Advanced Algorithms 2014. Exercises 7-8

Remark: Technically the following exercises should be rather simple. But what we also evaluate is the clean and correct use of probability-theoretic concepts. Show and explain your calculations, not only the final answers. Prove all claims, e.g., about expected numbers.

Exercise 7.
Imagine that n people vote in an election. They have the choice between two candidates A and B. Actually k people want to vote for A, and $n-k$ people for B. However some voters get confused, more precisely: every voter, independently and with probability p, votes for the wrong candidate. (Probability p is a fixed number.) What is the expected number of votes for A and B, respectively? You may also add a discussion of the result.

Exercise 8.
A set S of n distinct elements is stored in an array, in arbitrary order. We wish to find a specific element x. (It is known in advance that $x \in S$, but we do not know the place of x.) The only action we can take is to look up elements in the array.

8.1. For trivial reasons, any deterministic algorithm needs n look-ups in the worst case. Give a randomized algorithm that finds x after roughly $n/2$ expected look-ups.

8.2. This was probably(!) not too difficult. However, generating random numbers for randomized algorithms is an issue, and we do not like to waste random bits. Therefore we add a further demand: Give a randomized algorithm that finds x after roughly $n/2$ expected look-ups, and uses only one random bit (flips a coin only once).