c2/2, we can
view 2k/c2 as an “edit density”, the ratio of deleted edges and remaining edges
in the target graph. It will be convenient to define c′ := c − 1, and to define
the edit density slightly differently as d := 2k/c′2. In applications we are mainly
interested in instances that are already nearly cliques, thus we keep a special
focus on the case d < 1 in the following.

Our algorithm for Clique Deletion preprocesses the input graph with a
single reduction rule: Remove each vertex v of degree smaller than c′, along
with all incident edges. After exhaustive application, there remains a graph with
minimum degree c′. From now on we can suppose without loss of generality that
G has already minimum degree c′. This also bounds i := |I| as follows.

Lemma 4. With the above denotations we have i ≤ 2k/c′, and in the case d < 1
this can be improved to i ≤ 2

1+
√
1−d · k/c

′.

Proof. Let h be the number of edges in I. Since at most k edge deletions are
permitted, we have ic′ − h ≤ k. Since h ≤ k (or we must delete too many edges
already in I), it follows i ≤ 2k/c′ = dc′.

For d < 1, this further implies i ≤ c′. Using h < i2/2, the previous inequality
ic′ − h ≤ k yields ic′ − i2/2 ≤ k, thus i2 − 2c′i + 2k ≥ 0 with the solution
i ≤ c′ −

√
c′2 − 2k. (We had excluded the case i > c′.) By simple algebra this

can be rewritten as i ≤ 2
1+
√
1−d · k/c

′. ut

Note that the factor in front of k/c′ grows from 1 to 2 when d grows from
0 to 1. To make this factor more comprehensible, we may also simplify it to a
slightly worse upper bound: Since

√
1− d > 1−d, we have i ≤ 2

2−d ·k/c
′. We also

remark that Clique Deletion is trivial if k < c′, because, after the reduction
phase, either there remains a clique, or the instance has no solution.

Theorem 2. Clique Deletion can be solved in O∗(1.2738
2

1+
√

1−d
·k/c′

) time.

Proof. After applying our reduction rule, due to Lemma 3 it suffices to compute
a vertex cover of minimum size in Ḡ. As for the time bound, the base comes
from [3] and the exponent comes from Lemma 4. ut

For large edit densities we may also express the time bound as a function
of k only, as in the previous section, but with a specific base. The algorithm
of Theorem 2 with the simpler bound from Lemma 4 has the running time
O∗(1.27382k/c). (We replace c′ with c, which does not make a difference asymp-
totically.) If c is small, we can instead use a brute-force approach and check all
subsets of c vertices for being cliques. This runs in O∗(2kc) time, since at most
2k + c non-isolated vertices exist, and k is large compared to c in the consid-
ered case. The two expressions decrease and increase, resepctively, as c grows.
Hence their minimum is maximized if, approximately, c = 0.492

√
k/ ln k. Plug-

ging in this c yields 1.6355
√
k ln k time. The naive O∗(2kc) bound can certainly be

improved by excluding most c-vertex subsets as candidates for the final clique.



5 Clique Editing

Recall that Clique Editing is the problem of editing at most k edges so as to
obtain a clique C, say of size c, and a set I of n− c isolated vertices.

Theorem 3. Clique Editing with prescribed size c of the target clique is W[1]-
complete in parameter n− c, hence also NP-complete.

Proof. We argue with the optimization versions and show that minimizing the
number of edited edges is equivalent to finding a set I of n − c vertices being
incident to the minimum number of edges: Simply note that the edges incident
to I are exactly those to be deleted, and minimizing deletions means maximizing
the number of remaining edges. Since c is fixed, this also minimizes the number
of edge insertions needed to make C a clique. Due to [9], finding at least s vertices
that cover at most t edges, known as Minimum Partial Vertex Cover, is
W[1]-complete in parameter s, thus our assertion follows with s := n− c. ut

Note that Theorem 3 does not immediately imply NP-completeness of Clique
Editing with free size c, since the prescribed clique sizes c in the reduction
graphs may be different from c in optimal solutions to Clique Editing on these
graphs, and our problem might still be polynomial for the “right” c, albeit this is
hard to imagine. We conjecture that Clique Editing is NP-complete. Another
equivalent formulation of Clique Editing is: Given a graph G, find a subset C
of vertices that induces a subgraph that maximizes the number of edges minus
the number of non-edges. Denoting the number of edges by m(G), the objective
can be written as m(G[C])−m(Ḡ[C]). This becomes also interesting in a weighted
version. For a given real number w > 0, maximize m(G[C])−w ·m(Ḡ[C]). This
problem is trivial for w = 0 (the whole vertex set is an optimal C), and NP-
complete if w is part of the input (since a maximum clique is an optimal C
if w is large enough). What happens in between? For any constant w > 0? In
particular, for w = 1? We must leave this question open.

Next we propose an FPT algorithm Clique Editing when k is the param-
eter. It works if c is part of the input (cf. Theorem 3), and hence also for free
c, by trying all values. Membership in SUBEPT follows from Theorem 1, but
as earlier we are also interested in the dependency of the time bound on c. The
following algorithm that uses similar ideas as the earlier ones is omitted due to
lack of space.

