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Abstract

We introduce p-Automata, which are automata that accept languages of Markov
chains, by adapting notions and techniques from alternating tree automata to the
realm of Markov chains. The set of languages of p-automata is closed under
Boolean operations, and for every PCTL formula it contains the language of the
set of models of the formula. Furthermore, the language of every p-automaton is
closed under probabilistic bisimulation. Similar to tree automata, whose accep-
tance is defined via two-player games, we define acceptance of Markov chains
by p-automata through two-player stochastic games. We show that acceptance is
solvable in EXPTIME; but for automata that arise from PCTL formulas accep-
tance matches that of PCTL model checking, namely, linear in the formula and
polynomial in the Markov chain. We also derive a notion of simulation between
p-automata that approximates language containment in EXPTIME and is com-
plete for Markov chains. These foundations therefore enable abstraction-based
probabilistic model checking for probabilistic specifications that subsume Markov
chains, and LTL and CTL* like logics.

Keywords: Markov chains, probabilistic computation tree logic, game theory,
fairness conditions, probabilistic evidence
2000 MSC: 60J10 (Markov chains with discrete parameter), 03B44 (temporal

IA preliminary version appered in [1].
∗Corresponding author
Email addresses: M.Huth@imperial.ac.uk (Michael Huth),

Nir.Piterman@leicester.ac.uk (Nir Piterman), D.Wagner06@imperial.ac.uk
(Daniel Wagner)

Preprint submitted to Performance Evaluation February 29, 2012
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1. Introduction

Markov chains are a very important modeling formalism in many areas of
science. In computing, Markov chains form the basis of central techniques such
as performance modeling, and the design and analysis of randomized algorithms
used in security and communication protocols. Recognizing this prominent role of
Markov chains, the formal-methods community has devoted significant attention
to these models, e.g., in developing model checking for qualitative [2, 3, 4] and
quantitative [5] properties, logics for reasoning about Markov chains [6, 7], and
probabilistic simulation and bisimulation [8, 7]. Model-checking tools such as
PRISM [9] and LiQuor [10] support such reasoning about Markov chains and
have users in many fields of computer science and beyond.

In the non-probabilistic setting, the automata-theoretic approach to verifica-
tion unifies such reasoning support for systems modeled as Kripke structures. Au-
tomata furnish the foundations for reasoning about these models: they can show
decidability of satisfiability for a corresponding logic (decidable non-emptiness
checks [11, 12, 13]), support algorithms that decide whether a model satisfies a
formula (model checking [13, 14]), enable algorithms that generate a model sat-
isfying a satisfiable formula (design synthesis [15]), and offer techniques of ab-
stracting a model so that formulas holding for the abstract model also hold for the
model they abstract (abstraction-based model checking [16, 17]).

Alternating tree automata [18] were introduced to prove the decidability of sat-
isfiability for monadic, second-order logic and they provide a unifying framework
for branching-time temporal logics such as µ-calculus, CTL, and CTL*. Of par-
ticular interest to us is that alternating tree automata afford a complete framework
for abstraction with respect to branching-time logic [19, 20]. Thus, in this context,
alternating automata form the right basis for abstraction, the technique that makes
model checking scale to realistic designs in the hardware and software industry.
For Markov chains, their aforementioned techniques lack such a unifying frame-
work and the quest for robust notions of abstraction is an active line of research.
Here, we define p-automata and show that they render such a framework.

p-automata are devices that read an entire Markov chain as input and either
accept it or reject it. The definition of p-automata is motivated by PCTL [21], the
de-facto standard logic for model checking Markov chains, and alternating tree
automata: it combines the rich combinatorial structure of alternating automata
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with PCTL’s ability to quantify the probabilities of regular sets of paths. The
acceptance of Kripke structures by an alternating tree automaton is decided by
solving games (cf. [18]). In that spirit, acceptance of a Markov chain by a p-
automaton is decided by solving stochastic games.

We now highlight the main results on p-automata developed in this paper.

• The language of Markov chains accepted by a p-automaton is semantically
robust in that it is closed under probabilistic bisimulation.

• One can embed a Markov chain as a p-automaton accepting the language of
Markov chains that are bisimilar to it.

• The set of languages of p-automata is closed under Boolean operations.

• Acceptance of finite Markov chains can be determined in exponential time.

• PCTL formulas can be expressed as p-automata whose complexity of accep-
tance of Markov chains matches the complexity of PCTL model checking.

