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Abstract. For Cluster Editing where both the number of clusters
and the edit degree are bounded, we speed up the kernelization by almost
a factor n compared to Komusiewicz and Uhlmann (2012), at cost of a
marginally worse kernel size bound. We also give sufficient conditions for
a subset of vertices to be a cluster in some optimal clustering.

1 Introduction

We consider graphs G = (V,E) with n vertices and m edges and use standard
notation like N(v) for the open neighborhood of a vertex, N [v] := N(v) ∪ {v},
N [W ] :=

⋃
v∈W N [v], and N(W ) := N [W ] \ W . A cluster graph is a disjoint

union of cliques. G is a cluster graph if and only if G has no conflict triple,
i.e., three vertices inducing exactly two edges. Cluster Editing asks to turn
a graph G = (V,E) into a cluster graph using at most k edge edits, that is,
insertions or deletions. An optimal clustering is an optimal solution to Cluster
Editing. The edit degree of v is the number of edits v is incident to. Cluster
Editing has applications in, e.g., molecular biology, and is well studied [1, 2,
5, 9]. Cluster Editing is NP-hard [10], but is also fixed-parameter tractable
(FPT) in k. The currently smallest problem kernel has 2k vertices [4, 3]. An
obstacle for the practical use of an FPT algorithm is that k may still be too
large. Thus, stronger parameters have been proposed:

(d, t)-Constrained Cluster Editing [6]: Given a graph G = (V,E), parame-
ters d, t, and k, and individual constraints τ(v) ≤ t for every vertex v, transform
G into a cluster graph with at most d clusters, by applying at most k edits, such
that every vertex v has edit degree at most τ(v).

The problem is in FPT already in the combined parameter (d, t). A kernel
with at most 4dt vertices is computed in O(n3) time [6]. An O(dt) kernel can be
preferable to an O(k) kernel: If every vertex actually has edit degree Θ(t), we get
k = Θ(nt), whereas d is typically much smaller than n. Besides kernel sizes, the
time for the kernelization is also decisive for scalability. Here we speed up the
kernelization for (d, t)-Constrained Cluster Editing. We compute a kernel
with at most 5dt + d vertices in O((m + dt2) log n) time, and randomization
yields a kernel size arbitrarily close to 4dt in O(m + dt2 log n) expected time.



Note that m = O(n2), and dt < n can be assumed. Hence our time is within
O(n2 log n), with a sliightly worse kernel size bound. This appears to be a good
deal. Moreover, O((m+dt2) log n) is within a logarithmic factor of the size (edge
number m) of the graph. Namely, assuming dt < n, we have dt2 < nt < n2/d,
and a graph of d disjoint cliques has Ω(n2/d) edges. Another difference to [6] is
that the “old” reduction rules are only based on the (d, t)-constraints, whereas
we find edit-optimal clusters, as defined below.

Definition 1. In a graph G = (V,E), a subset C ⊆ V is an edit-optimal cluster
if G has an optimal solution to Cluster Editing where C is one of the clusters.

The value of this notion is the following: Once some C is recognized as edit-
optimal, we can safely split off C and work on G−C in order to solve Cluster
Editing on G. Of course, we cannot expect a polynomial algorithm to recognize
edit-optimal clusters, because iterated application would solve Cluster Edit-
ing in polynomial time. Therefore we quest for sufficient conditions π: If some C
satisfies π, then C is edit-optimal. Ideally, π should be both efficient and not too
restrictive. Here is a known example of a condition π used in a kernelizations: Let
γ(C) be the number of edges between C and G−C, and let δ(C) be the number
of non-edges in C. If some v ∈ C satisfies N [v] = C, and 2δ(C) + γ(C) < |C|,
then C is edit-optimal [3]. This inequality relates the total number of edits to |C|.
Here we will add further conditions π that relate only the edit degrees and list
edge coloring numbers to |C|. Note that we only study the combinatorial side.
Further research could deal with algorithmic implications, e.g., the complexity
of recognizing such edit-optimal clusters, and perhaps smaller kernels.

Pointing out optimal clusters in parts of a large graph can be more appro-
priate than computing an optimal clustering of the entire graph. For instance,
it has been observed [7] that large social networks tend to consist of a core that
lacks a clear clustering structure, and a periphery containing clusters, which are
“exotic” groups that are highly connected but have little external interaction.

