
Algorithms Exam

TIN093/DIT093/DIT602

Course: Algorithms

Course code: TIN 093 (CTH), DIT 093 and DIT 602 (GU)

Date, time: 23rd October 2021, 14:00–18:00

Building: L

Responsible teacher: Peter Damaschke, Tel. 5405, email ptr@chalmers.se

Examiner: Peter Damaschke

Exam aids: dictionary,

printouts of the Lecture Notes (possibly with own annotations),

one additional A4 paper (both sides).

Time for questions: around 15:00 and around 16:30.

Solutions: will be published after the exam.

Results: will appear in ladok.

Point limits: 28 for 3, 38 for 4, 48 for 5; PhD students: 38. Maximum: 60.

Inspection of grading (exam review): to be announced.

1

Instructions and Advice:

• First read through all problems, such that you know what is unclear

to you and what to ask the responsible teacher.

• Write solutions in English.

• Start every new problem on a new sheet of paper.

• Write your exam number on every sheet.

• Write legible. Unreadable solutions will not get points.

• Answer precisely and to the point, without digressions.

Unnecessary additional writing does not only cost time.

It may also obscure the actual solutions.

• But motivate all claims and answers.

• Strictly avoid code for describing a complex algorithm.

Instead explain in your words how the algorithm works.

• If you cannot manage a problem completely, still provide your

approach or partial solution to earn some points.

• Facts from the course material can be assumed to be known.

You don’t have to repeat their proofs.

Remark: The number of points is not always “proportional” to the length

or difficulty of a solution, but it may also be influenced by the importance

of the topics and skills.

Good luck!

2

rr rr
r rr rr

r r r

�
�
���

�
�
�
��

�
�

�
�

@
@
@
@

@
@

Problem 1 (12 points)

Let G = (V,E) be an undirected, connected graph whose nodes are grid

points; these are points (x, y) with integer coordinates x, y in the plane.

Two nodes (x, y) 6= (x′, y′) are adjacent if and only if |x − x′| ≤ 1 and

|y − y′| ≤ 1. We call G hole-free if, for any two nodes u, v ∈ V on the same

horizontal or vertical line, all grid points on this line between u and v are

also nodes in V . (The picture shows an example.) The coordinates of any

node v are denoted (xv, yv).

Given a hole-free grid graph G = (V,E) and two nodes s, t ∈ V with xs ≤ xt
and ys ≤ yt, we want to find a shortest path from s to t in G. We can assume

s = (0, 0), otherwise we move the coordinate system.

Below we formulate a greedy algorithm that shall find a shortest path. Let

z be a variable for nodes in V , representing the position of a “piece” that

we want to move from s to t.

(0) Initially let z := s = (0, 0).

(1) If xz = xt or yz = yt, then move directly (vertically or horizontally) to t

and stop.

(2) While xz < xt and yz < yt, do the following.

(2a) If (xz + 1, yz + 1) ∈ V , then move there; that is, z := (xz + 1, yz + 1).

(2b) If (xz + 1, yz + 1) /∈ V , then move to either (xz + 1, yz) or (xz, yz + 1).

More informally, step (2) says: If possible, make a diagonal step to get closer

to t. Otherwise, go to the upper or the right neighbor.

We want to prove that our piece with variable position z will in fact traverse

some shortest path from s to t. Since the correctness of step (1) is evident,

only the correctness of (2) must be shown. Thus we can assume xt > 0 and

yt > 0. Moreover, only the first step (when z = s = (0, 0)) needs to be

correct, because all other steps obey the same greedy rule.

3

1.1. Let z = (0, 0). We claim that, in case (2b) where (1, 1) /∈ V , in fact,

exactly one of the two nodes (1, 0) and (0, 1) exists in V . Explain why this

is true, by using that the graph is hole-free. (4 points)

In the following we use these notations: Let P be some fixed shortest path

from s to t. On P , let q be the first node with both xq > 0 and yq > 0.

(Since P must finally reach t, such a node exists.) Let p be the node on P

preceding q. Clearly, xp = 0 or yp = 0. The next two statements 1.2 and

1.3 imply the correctness of step (2a) and (2b), respectively.

1.2. Consider the case (1, 1) ∈ V . Assume xp = 0. (Case yp = 0 is similar).

Take P and construct, by an exchange argument, a shortest path from s to

t that visits (1, 1) in the first step. (4 points)

1.3. Consider the case (1, 1) /∈ V . We may assume that (0, 1) ∈ V and

(1, 0) /∈ V . (The opposite case is similar.) Take P and construct, by an

exchange argument, a shortest path from s to t that visits (0, 1) in the first

step. (4 points)

Do not think complicated. Drawing some pictures should make the situation

quite obvious, in all 3 sub-exercises.

4

Problem 2 (15 points)

As you should know, the time bound O(nW) for the standard dynamic

programming algorithm for Knapsack is not truly polynomial, since the

capacity W can be huge compared to the number n of items. Therefore,

special cases that allow more efficient solutions can be of interest.

Specifically, consider the Knapsack problem where the weights (sizes) of

items are restricted to integers 1, . . . , s, where s is some fixed limit.