Theorem 4. Clique Editing can be solved in 2log c·k/c time.

6 Some Hardness Results

All bag modification problems are trivially in NP. In this section we prove the
NP-completeness of bag modification problems for many target graphs H. We
give a general construction that “lifts” NP-completeness from some H to larger
graphs H ′. To be specific, suppose that H-Bag Editing is already known to



be NP-complete. We will reduce it in polynomial time to H ′-Bag Editing, for
certain graphs H ′ specified later on.

Let the graph G and parameter k be an instance of H-Bag Editing. Let
H ′ be a graph that contains H as an induced subgraph. We choose a particular
subset S of vertices of H ′ such that H ′[S] is isomorphic to H. (Note that the
same graph may have several occurrences as induced subgraph, hence we must
fix some S.) Let S0 and S1 be some set of vertices of H ′ − S being adjacent to
no vertices of S, and to all vertices of S, respectively. We construct a graph G′

as follows, in polynomial time. We replace every vertex of S0 ∪ S1 with a bag
of size c > 2k. Two bags are joined by all possible edges (by no edges) if the
corresponding vertices of H ′ are adjacent (not adjacent). Then we add G and
insert all possible edges between S1 and the vertices of G.

If G with parameter k is a yes-instance of H-Bag Editing, then we can
mimic the same, at most k, edits also in the subgraph G of G′, which implies
that G′ with parameter k is a yes-instance of H ′-Bag Editing. Our aim in
the following is to show the converse, under some conditions on H and H ′. The
equivalence will then establish the desired reduction. Specifically, suppose that
the following technically looking condition is fulfilled. Here, an embedding of a
graph into another graph means that edges are mapped to edges, and non-edges
are mapped to non-edges.

(*) Let J be any induced subgraph of H ′ isomorphic to H ′[S0∪S1]. Accordingly,
we embed J into any graph of H′ and divide the vertex set of J in two sets U0

and U1, of those vertices coming from S0 and S1, respectively. For any such
embedding, let T be the set of vertices t such that N [t] contains all vertices of
U1 and no vertex of U0. Then the subgraph induced by T is always in H.

Note that there may exist many possible embeddings of J , and our condition
must hold for each of them. Also, T may contain some vertices of U1.

Now suppose that at most k edits of edges in G′ have produced a graph in
H′. Since k edits affect at most 2k vertices, but c > 2k, clearly every bag in the
edited graph corresponding to a vertex of S0 or S1 still has at least one unaffected
vertex. We select one from each bag and obtain a set U of unaffected vertices.
The subgraph induced by U is isomorphic to H ′[S0 ∪ S1]. Let U0 and U1 be the
subset of vertices of U corresponding to vertices of S0 and S1, respectively. Then
we have U = U0∪U1, and all vertices of G are still adjacent (non-adjacent) to all
vertices of U1 (U0). Thus (*) implies that, after editing, the vertices of G form
a graph in H. Since at most k edits have been done in the whole graph, we get
that G with parameter k is a yes-instance of H-Bag Editing.

Condition (*) looks more complicated than it is, when it comes to specific
graphs H. In the following we give some examples. We refer to vertices in S0

and S1 as 0-vertices and 1-vertices, respectively, and we call any graph in H a
graph H of bags.

Theorem 5. H ′-Bag Editing is NP-complete for, at least, the following graphs
H ′: complete multipartite graphs with some partite set of at least 3 vertices; the



complete multipartite graph with partite sets of exactly 2 vertices; K3-free graphs
with maximum degree at least 3.

Proof. H-Bag Editing for H = K̄p is p-Cluster Editing, which is known to
be NP-complete for every p ≥ 2 [13]. We reduce the case H = K̄p for a suitable
p ≥ 2 to the case H ′.

In a complete multipartite graph H ′, let b ≥ 3 be the size of some largest
partite set. We choose p = b− 1 ≥ 2. We let S1 be empty, and let S0 consist of a
single vertex in a partite set of size b. The vertices of H ′ being non-adjacent to
this 0-vertex induce a K̄b−1 = K̄p. No matter where else we embed our 0-vertex
in a graph H ′ of bags, the set T as defined in (*) forms a K̄b−1 of bags (note
that bags are allowed to be empty), hence (*) is satisfied.

Consider H ′ = K2,2 = C4. We choose p = 2. We let S1 consist of two non-
adjacent vertices, while S0 is empty. Clearly, their common neighbors induce
H = K̄2. The only possible embedding of our two non-adjacent 1-vertices in a
C4 of bags is to put them in two non-adjacent bags, such that the set T forms
a graph H = K̄2 of bags, hence (*) is satisfied. For H ′ = K2,...,2 we proceed
by induction on the number of partite sets. Let H = K2,...,2 with two vertices
less. Then the same choice of S1 and S0 and the same arguments establish the
induction step.