2 Faster Kernelization

Definition 2. Let C ⊂ V be a vertex set in a graph G = (V,E). The edit degree
of v ∈ C is the number of edits incident to v when we split off C as a cluster.
The edit degree of C is the maximum edit degree of the vertices in C.

Lemma 1. Let v be any fixed vertex, and g the degree of v. Assume that some
cluster C 3 v with edit degree at most t exists. Let c := |C|, and let m(C) denote
the number of edges incident to C. If g > 4t or c ≥ g > 3t, then C is uniquely
determined, and we can compute C in O((m(C) + t2) log c) time.

Proof. Define x := |N(v) \C| and y := |C \N(v)|. Since v ∈ C is incident to at
most t edits, we have x+ y ≤ t. Also note that |C ∩N(v)| = g − x = c− y.

Every vertex u ∈ C is incident to at most t non-edges in C, hence u has at
least g − t− x neighbors in N(v), even in C ∩N(v). Every vertex u /∈ C has at



most t+ x neighbors in N(v) (namely, at most t in C ∩N(v), and at most x in
N(v)\C). In the case g > 4t we have t+x ≤ 2t < g/2 = g−g/4−g/4 ≤ g−t−x.
In the case c ≥ g > 3t (hence x ≤ y and x ≤ t/2) we have t+x ≤ t+(x+y)/2 ≤
t+ t/2 = 3t/2 < g/2 ≤ g − 3t/2 ≤ g − t− t/2 ≤ g − t− x. Thus, by comparing
|N(u) ∩ N(v)| with g/2 we can decide whether u /∈ C or u ∈ C, in these two
cases. We refer to this comparison as the threshold test for u. It also follows that
C 3 v with edit degree at most t is uniquely determined in the mentioned cases.

Next we show how to calculate C, or recognize that v is in no cluster with
edit degree at most t. Since |C \N(v)| ≤ t, every vertex in C can have at most
2t neighbors outside N(v).

Phase 1: We do the threshold test for all u ∈ N(v) as follows. We traverse
the adjacency list of every such u and check for each neighbor of u whether it
also belongs to N(v). Actually we can stop as soon as (i) g/2 neighbors in N(v)
or (ii) 2t+ 1 neighbors outside N(v) are found, or (iii) the end of u’s adcacency
list is reached. In case (i) and (iii) we know u ∈ C and u /∈ C, respectively. In
case (ii), v is in no cluster with edit degree at most t. Using a dictionary for
N(v), membership of a vertex in N(v) can be tested in O(log g) time.

Phase 2: We also find the at most t vertices of C \ N(v) as follows. Since
they all have neighbors in C ∩N(v), it suffices to do the threshold test for the
O(ct) vertices in N(C ∩ N(v)) only. More precisely, we traverse the adjacency
lists of all vertices in C ∩N(v) again and count how often every vertex u /∈ N(v)
appears there. According to our threshold test, we have u ∈ C if and only if u
is met at least g/2 times. Each time a vertex u is met, u can be retrieved (for
incrementing its count) in O(log c+ log t) time.

All edges in the adjacency lists of vertices u ∈ C∩N(v), processed in Phase 1,
are incident to C. We also have to deal with vertices u ∈ N(v)\C, but there are
at most t of them, and in each of their lists we consider at most (t−1) + (2t+ 1)
edges which are not incident to C: those ending in N(v) \C again, and at most
2t + 1 edges ending outside N(v). (After that we can stop, as we saw above.)
All edges in the lists processed in Phase 2 are also incident to C. Hence O(t2)
processed edges are not indicent to C. Since g = O(c) and t = O(c), each of
log g, log c, log t is O(log c), thus every edge is processed in O(log c) time. ut

Theorem 1. We can compute a kernel for (d, t)-Constrained Cluster Edit-
ing with at most 5dt+ d vertices in O((m+ dt2) log n) time.

