
Synthesis from Temporal Specifications: New
Applications in Robotics and Model-Driven

Development

Nir Piterman

University of Leicester

Synthesis from temporal specifications is the automatic production of adapt-
able plans (or input enabled programs) from high level descriptions. The assump-
tion underlying this form of synthesis is that we have two interacting reactive
agents. The first agent is the system for which the plan / program is being de-
signed. The second agent is the environment with which the system interacts.
The exact mode of interaction and the knowledge available to each of the agents
depends on the application domain. The high level description of the plan is
usually given in some form of temporal logic, where we often distinguish be-
tween assumptions and guarantees. As we do not expect the system to function
correctly in arbitrary environments, the assumptions detail what the system ex-
pects from the environment. The guarantees are what the system is expected to
fulfill in such environments. Our algorithms then produce a plan that interacts
with the environment and reacts to it so that the tasks assigned to the plan are
fulfilled. By definition, the plan is reacting to the moves of the environment and
tries to adapt itself to the current condition (as a function of that interaction).

Technically, the interaction between the system and its environment is mod-
eled as a two-player game, where system choices correspond to the execution of
the plan and environment choices correspond to the behavior of the environment.
The specifications, i.e., the assumptions on the environment and the guarantees
of the system, are translated to the winning conditions in the game: the system
has to be able to resolve its choices in such a way that it satisfies the specifica-
tion. The way the system resolves its choices, called strategy, is then translated
to a design that satisfies the specification. Verifying that such a strategy exists
and computing the strategy is referred to as “solving the game”. Different types
of games arise depending on the exact conditions of the interaction between the
agents, and depending on the winning conditions. In order to make synthesis
useful we have to come up with algorithms that work well for the games that
arise from interesting applications.

The theoretical framework for synthesis from temporal specifications has
been known for many years. The question of decidability of this form of syn-
thesis was raised by Church in the late 50’s [8]. Independently, Rabin [29] and
Büchi and Landweber [7] suggested tree automata and two-player games as a way
to reason about the interaction between the program and its environment. These
solutions concentrated on decidability and were not concerned with practicality.
Pnueli and Rosner cast this question in a modern setting and proved that synthe-



sis from linear-time temporal logic (LTL) specifications is 2EXPTIME-complete
[28]. Indeed, this is the framework considered here.

The solution of Pnueli and Rosner called for the translation of the specifi-
cation to a deterministic Rabin automaton over infinite words [31]. Integrating
this automaton with the approach of Rabin produced a Rabin tree automaton
accepting winning strategies. Checking emptiness of this automaton corresponds
to deciding whether the specification is realizable. Finding a tree accepted by this
automaton corresponds to extracting a strategy. The two components of this so-
lution proved very hard to implement. Determinization of automata on infinite
words proved complicated to implement [18, 1]. To the best of our knowledge,
emptiness of Rabin automata (equivalently solution of Rabin games) was never
implemented [13, 28, 26]. Improvements to determinization [25] are still chal-
lenging to implement effectively [34]. They lead to the slightly simpler parity
automata / games, for which no efficient solution is known [17, 15, 32].

These difficulties led researchers to suggest two ways to bypass the two com-
plicated parts of this approach. One approach is to avoid determinization and re-
duce synthesis to safety games [24, 14, 33]. This approach has been implemented
in various tools [16, 12, 5]. The second approach, the one advocated here, is to
restrict attention to a subset of LTL that can be solved more efficiently [27, 4].

Specifically, we consider LTL formulas over Boolean variables partitioned to
sets of inputs and outputs, X and Y, respectively. Then, the specification has
the format ϕe → ϕs, where ϕe is a conjunction of assumptions on the behavior
of the environment and ϕs is a conjunction of guarantees of the system. Both
ϕe and ϕs are restricted to the form ψa

i ∧G ρat ∧
∧

i∈Ia
g
GF Ja

i , for a ∈ {e, s},

where the components of ϕa take the following form.

– ψe
i is a Boolean formula over X and ψs

i is a Boolean formula over X ∪ Y.
– ρet is a Boolean formula over X ∪ Y and XX and ρst is a Boolean formula

over X ∪Y and XX ∪XY. That is, ρet is allowed to relate to the next values
of input variables and ρst is allowed to relate to the next values of both input
and output variables..

– Je
i is a Boolean formula over X ∪ Y.