• We define a simulation for p-automata that approximates language contain-
ment in EXPTIME and is exact for p-automata arising from Markov chains.

• p-automata are the first complete abstraction framework for PCTL model
checking on Markov chains.

The latter means that if an infinite-state Markov chain satisfies a PCTL formula,
then there is a finite p-automaton that abstracts (i.e. simulates) this Markov chain
and whose language is contained in that of the formula.

The problem of emptiness of the language of a p-automaton generalizes the
long-standing open problem of decidability for PCTL satisfiability, and is here
left open.

The embedding of Markov chains as p-automata uses a new probabilistic sep-
aration operator, denoted by ∗, that decomposes the witness path set for a proba-
bility threshold into disjoint subsets. Use of this operator, however, has a certain
price in the complexity of the resulting acceptance games.

Finally, probabilistic versions of LTL, CTL*, or desired ω-regular probabilis-
tic extensions of these logics can also be expressed as p-automata but such a for-
mal development is beyond the scope of this paper.
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1.1. Outline of paper
In Section 2 notation is fixed and needed concepts are recalled. p-automata

are introduced in Section 3, their acceptance games defined in Section 4, and ex-
pressiveness results featured in Section 5. Simulation and its salient properties are
presented in Section 6 and used to prove that p-automata are a complete abstrac-
tion framework. In Section 7 related and future work are discussed. Section 8
contains our conclusions.

2. Background

A countable labeled Markov chain M over a set of atomic propositions AP is
a tuple (S, P, L, sin), where S is a countable set of locations, P : S × S → [0, 1]
a stochastic matrix, sin ∈ S the initial location, and L : S → 2AP a labeling
function with L(s) the set of propositions true in location s. Let succ(s) be the set
{s′ ∈ S | P (s, s′) > 0} of successors of s. All Markov chains are assumed to be
finitely branching, i.e. succ(s) is finite for all s ∈ S. We write MCAP for the set of
all (finitely branching) Markov chains over AP. A path π from location s in M is
an infinite sequence of locations s0s1 . . . with s0 = s and P (si, si+1) > 0 for all
i ≥ 0. For Y ⊆ S, let P (s, Y ) abbreviate

∑
s′∈Y P (s, s′). Given a Markov chain

M with set of states S, an open set in Sω is a set {s0 · w} · Sω for some w ∈ S∗.
A set is Borel if it is in the σ-algebra defined by these open sets. The measure
of every Borel set α is defined as usual in this σ-algebra [22, 23]. We denote the
measure of a set α as ProbM(α).

For Markov chain M = (S, P, L, sin), a (probabilistic) bisimulation [8] is an
equivalence relation H ⊆ S × S where (s, s′) ∈ H implies (i) L(s) = L(s′) and
(ii) P (s, C) = P (s′, C) for all equivalence classes C ∈ S/H . The union of all
bisimulations forM is the greatest bisimulation∼; locations s and s′ are bisimilar
iff s ∼ s′. This definition extends to Markov chains M1 and M2 by considering
bisimilarity of their initial locations in the disjoint union of M1 and M2.

Without loss of generality [24], one may define the probabilistic temporal logic
PCTL [21] in “Greater Than Negation Normal Form”: only propositions can be
negated and probabilistic bounds are either ≥ or >. PCTL formulas are defined
as follows, where a ∈ AP, p ∈ [0, 1], and ./ ∈ {>,≥}:

φ, ψ ::= PCTL formulas
a,¬a Literals
φ ∧ ψ Conjunction
φ ∨ ψ Disjunction
[α]./p Path Probability

α ::= Path formulas
Xφ Next
φUψ Until
φWψ Weak Until
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Our semantics of PCTL is as in [21]: path formulas α are interpreted as pred-
icates over paths in M , and wrap PCTL formulas into “LTL” operators for Next,
(strong) Until, and Weak Until. The semantics ‖φ‖ ⊆ S of PCTL formula φ lifts
path formulas to state formulas: s ∈ ‖[α]./p‖ iff ProbM(s, α), the probability of
the measurable set [25] Path(s, α) of paths ss1s2 . . . in M with ss1s2 . . . |= α,
satisfies ./ p. Markov chain M satisfies φ, denoted M |= φ, if sin ∈ ‖φ‖.