Proof. As long as there exists some vertex v of degree g > 4t we apply Lemma 1
to find C 3 v with edit degree at most t. If no such C exists, the problem instance
has no solution. If C exists, it is uniquely determined due to Lemma 1. We check
whether the individual degree constraints τ(u) are satisfied by all u ∈ C, remove
C and all incident edges, and reduce the individual degree constraints of vertices
outside C by the respective numbers of adjacent vertices in C. If the test in C
fails or a constraint drops below zero, the instance has no solution. By iteration
we get rid of all vertices of degree above 4t, and every set C we have obtained
must be a cluster in any valid solution. Any vertex of degree g ≤ 4t must belong
to a cluster of size c ≤ 5t+ 1, since c ≤ g+ t+ 1 holds in general. Since at most



d clusters are allowed, there remain at most 5dt + d vertices, or we know that
there is no solution. By Lemma 1, every cluster C is found in O((m(C)+t2) log c)
time. Since edges incident to some C are processed only once, the m(C) terms
sum up to at most m. The t2 term appears at most d times. ut

This kernel consists of vertices of degree at most 4t in at most d clusters
of size at most 5t + 1. Using Lemma 1 we can keep on trying vertices v with
4t ≥ g > 3t. If v belongs to a cluster of size c ≥ g and edit degree t, this appears
in a valid solution, by the same reasoning as in Theorem 1. However, trying all
O(dt) vertices would require O((m+dt3) log c) time. This situation suggests the
idea of picking v randomly. The following time bound holds with high probability,
since the probability not to hit a large cluster decreases exponentially over time.

Theorem 2. We can compute a kernel for (d, t)-Constrained Cluster Edit-
ing with at most (4 + ε)dt vertices in O((m+ (1/ε)dt2) log n) expected time.

3 Sufficient Conditions for Edit-Optimal Clusters

Theorem 3. Every C with c := |C| ≥ 5t is an edit-optimal cluster.

The proof replaces any clustering C1, . . . , Cd with C,C1 \C, . . . , Cd \C (split-
ting off C as a new cluster) and shows by bookkeeping arguments that the num-
ber of edits is not increased. – Compare Theorem 3 to condition 2δ(C)+γ(C) < c
from [3]. We get that already t = O(c) is sufficient, whereas the total number of
edits can be tc, and even quadratic in c. We also connect this result to Section
2. Suppose that we have computed a kernel for (d, t)-Constrained Cluster
Editing, but we may also want to solve unrestricted Cluster Editing, be-
cause it might need fewer edits. The size bounds in Section 2 remain valid if we
remove only those edit-optimal clusters C with c > 5t. This yields:

Corollary 1. If a graph has a clustering with at most d clusters, where every
vertex has edit degree at most t, then we can compute a kernel for Cluster
Editing with at most 5dt vertices in O((m+ dt2) log n) time.

Next we derive a further condition related to another graph problem:

List Edge Coloring: Given a graph where every edge carries a list of suitable
colors, paint every edge such that incident edges get distinct colors.

Definition 3. Given a vertex set C ⊂ V in a graph G = (V,E), we define an
auxiliary graph H(C) on vertex set N [C], where the edges of H(C) are the non-
edges in C and the cut edges between C and G−C, that is, the edits incident to
C when we split off C as a cluster. Let every vertex s ∈ C represent a color.

Theorem 4. Consider the graph H(C), colors corresponding to the vertices of
C, and let s ∈ C be a suitable color for edge uv if and only if s is not adjacent
to u, v in H(C). Then the following condition is sufficient for C being an edit-
optimal cluster: H(C) admits a list edge coloring with the extra property that, if
an edge e uses a vertex of edge f as its color, then edge f may not use a vertex
of edge e as its color.



The proof is sketched as follows: When an edge uv is colored with s, then
u, s, v form a conflict triple with an edge in C. Every edit in H(C) is in such a
conflict triple, conversely, every such conflict triple contains exactly one edit. The
conditions enforce that no two of our conflict triples share two vertices. Since,
in any clustering, some pair from every conflict triple must be edited, splitting
off C as a cluster requires the minimum number of edits incident to C.

This result provides further possibilities to confirm edit-optimal clusters. As
a little example, let C be an isolated clique K7 from which the 6 edges of some
K4 are removed. Then 2δ(C) + γ(C) = 2 · 6 + 0 = 12 > 7, also t = 3, hence the
previous conditions do not apply. But the 6 edges of H(C) can be colored by 3
suitable colors represented by vertices of C. The algorithmic use of our coloring
condition needs to be further explored. There is a well-known close connection
between degrees and edge colorings (see [8]), and progress on the List Edge
Coloring problem could further strengthen our conditions.
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