That is, the specification takes the following format:ψe
i ∧G ρet ∧

∧
i∈Ie

g

GF Je
i

 →

ψs
i ∧G ρst ∧

∧
i∈Is

g

GF Js
i


Intuitively, this formula allows the system to update its initial assignment to
output variables based on some assumption on the assignment to the input
variables; it allows the system to update output variables based on the way
the environment updates the input variables; and it allows the system to fulfill
some liveness requirements based on the environment fulfilling its own liveness
requirements.1 We argue that this form of specifications arise in practice and

1 We note that presentation of the specification in the form of such an implication
depends on the ability of the environment to fulfil its assumptions [19, 4].

2



are sufficient to specify many interesting designs. Furthermore, we show how to
implement the solution to the synthesis problem arising from such specifications
using BDDs.

This approach has been adopted by some practitioners and led to applications
of synthesis in hardware design [2, 3] robot-controller planning [9, 20, 21, 35, 37,
36], and user programming [22, 23]. Adapting our solution to be used in the
context of robot-controller required to consider how to combine the discrete
controller produced by our approach with continuous controllers for various parts
of the robot [30]. Recently, we have adapted this approach to applications in
model-driven development [10, 11, 6]. This required us to adjust setting to that
of games defined by labeled-transition systems, winning conditions defined by
fluent linear-temporal logic, and to enumerative representation of games.

Here we will survey the theoretical solution to synthesis proposed by Pnueli
and Rosner and some of the difficulties in applying it in practice. We will then
present our approach and some of the applications it was used for. We will also
cover some of the issues arising from adaptation of our approach to the usage
by practitioners in robotics and model-driven development.

Acknowledgements

The work surveyed here is based on joint work with (mostly) Roderick Bloem, Victor
Braberman, Nicolas D’Ippolito, Barbara Jobstmann, Hadas Kress-Gazit, Amir Pnueli,
Vasu Raman, Yaniv Sa’ar, and Sebastian Uchitel. References to our joint work are
mentioned in the paper. I am grateful to them for the great pleasure in working with
them on these results.

References

1. C. Althoff, W. Thomas, and N. Wallmeier. Observations on determinization of
Büchi automata. In Proc. 10th Int. Conf. on the Implementation and Application
of Automata, volume 3845 of Lecture Notes in Computer Science, pages 262–272.
Springer, 2005.

2. R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer.
Automatic hardware synthesis from specifications: A case study. In Design Au-
tomation and Test in Europe, pages 1188–1193, 2007.

3. R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer.
Specify, compile, run: Hardware from PSL. In 6th International Workshop on Com-
piler Optimization Meets Compiler Verification, volume 190 of Electronic Notes in
Computer Science, pages 3–16, 2007.

4. R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
reactive(1) designs. Journal of Computer and Systems Science, 78(3):911–938,
2012.

5. A. Bohy, V. Bruyère, E. Filiot, N. Jin, and J.-F. Raskin. Acacia+, a tool for
LTL synthesis. In 24th International Conference on Computer Aided Verification,
volume 7358 of Lecture Notes in Computer Science, pages 652–657. Springer, 2012.

3



6. V. Braberman, N. D’Ippolito, N. Piterman, D. Sykes, and S. Uchitel. Controller
synthesis: From modelling to enactment. In 35th International Conference on
Software Engineering, San Francisco, USA, 2013.

7. J. Büchi and L. Landweber. Solving sequential conditions by finite-state strategies.
Trans. AMS, 138:295–311, 1969.

8. A. Church. Applications of recursive arithmetic to the problem of circuit synthesis.
In Summaries of the Summer Institute of Symbolic Logic, volume I, pages 3–50,
Cornell University, Ithaca, 1957.

9. D. Conner, H. Kress-Gazit, H. Choset, A. Rizzi, and G. Pappas. Valet parking
without a valet. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 572–577. IEEE, 2007.

10. N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesis of live be-
havior models for fallible domains. In 33rd International Conference on Software
Engineering. ACM, ACM press, 2011.

11. N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel. Synthesising non-
anomalous event-based controllers for liveness goals. Transactions on Software
Engineering and Methodology, 22(1), 2012.

12. R. Ehlers. Symbolic bounded synthesis. Formal Methods in System Design,
40(2):232–262, 2012.

13. E. Emerson and C. Jutla. The complexity of tree automata and logics of programs.
In Proc. 29th IEEE Symp. on Foundations of Computer Science, pages 328–337,
1988.

14. T. Henzinger and N. Piterman. Solving games without determinization. In Proc.
15th Annual Conf. of the European Association for Computer Science Logic, vol-
ume 4207 of Lecture Notes in Computer Science, pages 394–410. Springer, 2006.