2.1. Give an algorithm with time bound O(n2s) for this case. Hint: Simply

use the known algorithm and its time bound carefully. (5 points)

2.2. For each of the integer weights j ≤ s, let Rj denote the set of items

whose weight equals j. Show that, whenever an optimal solution contains

any item from Rj , it must also contain all items from Rj with strictly larger

values. (6 points)

2.3. The observation in 2.2 suggests the following algorithm: Present the

items in some ordering where every Rj is sorted by decreasing values. Run

the standard dynamic programming algorithm on this ordering, but when-

ever you decide not to take some item, say from Rj , then ignore all later

items from Rj , too. (This does not improve the worst-case time bound

O(n2s), but it can save many calculation steps in concrete instances.)

Does this modified algorithm still work properly, or did we overlook some

detail that invalidates it? Either give a short informal motivation why you

think it is correct, or clearly point out the issue if you think it is incorrect.

(4 points)

5

Problem 3 (10 points)

Let f be some function, whose arguments x are integers in the interval [1, n],

and whose function values f(x) are integers in the interval [1,m]. Imagine

the following setting: We do not know the function f , but we know that

f is monotone increasing. That means, for any x ≤ z we always have

f(x) ≤ f(z). Furthermore, we are able to do “experiments” of the following

kind: We can choose any argument x and any value y, and test whether

f(x) ≤ y or f(x) > y. (To avoid misunderstandings: The experiment does

not yield the actual value f(x), but we can only see the binary result of the

comparison with y.) The goal is to determine the unknown function f by

doing a small number of such experiments.

As an application scenario, suppose we want to figure out the forces y that

materials of various thicknesses x can resist. Naturally, we expect thicker

materials to be more robust, but the precise correlation must be determined

empirically. Therefore we expose materials of different thicknesses to differ-

ent forces and test whether they break or resist.

For every x, we may determine the value f(x) by comparison to values y

selected as in binary search. This way we need O(n logm) experiments in

total, even if f is not monotone. Intuitively, it should be possible to use the

prior knowledge that f is monotone, and thus be faster.

We propose the following divide-and-conquer style algorithm. First figure

out y = f(bn/2c) by binary search. Then determine the “halves” of f

recursively, once for all arguments in [1, bn/2c] and values in [1, y], and once

for all arguments in [bn/2c, n] and values in [y,m].

3.1. Briefly argue why this algorithm determines f correctly and completely.

(3 points)

More interestingly, the number of experiments is only O(n + m), however

the analysis would be quite technical. Moreover, and at first glance a bit

surprisingly, the same efficiency for this problem can be achieved without

divide-and-conquer, in a more “incremental” way:

3.2. Give an algorithm that determines the unknown monotone function f

with O(n + m) experiments. Hint: First compare f(1) with 1. Then, in

every step, increase x or y in a smart way, depending on the results of the

experiments. Formulate your rules for that and argue why they are correct.

Finally explain the O(n + m) bound. (7 points)

6

Problem 4 (14 points)

4.1. Bundles of wooden beams shall be stored in a narrow corridor. No bun-

dles can be stored side by side. Moreover, there are obstacles in the corridor

that cannot be shifted. Hence there is space for bundles only between these

obstacles. The lengths of all bundles and of the free spaces are known.

This leads to the following problem: Given a set of “beams” and a set of

tall “spaces”, all with known lengths, assign the beams to the spaces such

that they all fit. That means, the sum of lengths of all beams in a space

must not exceed the length of that space. The lengths are given as numbers

(e.g., in meters) in usual decimal notation.

Is this problem solvable in polynomial time or NP-complete? Give either an

algorithm or a reduction, in order to prove your claimed answer. (Of course,

only one of these options can be correct.) In either case, argue also why the

problem is in NP. (7 points)

4.2. We define a graph problem “Smash” as follows. Given a graph G and

two integers c and k, delete k nodes and all edges incident to them, such

that, in the remaining graph, every connected component has at most c

nodes.

Is Smash solvable in polynomial time or NP-complete? Give either an al-

gorithm or a reduction, in order to prove your claimed answer. (Of course,

only one of these options can be correct.) In either case, argue also why the

problem is in NP. – Hint: Look at the special case c = 1 first. (7 points)

7

Problem 5 (9 points)

A graph H = (U,F) is called an induced subgraph of a graph G = (V,E) if

there exists a function m : U → V such that:

• m is injective, that is, any two nodes u 6= u′ from U are mapped to

nodes m(u) 6= m(u′) in V .

• For any two nodes u, u′ ∈ U we have: u and u′ form an edge in F , if

and only if m(u) and m(u′) form an edge in E.

Informally: Distinct nodes are mapped to distinct nodes, edges are mapped

to edges, and non-edges are mapped to non-edges. Even more informally:

G contains an exact copy of H.

The degree of a graph is the largest number of nodes adjacent to any single

node. Let H be any fixed connected graph and ∆ any fixed positive integer.

After these definitions we are ready to formulate our problem:

Given a graph G of maximum degree ∆ as input, we want to decide whether

H is an induced subgraph of G. Provide an algorithm that solves this

problem in O(n) time, where n is the number of nodes in G.