Weak Games. A tuple G = ((V,E), (V0, V1, Vp), κ, α) is a stochastic weak game
if (V,E) is a directed graph, (V0, V1, Vp) a partition of V , and function κ associates
with every v ∈ Vp a distribution κ(v) of mass 1 over E(v) = {v′ | (v, v′) ∈ E}
such that (v, v′) ∈ E iff κ(v)(v′) 6= 0; we write κ(v, v′) instead of κ(v)(v′). Set
α ⊆ V is the winning condition. Set Vp contains the probabilistic configurations
of G. For i = 0, 1 set Vi contains the Player i configurations. We work with
weak games: all maximal, strongly connected components (MSCCs) V ′ in (V,E)
satisfy V ′ ⊆ α or V ′∩α = {}. If Vp = {}, we callG a weak game. Markov chains
can be thought of as stochastic weak games where V0 = V1 = {} and α = V .

A play inG is a maximal sequence v0v1 . . . of configurations with (vi, vi+1) ∈
E for all i ∈ N. A play is winning for Player 0 if it is finite and ends in a Player 1
configuration, or if it is infinite and ends in a suffix of states in α. Otherwise, that
play is winning for Player 1. A strategy for Player 0 is a function σ : V0 → V with
(v, σ(v)) ∈ E for all v ∈ V0 for which σ(v) is defined. Play v0v1 . . . is consistent
with strategy σ if vi+1 = σ(vi) whenever vi ∈ V0. Strategies for Player 1 are
defined analogously. Let Σ (resp. Π) be the set of all strategies for Player 0 (resp.
Player 1).

Each (σ, π) ∈ Σ ×Π from game G determines a Markov chain Mσ,π (with
sinks for dead-ends in G) whose paths are plays in G consistent with σ and
π. The set of plays from v ∈ V that Player 0 wins is measurable in Mσ,π.
Let valσ,π0 (v) be that measure, and valσ,π1 (v) = 1 − valσ,π0 (v). Then val0(v) =
supσ∈Σ infπ∈Π valσ,π0 (v) ∈ [0, 1] and val1(v) = supπ∈Π infσ∈Σ valσ,π1 (v) ∈ [0, 1]
are the game values. Strategies that achieve these values are optimal.

Theorem 1 [26, 27, 28] Let G = ((V, ·), . . . ) be a stochastic weak game and
v ∈ V . Then val0(v) + val1(v) = 1. If G is finite, val0(v) is computable in
EXPTIME, and optimal strategies exist for both players. If G is a weak game,
val0(v) is in {0, 1} and linear-time computable.

These results generalize to the setting where configurations may have pre-
seeded game values. That is, when we set in advance the value for some of the
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configurations of the game and ignore how one may continue to play from them.
These values are in [0, 1] for stochastic weak games and in {0, 1} for weak games.

3. Uniform Weak p-Automata

We introduce p-automata and their uniform weak variant. Each uniform weak
p-automaton is then shown to accept a language of Markov chains. We assume
familiarity with basic notions of trees and (alternating) tree automata (cf. [18]).
For set T , let B+(T ) be the set of positive Boolean formulas generated from
elements t ∈ T , constants tt and ff, and disjunctions and conjunctions:

ϕ, ψ ::= t | tt | ff | ϕ ∨ ψ | ϕ ∧ ψ (1)

Formulas in B+(T ) are finite even if T is not.
For set Q, the set of states of a p-automaton, we define term sets as follows:

[[Q]]> = {[[q]]./p | q ∈ Q, ./ ∈ {≥, >}, p ∈ [0, 1]}
[[Q]]∗ = {∗(t1, . . . , tn) | n ∈ N,∀i : ti ∈ [[Q]]>}
[[Q]]

∗∨ = {∗∨(t1, . . . , tn) | n ∈ N,∀i : ti ∈ [[Q]]>}
[[Q]] = [[Q]]∗ ∪ [[Q]]

∗∨

This uses n-ary operators ∗n and ∗∨n for every n ∈ N, which we write as ∗ and ∗∨
throughout as n will be clear from context. Also, we freely write ∗(ti | i ∈ X) for
∗(t1, t2, . . . , tn) and so implicitly refer to 1, 2, . . . , n as some enumeration of X .