Let H ′ be K3-free, v a vertex of maximum degree d ≥ 3, and u some neighbor
of v. We choose p = d − 1, S1 = {v} and S0 = {u}. The vertices adjacent to v
and non-adjacent to u induce K̄d−1 = K̄p. For any embedding of an adjacent
pair of a 1-vertex and a 0-vertex into an H ′ of bags, the set T forms a graph
H = K̄p of bags, since in H ′ every vertex has at most d− 1 neighbors, and they
are pairwise non-adjacent. ut

The same construction also lifts NP-completeness results from H[0] to H ′[0],
whenever we can choose S1 = ∅ and a suitable S0. Our construction also works
for H ′-Bag Deletion and H ′-Bag Insertion, however, note that we need an
NP-complete case to start with. For edge deletions we can use K̄p with p ≥ 3.
Remember that K̄p-Bag Insertion is polynomial [13] for every p. However, we
can start from P3 instead:

Theorem 6. H ′-Bag Insertion is NP-complete for, at least, the graphs H ′ =
P3, and H ′ = Pp and H ′ = Cp for each p ≥ 6.

Proof. P3-Bag Insertion in G means to delete in Ḡ a minimum number of
edges so as to reach a complete bipartite graph (biclique) and isolated vertices.
This is equivalent to finding a biclique with maximum number of edges. The
latter problem is NP-complete (even in bipartite graphs and hence in general
graphs) due to [11]. We reduce P3-Bag Insertion to Pn-Bag Insertion for
each n ≥ 6 by setting S1 = ∅ and S0 isomorphic to Pn−4. Similarly, we reduce
P3-Bag Insertion to Cn-Bag Insertion for each n ≥ 6 by setting S1 = ∅
and S0 isomorphic to Pn−5. It is easy to verify condition (*) in the equivalence
proofs of the reductions. ut



These Theorems are only illustrations of a few cases. The conditions on H ′

can be weakened, and even more cases H ′ proved to be NP-complete, however
we want to avoid a tedious list of applications of one particular technique. On
the negative side, the current construction fails for other graphs. The “smallest”
open cases are K1[0]-Bag Editing and P3-Bag Editing. We also remark that
P3-Bag Deletion is polynomial: consider the complement graph and proceed
similarly as in [13].
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Appendix

Proof of Lemma 1

Denoting the branching number by 1 + x, we get the characteristic polynomial
(1+x)r+1 = (1+x)r +q, thus x(1+x)r = q. Trying x := log2 r

r , the left-hand side

becomes log2 r
r (1 + log2 r

r )
r

log2 r log2 r. As r grows, (1 + log2 r
r )

r
log2 r tends to e > 2,

thus, there is a threshold r0 such that, for r > r0, the left-hand side exceeds
log2 r

r 2log2 r = log2 r > q. Clearly, the latter inequality holds since q is fixed, and
we can just make r0 large enough. Next, as x(1 + x)r is monotone in x, the true

x is smaller than x := log2 r
r , for all r > r0. It follows that 1 + log2 r

r is an upper
bound on the branching number.

Proof of Theorem 4

We decide for every vertex whether to put it into C or I.
Observe the following reduction rule: Put every vertex v of degree at most

(c−1)/2 into I, and delete the incident edges. The correctness is seen as follows.
Assume v ∈ C in the final solution. Since v has degree at most (c−1)/2, at least
(c−1)/2 edges between v and the rest of C have been inserted. If we had instead
decided v ∈ I, we would have inserted no edges incident to v, but deleted the at
most (c− 1)/2 incident edges, which is not more expensive in total.

After exhaustive application of the reduction rule, there remains a graph of
minimum degree c/2. We can assume without loss of generality that already the
input graph has minimum degree c/2. We begin with branching. A vertex is
called undecided if it is not yet put in C or I. Initially we guess one vertex of
C, which adds only a linear factor. All other vertices are undecided.

As long as there exists an undecided vertex v which is not adjacent to all of
C, we branch on v. In the I := I∪{v} branch we delete the, at least c/2, incident
edges. (Whenever some vertex degrees fall below c/2 because of the deletions,
we first apply the reduction rule again.) In the C := C ∪{v} branch we insert at
least one edge that is missing in C. After exhaustive application, all undecided
vertices are adjacent to all vertices in C. If the undecided vertices form a clique,
we are done, as we can add the undecided vertices to C, and if we get |C| > c,
some surplus vertices are moved to I without branching. Hence suppose that
two non-adjacent undecided vertices u and v exist. Then we branch by setting
C := C ∪ {u, v} or I := I ∪ {u} or I := I ∪ {v}. In the first branch we must
insert an edge, and otherwise delete at least c/2 edges.

Our rules have, obviously, the worst-case branching vectors (1, c/2) and
(1, c/2, c/2), and Lemma 1 yields the time bound.
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Fig. 1. This Gephi visualization shows a small part of our word similarity graph, for
some similarity threshold. Words have been stemmed prior to the calculations. One can
clearly recognize the “almost cliques” structure, and in the middle we see an example
of two overlapping cliques (the H = P3 case). Also, the clusters make sense, in that
they comprise related words. The data support our approach to define word clusters
by edge-editing towards unions of very few cliques.


