
Algorithms. Assignment 3

When you describe dynamic programming algorithms in the following, make
sure that you provide all ingredients: Define an “OPT function” (specify
what its arguments and function value are supposed to mean), then specify
how you compute this OPT function and how you get an optimal solution,
argue why your calculation formula is correct, and analyze the time.

Problem 5

Problem 3 revisited: As the greedy attempts have failed, give now a dynamic
programming algorithm for Problem 3.

This was pretty standard dynamic programming. Here is an example that
is less straightforward. Try it if you like a challenge.

Problem 6

As earlier, assume that n houses H1, . . . ,Hn are located (in this order) along
a straight road. We treat the road as the real line, such that every point
has a real number as coordinate. Let si denote the point where house Hi

is located; note that s1 < . . . < sn. A vehicle stands at some point s at
time 0. The vehicle must visit all houses (e.g., in order to bring some goods
to customers living there). However, every house Hi must be visited before
some individual deadline di > 0. Nothing special is assumed about these
deadlines. The vehicle can drive at maximum speed 1, that is, traverse at
most one length unit per time unit. (We also assume that the distances are
large, such that we can neglect the acceleration and slow-down phases and
the time for handing over the goods. We simply assume that the vehicle can
instantly change its velocity, and a visit itself costs no time.)
A problem instance is given by the numbers s1, . . . , sn; d1, . . . , dn and s, and
the problem is to compute a route for the vehicle so as to reach every house
Hi before the time di.
Beware: It is in general not enough to visit first all houses to the left of
s, and then all houses to the right, or vice versa. It may be the case that
costumers with close deadlines are waiting on both sides of s, and then you
have to go forth and back. A complicated zigzag route may be needed. You
can hardly avoid dynamic programming for this problem.

1

But here is a helpful simple observation: At every moment, the points that
have already been visited form an interval.
There are several ways to set up the OPT function and, of course, this
choice will influence your algorithm and time bound. If it helps, you may
assume that all si and di are integers, and achieve a time bound that depends
somehow on the largest |si| and |di|. But if you are ambitious, you should
aim for an algorithm whose time complexity is merely a nice polynomial in
n, regardless of the numbers si and di.

2