Intuitively, a state q ∈ Q of a p-automaton and its transition structure model
a probabilistic path set. So [[q]]./p holds in location s if the measure of paths that
begin in s and satisfy q is ./ p. Now, ∗([[q1]]>p1 , [[q2]]≥p2), e.g., means q1 and q2

hold with probability > p1 and ≥ p2, respectively; and that the sets supplying
these probabilities are disjoint. Dually, ∗∨([[q1]]≥p1 , [[q2]]≥p2) means not only that
either the probabilty of q1 is ≥ p1 or the probability of q2 is ≥ p2 but that this
holds regardless of how we try to partition the sets supplying the full probability
between them. So ∗ and ∗∨ model a “disjoint and” and “intersecting or” operator,
respectively. We may write [[q]]./p for ∗([[q]]./p), and similarly for ∗∨.

An element of Q∪ [[Q]] is a state of the p-automaton, a ∗ composition of terms
[[qi]]./pi , or a ∗∨ composition of such terms. For ϕ ∈ B+(Q∪ [[Q]]), its closure cl(ϕ)
is the set of all subformulas of ϕ according to (1). In particular, ∗(t1, t2) ∈ cl(ϕ)
does not imply t1, t2 ∈ cl(ϕ). For a set Φ of formulas, let cl(Φ) =

⋃
ϕ∈Φ cl(ϕ).
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Definition 1 A p-automatonA is a tuple 〈Σ, Q, δ, ϕin, α〉, where Σ is a finite input
alphabet, Q a set of states, δ : Q × Σ → B+(Q ∪ [[Q]]) the transition function,
ϕin ∈ B+([[Q]]) the initial condition, and α ⊆ Q an acceptance condition.

As a convention, p-automata have states, Markov chains have locations, and
weak stochastic games have configurations.

Example 1 p-automaton A = 〈2{a,b}, {q1, q2}, δ, [[q1]]≥ 1
2
, {q2}〉 has δ given by

δ(q1, {a, b}) = δ(q1, {a}) = q1 ∨ [[q2]]≥ 1
2

δ(q2, {b}) = δ(q2, {a, b}) = [[q2]]≥ 1
2

δ(q1, {}) = δ(q1, {b}) = δ(q2, {}) = δ(q2, {a}) = ff

The winning condition {q2} (along with the loops in the transition of this automa-
ton) means that only sequences of states in which q2 is eventually reached and
repeats forever are fair. It follows that term [[q2]]≥ 1

2
represents the recursive prop-

erty φ, that atomic proposition b holds at the location presently read by q2, and
that φ will hold with probability at least 1

2
in the next locations. State q1 asserts

it is possible to get to a location that satisfies [[q2]]≥ 1
2

along a path that satisfies
atomic proposition a. The initial condition [[q1]]≥ 1

2
means the set of paths satisfying

a Uφ has probability at least 1
2
.

In order to be able to decide acceptance of input for p-automata through the so-
lution of weak stochastic games, we restrict the cycles in the transition graph of
p-automata. In doing so, we differentiate states q′ appearing within a term in [[Q]]
(bounded transition) from q′ appearing “free” in the transition of a state q (un-
bounded transition). In this way, a p-automaton A = 〈Σ, Q, δ, . . .〉 determines a
labeled, directed graph GA = 〈Q′, E, Eb, Eu〉:

Q′ = Q ∪ cl(δ(Q,Σ))
E = {(ϕ1 ∧ ϕ2, ϕi) | ϕi ∈ Q′ \Q, 1 ≤ i ≤ 2}

∪ {(ϕ1 ∨ ϕ2, ϕi) | ϕi ∈ Q′ \Q, 1 ≤ i ≤ 2}
∪ {(q, δ(q, σ)) | q ∈ Q, σ ∈ Σ}

Eu = {(ϕ ∧ q, q), (q ∧ ϕ, q), (ϕ ∨ q, q), (q ∨ ϕ, q) | ϕ ∈ Q′, q ∈ Q}
Eb = {(ϕ, q) | ϕ ∈ [[Q]] and q ∈ gs(ϕ)}

where δ(Q,Σ) = {δ(q, σ) | q ∈ Q and σ ∈ Σ} ∪ {ϕin} and gs(ϕ) is the set of
guarded states of ϕ: all q ∈ Q occurring in some term in ϕ. Elements (ϕ, q) ∈ Eu
are unbounded transitions; elements (ϕ, q) ∈ Eb are bounded transitions; and ele-
ments of E are simple transitions. We mark (ϕ, q) ∈ Eb with ∗ (and respectively,

7
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Figure 1: (a) Graph GA of automaton A from Example 1 and (b) a Markov chain M

with ∗∨) if ϕ ∈ [[Q]]∗ (respectively, ϕ ∈ [[Q]]
∗∨). Note that E, Eu, and Eb are pair-

wise disjoint. Let ϕ �A ϕ̃ iff there is a finite path from ϕ to ϕ̃ in E∪Eb∪Eu. Let
≡A be �A ∩ �−1

A and ((ϕ)) the equivalence class of ϕ with respect to ≡A. Each
((ϕ)) is an MSCC in graph GA.