15. M. J. J. Voge. A discrete strategy improvement algorithm for solving parity games.
In Proc 12th Int. Conf. on Computer Aided Verification, volume 1855 of Lecture
Notes in Computer Science, pages 202–215. Springer, 2000.

16. B. Jobstmann and R. Bloem. Game-based and simulation-based improvements for
ltl synthesis. In 3nd Workshop on Games in Design and Verification, 2006.

17. M. Jurdziński. Deciding the winner in parity games is in up ∩ co-up. Information
Processing Letters, 68(3):119–124, 1998.

18. J. Klein and C. Baier. Experiments with deterministic ω-automata for formulas of
linear temporal logic. In Proc. 10th Int. Conf. on Implementation and Application
of Automata, Lecture Notes in Computer Science. Springer, 2005.

19. U. Klein and A. Pnueli. Revisiting synthesis of gr(1) specifications. In 6th Inter-
national Haifa Verification Conference, volume 6504 of Lecture Notes in Computer
Science, pages 161–181. Springer, 2010.

20. H. Kress-Gazit, G. Fainekos, and G. Pappas. From structured english to robot
motion. In Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2717–2722. IEEE, 2007.

21. H. Kress-Gazit, G. Fainekos, and G. Pappas. Where’s waldo? sensor-based tem-
poral logic motion planning. In Proc. IEEE International Conference on Robotics
and Automation, pages 3116–3121. IEEE, 2007.

22. H. Kugler, C. Plock, and A. Pnueli. Controller synthesis from lsc requirements. In
Proc. Fundamental Approaches to Software Engineering, volume 5503 of Lecture
Notes in Computer Science, pages 79–93. Springer, 2009.

23. H. Kugler and I. Segall. Compositional synthesis of reactive systems from live
sequence chart specifications. In Proc. 15th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, volume 5505 of Lecture Notes in
Computer Science, pages 77–91. Springer, 2009.

4



24. O. Kupferman, N. Piterman, and M. Vardi. Safraless compositional synthesis. In
Proc 18th Int. Conf. on Computer Aided Verification, volume 4144 of Lecture Notes
in Computer Science, pages 31–44. Springer, 2006.

25. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. Logical Methods in Computer Science, 3(3):e5, 2007.

26. N. Piterman and A. Pnueli. Faster solution of Rabin and Streett games. In
Proc. 21st IEEE Symp. on Logic in Computer Science, pages 275–284. IEEE, IEEE
Computer Society Press, 2006.

27. N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive(1) designs. In Proc. 7th
Int. Conf. on Verification, Model Checking, and Abstract Interpretation, volume
3855 of Lecture Notes in Computer Science, pages 364–380. Springer, 2006.

28. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symp. on Principles of Programming Languages, pages 179–190, 1989.

29. M. Rabin. Decidability of second order theories and automata on infinite trees.
Transaction of the AMS, 141:1–35, 1969.

30. V. Raman, N. Piterman, and H. Kress-Gazit. Provably correct continuous control
for high-level robot behaviors with actions of arbitrary execution durations. In
IEEE International Conference on Robotics and Automation. IEEE, IEEE Com-
puter Society Press, 2013.

31. S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foun-
dations of Computer Science, pages 319–327, 1988.

32. S. Schewe. Solving parity games in big steps. In 27th International Conference
on Foundations of Software Technology and Theoretical Computer Science, volume
4855 of Lecture Notes in Computer Science, pages 449–460. Springer, 2007.

33. S. Schewe and B. Finkbeiner. Bounded synthesis. In 4th Int. Symp. on Auto-
mated Technology for Verification and Analysis, volume 4218 of Lecture Notes in
Computer Science, pages 245–259. Springer, 2006.

34. M.-H. Tsai, S. Fogarty, M. Vardi, and Y.-K. Tsay. State of büchi complementation.
In 15th International Conference on Implementation and Application of Automata,
volume 6482 of Lecture Notes in Computer Science, pages 261–271. Springer, 2010.

35. T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon temporal logic
planning for dynamical systems. In IEEE Conference on Decision and Control,
pages 5997–6004. IEEE Computer Society Press, 2009.

36. T. Wongpiromsarn, U. Topcu, and R. M. Murray. Automatic synthesis of robust
embedded control software. In AAAI Spring Symposium on Embedded Reasoning:
Intelligence in Embedded Systems, 2010.

37. T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon control for
temporal logic specifications. In Hybrid Systems: Computation and Control, Lec-
ture Notes in Computer Science. Springer, 2010.

5