Hints: Use BFS and the fact that H is connected. For the time analysis,

take advantage of the assumption that H and ∆ are fixed, and remember

that O-notation ignores constant factors, even if they are “huge”.

8

Solutions (attached after the exam)

1.1. We have (0, 0) ∈ V and (1, 1) /∈ V , and t has two positive coordinates.

Assume that both (1, 0) ∈ V and (0, 1) ∈ V exist. Some path from (0, 0)

to t must contain some point (1, y) with y > 1, or some point (x, 1) with

x > 1. Since G is hole-free, either case implies (1, 1) ∈ V , a contradiction.

Finally, if none of (1, 0), (1, 1), (0, 1) is in V , then no path from z to t can

exist at all, which contradicts connectivity. (4 points)

1.2. We observe yp ≥ 0 and xq = 1. Since (1, 1) ∈ V and q = (1, yq) ∈ V ,

all nodes on the vertical line segment between them are also in V . The part

of P until q has at least yp + 1 edges. By going instead from s to (1, 1) and

upwards to q we need only yq edges. Since yq ≤ yp + 1, we can replace the

part of P until q with this path. In particular, we can go from s directly to

(1, 1) in the first step. (4 points)

1.3. Since (1, 0) /∈ V , no vertices (x, 0) with x > 0 can exist either. Thus

p = (0, yp). Now we conclude as above: The part of P until q has at least

yp + 1 edges. By going instead from s upwards to (0, yq − 1) and then to q

we need only yq edges. Since yq ≤ yp + 1, we can replace the part of P until

q with this path. In particular, we can go from s to (0, 1) in the first step.

(4 points)

2.1. First compare W and ns. If W ≥ ns, then all items fit in the knapsack,

and this is clearly the optimal solution, “computed” in O(n) time. If W < ns

then nW < n2s, such that applying the known algorithm with time bound

O(nW) yields the claim. (5 points)

2.2. This is seen by an exchange argument: Let A and B be items in Rj ,

where A has the larger value. If B is in the solution but A is not, we can

replace B with A. The new solution is still valid, since A and B have the

same weight, but the total value has increased. (6 points)

2.3. It is correct. Whenever we skip an item but choose a later one with equal

weight and smaller value, the underlying dynamic programming algorithm

would later “detect” that this choice was not optimal (due to 2.2). All what

we do here is to avoid these unnecessary comparisons beforehand. (4 points)

9

3.1. We can argue inductively. The algorithm determines first f(bn/2c)
and then the two “halves” of f recursively, hence it eventually determines

all function values. Moreover, since f is monotone increasing, it suffices to

search the function values in [1, y] and [y, n], respectively. (3 points)

3.2. Initially let x := 1 and y := 1. If the experiment says f(x) > y then

increment y (to find the higher value). If the experiment says f(x) ≤ y

then return the result f(x) = y and increment x. Repeat these steps until

x = n and y = m. The returned values are all correct, for the following

reasons. For x = 1 we find the smallest y with f(1) ≤ y, hence this y equals

f(1). Whenever we have incremented x, we know for the previous argument

(which is now x − 1) and for the current y that f(x − 1) = y. Since f is

monotone, f(x) must be at least the current y, and we find the correct value

due to the same argument as in case x = 1. Since x and y can only grow,

and one of them strictly grows in every step, the bound O(n + m) follows

immediately, regardless of the “shape” of f . (7 points)

Extra remark (not part of the solution): It might seem paradoxical that

finding the correct y-values by climbing up is more efficient than binary

search, however, we are interested in the total time bound, rather than in

minmizing the worst-case time spent on every single x.

4.1. Given a placement of the beams, one can easily add and compare the

corresponding numbers in polynomial time. This shows membership in NP.

The problem is NP-complete via the following polynomial-time reduction:

Given an instance of Subset Sum, simply “create” beams whose lengths are

the given numbers, and two spaces whose lengths are (1) the sum W , and

(2) the sum of all beams’ lengths minus W . Equivalance of the two instances

is evident. (7 points)

4.2. Given a solution, we can check in polynomial time whether the graph

after removal of that node set has only connected components with at most

c nodes. This shows membership in NP. Moreover, for c = 1 this is exactly

the Vertex Cover problem: delete at most k nodes such that the remaining

graph is an independent set. Hence the following simple reduction shows

NP-completeness: Given a graph G and an integer k as an instance of the

Vertex Cover problem, take the same G and k, and c := 1. This yields an

equivalent instance of Smash, in polynomial time. (7 points)

10

5. For every node v of G, we start BFS in v, in order to find a copy of H

that contains v. Let h be the number of nodes of H. Since H is connected,

such a copy of H must entirely be in the first h BFS layers. In particular,

we can stop BFS after h layers. Since h and ∆ are constant, these layers

comprise only a constant (albeit perhaps large) number of nodes. Now we

can search for a copy of H therein. Even naive exhaustive search needs only

O(1) time. Since we do this n times, the overall time is O(n), admittedly

with a large constant. (9 points)

11