Definition 2 A p-automaton A is called uniform if:
• For each cycle in GA, its set of transitions is either in E ∪Eb or in E ∪Eu.
• For each cycle in 〈Q,E ∪ Eb〉, its set of markings is either {}, {∗} or {∗∨}.
• The set of equivalence classes {((ϕ)) | ϕ ∈ Q ∪ cl(δ(Q,Σ))} is finite.

A (not necessarily uniform) p-automaton A is called weak if for all q ∈ Q, either
((q)) ∩Q ⊆ α or ((q)) ∩ α = {}.

Then, A is uniform, if the full subgraph of every equivalence class in ≡A
contains only one type of non-simple transitions and at most one kind of marking
∗ or ∗∨. In particular, all states q′ ∈ Q or formulas ϕ occurring in δ(q, σ) for some
q ∈ Q and σ ∈ Σ can be classified as unbounded, bounded with ∗, bounded with
∗∨, or simple – according to MSCC ((q)).

Example 2 Figure 1(a) depicts GA for A of Example 1. Automaton A is uniform:
((q1)) = {q1, q1∨ [[q2]]≥ 1

2
} and ((q2)) = {q2, [[q2]]≥ 1

2
}; in ((q1)) there are no bounded

edges, in ((q2)) there are no unbounded edges; and GA has only ∗ markings (we
treat [[q1]]≥ 1

2
as ∗([[q1]]≥ 1

2
)). The MSCC (([[q1]]≥ 1

2
)) = {[[q1]]≥ 1

2
} is trivial. In addi-

tion, A is weak as α = {q2}.

Intuitively, the cycles in the structure of a uniform p-automaton A take either
no bounded edges or no unbounded edges, and cycles that take bounded edges
do not have both markings ∗ and ∗∨. Below, all p-automata are uniform weak
and so we often refer to them simply as “p-automata”. Uniformity allows to de-
fine acceptance of input for p-automata through the solution of stochastic games.
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But, a more relaxed notion of uniformity is what really drives the proof of well-
definedness: every ascending chain in the partial order on MSCCs on the graph
of a p-automaton has only finitely many alternations between bounded and un-
bounded MSCCs.

The requirement of weakness is made merely to simplify the presentation.
Using a parity condition instead, e.g., would still allow us to decide acceptance of
input for uniform p-automata, by solving stochastic parity games.

4. Acceptance Games

For some set of atomic propositions AP, p-automaton A = 〈2AP, Q, δ, ϕin, α〉
has MCAP as set of inputs. ForM = (S, P, L, sin) in MCAP, we exploit the uniform
weak structure of A to reduce the decision of whether A accepts M to solving
a sequence of weak games and stochastic weak games. Intuitively, unbounded
cycles in GA correspond to weak stochastic games and bounded cycles to weak
games. Then the language of A is L(A) = {M ∈ MCAP | A accepts M}.

Just as in acceptance games of alternating tree automata, all states of A and
all subformulas appearing in its transitions form part of acceptance games. For
A as above, let T = Q ∪ cl(δ(Q, 2AP)). We now (gradually) compute the values
val(s, t), where s ∈ S is a state of the Markov chain and t ∈ T is a subformula
appearing in the transition of A, which determine whether A accepts M . Initially,
we set val(s, t) = ⊥ for all s ∈ S and t ∈ T . Gradually, as the computation
progresses, val(s, t) is reset for more and more pairs of states and subformulas.
Partial order (T/≡A,≤A) has set {((t)) | t ∈ T} ordered by ((t̃)) ≤A ((t)) iff
t̃ �A t. As A is uniform ≤A induces a finite partial order. For M as above,
each ((t)) determines a game GM,((t)) = ((V,E), (V0, V1, Vp), κ, α̃). Most of its
configurations are in S × T . The construction is such that (sin, ϕin) occurs in
exactly one of these games GM,((t)), and val(sin, ϕin) ∈ [0, 1]. Then A accepts M
iff val(sin, ϕin) = 1.

We define these games as follows. Since A is uniform weak, each ((t)) is of
one of three types and each type determines a weak game or weak stochastic game
as detailed in the three cases below. All game values already computed for games
GM,((t̃)) of MSCCs ((t̃)) higher up with respect to ≤A (i.e. by induction) are used
as pre-seeded values in GM,((t)). As mentioned, we initially set val(s, ϕ) = ⊥ and
as we progress, val(s, ϕ) is computed and reset. Then, if the pair (s, ϕ) appears
again in some later game, the precomputed value val(s, ϕ) is used as a pre-seeded
value in the later game. For every s ∈ S we set val(s,ff) = 0 and val(s, tt) = 1.
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Case 1. Let ((t)) be a nontrivial MSCC such that all the transitions in the subgraph
of GA induced by ((t)) are not in Eu and none have ∗∨ markings. For each ϕ ∈
((t))∩ [[Q]]∗ of form ∗([[q1]]./1p1 , . . . , [[qn]]./npn) we define, for each s ∈ S, sets V s,ϕ

0 ,
V s,ϕ

1 , and Es,ϕ. Then

V0 =
⋃
s,ϕ

V s,ϕ
0 V1 =

⋃
s,ϕ

V s,ϕ
1 Vp = {}

E =
⋃
s,ϕ

Es,ϕ α̃ = {} or V

defines the weak game GM,((t)) – where α̃ is V if some q ∈ ((t)) is in α, and is
empty otherwise. It remains to define V s,ϕ

0 , V s,ϕ
1 , and Es,ϕ, for which we use

pre-seeded values val(s, t̃) for all s ∈ S and all t̃ 6∈ ((t)) with ((t)) ≤A ((t̃)).
As succ(s) and δ(qi, L(s)) are finite, so are

Rs,ϕ =
n⋃
i=1

{(s′, ϕ′) | s′ ∈ succ(s), ϕ′ ∈ cl(δ(qi, L(s)))}

Vals,ϕ = {0, 1} ∪ {val(s′, ϕ′) | (s′, ϕ′) ∈ Rs,ϕ, val(s′, ϕ′) 6= ⊥}

Intuitively, Rs,ϕ is the set of configurations reachable from (s, ϕ) using one tran-
sition of a state in ϕ. Thus, s′ are the successors of s and ϕ′ are subformulas of
δ(qi, L(s)). Set Vals,ϕ includes 0, 1, and values of configurations in Rs,ϕ. In game
GM,((t)), a play proceeding from (s, ϕ) reaches either a configuration whose value
is pre-seeded (and therefore in Vals,ϕ) or a configuration (s, ψ) for ψ ∈ ((t)).

For n ∈ N, let [n] = {1, . . . , n}. Sets V s,ϕ
0 , V s,ϕ

1 , and Es,ϕ are defined as
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follows (whereby the definition of F∗s,ϕ is deferred for now):

V s,ϕ
0 = {(s, ϕ)}

∪{(s′, ϕ′, v) ∈ Rs,ϕ × Vals,ϕ | ⊥ 6= val(s′, ϕ′) < v}
∪{(s′, ϕ1 ∨ ϕ2, v) ∈ Rs,ϕ × Vals,ϕ | val(s′, ϕ1 ∨ ϕ2) = ⊥}

V s,ϕ
1 = {(s, ϕ, f) | f ∈ F∗s,ϕ}

∪{(s′, ϕ′, v) ∈ Rs,ϕ × Vals,ϕ | ⊥ 6= val(s′, ϕ′) ≥ v}
∪{(s′, ϕ1 ∧ ϕ2, v) ∈ Rs,ϕ × Vals,ϕ | val(s′, ϕ1 ∧ ϕ2) = ⊥}

Es,ϕ = {((s, ϕ), (s, ϕ, f)) | f ∈ F∗s,ϕ}
∪{((s′, ϕ′, v), (s′, ϕ′)) | s′ ∈ succ(s), ϕ′ ∈ [[Q]], v ∈ Vals,ϕ,

val(s′, ϕ′) = ⊥}
∪{((s, ϕ, f), (s′, δ(qi, L(s)), f(i, s′))) | s′ ∈ succ(s), i ∈ [n],

f(i, s′) > 0}
∪{((s′, ϕ1 ◦ ϕ2, v), (s′, ϕi, v)) | ◦ ∈ {∧,∨}, 1 ≤ i ≤ 2,

(s′, ϕ1 ◦ ϕ2, v) ∈ Rs,ϕ × Vals,ϕ, val(s′, ϕ1 ◦ ϕ2) = ⊥}

(2)

The intuition behind this weak game is as follows: Configuration (s, ϕ) means
that the transition of each qi holds with probability ./i pi where the sets Xi mea-
sured by these probabilities are pairwise disjoint. In order to check that, given
configuration (s, ϕ), Player 0 chooses a function f ∈ F∗s,ϕ that associates with
location s′ ∈ succ(s) and state qi the value Player 0 promises to achieve playing
from (s′, δ(qi, L(s))). The play continues with Player 1 choosing a successor s′ of
s and a state qi, and the play then reaches configuration (s′, δ(qi, L(s)), f(i, s′)).
From such value-annotated configurations, Player 0 and Player 1 choose succes-
sors according to the usual resolution of ∨ and ∧:
• In a configuration whose value v was already determined, either f(i, s′) ./i
v, i.e. Player 0 achieved the promised value and wins immediately; or
Player 0 failed to achieve the promised value and loses immediately.
• Otherwise, the play ends up in a configuration of form (s′, ϕ′) for ϕ′ ∈ [[Q]]∗

and the play continues and ignores value f(i, s′) (as obviously f(i, s′) ≤ 1).
If the play continues ad infinitum, the winner is determined according to ac-

ceptance condition α̃.
We now define the function space F∗s,ϕ that captures terms built from the sep-

aration operator ∗. Throughout, let X → Y be the set of total functions from set
X to set Y . Let Fs,ϕ be [n] × succ(s) → Vals,ϕ, the set of functions from pairs
consisting of ‘sub-stars’ of ϕ and successors of s to values in Vals,ϕ. Also, an
f ∈ Fs,ϕ is disjoint if there are {ai,s′ ∈ [0, 1] | i ∈ [n] and s′ ∈ succ(s)} that
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,

{
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s1, [[q2]]≥ 1
2
,

{
s1 7→1
s2 7→1

}

s1, [[q2]]≥ 1
2
,

{
s1 7→0
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}

s0, [[q2]]≥ 1
2
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s0 7→1
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Figure 2: Case 1 of acceptance game

satisfy the following conditions:
(i)
∑

s′∈succ(s) ai,s′f(i, s′)P (s, s′) ./i pi for all i ∈ [n] and
(ii)

∑
i∈[n] ai,s′ = 1 for all s′ ∈ succ(s).

Let F∗s,ϕ be the set of disjoint functions.
Intuitively, a function f ∈ Fs,ϕ associates with q1, . . . , qn and s′ the value that

Player 0 can achieve from configuration (s′, δ(qi, L(s))). Values in Vals,ϕ suffice,
as no others are directly reachable. We call f “disjoint”, as all the requirements
from the different qi’s can be achieved using a partition (realized by the existence
of the above ai,s′) of the probability of all successors.

By Theorem 1, V partitions into winning regionsW0 andW1 of configurations
for Player 0 and Player 1, respectively. We set val(c) = 1 for c ∈ W0 and val(c) =
0 for c ∈ W1.

Example 3 We start verifing M ∈ L(A) for A from Example 1 and M from
Fig. 1(b), where locations are labeled by propositions – e.g., L(s0) = {a}. The
weak game of MSCC ((q2)), shown in Fig. 2, has only accepting configurations or
dead ends. So Player 0 wins only (s1, [[q2]]≥ 1

2
) and (s1, [[q2]]≥ 1

2
, {s1 7→1, s2 7→0}).

Case 2. Let ((t)) be a nontrivial MSCC such that all transitions in the subgraph of
GA induced by ((t)) are not inEu and none has ∗markings. For ϕ ∈ ((t))∩ [[Q]]

∗∨ of
form ∗∨([[q1]]./1p1 , . . . , [[qn]]./npn) we reuse the definitions of Rs,ϕ, Vals,ϕ, and Fs,ϕ.
Weak game GM,((t)) is defined as in Case 1. Sets V s,ϕ

0 , V s,ϕ
1 , and Es,ϕ are defined

12



as in (2), except that functions f don’t range over F∗s,ϕ but now range over F ∗∨s,ϕ,
the set of intersecting functions and the dual of F∗s,ϕ of Case 1:

Function f ∈ Fs,ϕ is intersecting if for all sets {ai,s′ ∈ [0, 1] | i ∈ [n] and s′ ∈
succ(s)} either

(i) there is i ∈ [n] with
∑

s′∈succ(s) ai,s′f(i, s′)P (s, s′) ./i pi or
(ii) there is s′ ∈ succ(s) with

∑
i∈[n] ai,s′ 6= 1.

As in Case 1, wins for Player 0 have value 1, wins for Player 1 have value
0. The intuition for this weak game is verbatim that of the weak game in Case 1,
except that Player 0 chooses a function f that is in F ∗∨s,ϕ instead of in F∗s,ϕ.

We point out that when n above is 1, i.e. in handling ϕ = [[q1]]./1p1 , the defi-
nitions of ∗ and ∗∨ coincide. Indeed, there is then exactly one option for choosing
set {a1,s′ | s′ ∈ succ(s)} that does not satisfy the second condition above: the
value a1,s′ has to be 1 for all s′ ∈ succ(s). This justifies dropping the ∗ or ∗∨ when
applied to one operand.
Case 3. For a nontrivial MSCC ((t)) such that all transitions in the subgraph ofGA

induced by ((t)) are not in Eb, game GM,((t)) is a stochastic weak game with

V = {(s, t̃) | s ∈ S and t �A t̃} V0 = {(s, ϕ1 ∨ ϕ2) ∈ V }
V1 = {(s, ϕ1 ∧ ϕ2) ∈ V } Vp = (S ×Q) ∩ V
κ((s, q), (s′, δ(q, L(s)))) = P (s, s′) α̃ = {} or V

E =
{((s, ϕ1 ∧ ϕ2), (s, ϕi)) ∈ V × V | 1 ≤ i ≤ 2}∪
{((s, ϕ1 ∨ ϕ2), (s, ϕi)) ∈ V × V | 1 ≤ i ≤ 2}∪
{((s, q), (s′, δ(q, L(s)))) ∈ V × V | P (s, s′) > 0}

where α̃ equals V if some state q in ((t)) is in α, and equals {} otherwise. By
Theorem 1, val0(c) is in [0, 1] for all configurations c ∈ V . We set val(c) = val0(c).

Example 4 Continuing with the verification M ∈ L(A) for A from Example 1
and M from Fig. 1(b). The stochastic weak game GM,((q1)) for the MSCC ((q1)),
shown in Fig. 3, depicts stochastic configurations with a diamond and config-
urations from other MSCCs are put into hexagons (with the hexagon labeled
(s1, [[q2]]≥ 1

2
) having value 1 and all others having value 0). As none of the con-

figurations are accepting, Player 0 can only win by reaching optimal hexagons.
Hexagon (s1, [[q2]]≥ 1

2
) has value 1 and is the optimal choice for Player 0 from con-

figuration (s1, q1 ∨ [[q2]]≥ 1
2
). Player 0 configuration (s2, q1 ∨ [[q2]]≥ 1

2
) has value 0.

So the value for Player 0 of diamond configuration (s0, q1) is 1
2
.
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1
2

s2, ff

s0, q1

s1, q1

s0, [[q2]]≥ 1
2

s1, [[q2]]≥ 1
2

s1, ff

1
3

1
3

1
3

s2, q1

s2, [[q2]]≥ 1
2

s1

s2

s0

q1∨[[q2]]≥ 1
2

q1∨[[q2]]≥ 1
2

q1∨[[q2]]≥ 1
2

1
2

Figure 3: Case 3 of acceptance game

Trivial MSCCs ((t)), are handled as one of the cases above. In case more than
one case matches, the ambiguity is unproblematic as game values in GM,((t)) are
then determined via propagation of pre-seeded game values. In particular, the
case of a configuration (s, ϕ), where ϕ = ∗([[q1]]./1p1 , . . . , [[qn]]./npn) is handled as
in Case 1. The definitions of Vals,ϕ and Fs,ϕ are as before and the configuration
(s, ϕ, f) is connected to configurations of the form (s′, ϕ′, v), which form dead-
ends in GM,((t)).1 The case of ∗∨ is handled as in Case 2.

Example 5 Finally, we establish that M ∈ L(A) for A from Example 1 and M
from Fig. 1(b). The initial configuration (s0, [[q1]]≥ 1

2
) makes up a trivial bounded

MSCC. Consider the function f = {s0 7→ 1
2
, s1 7→ 1, s2 7→ 0}. It is disjoint as

witnessed by {a1,s = 1}s∈S , which satisfies 1 · 1
2
· 1

3
+ 1 · 1 · 1

3
+ 1 · 0 · 1

3
= 1

2
as

required. Then, configuration (s0, q1 ∨ [[q2]]≥ 1
2
, 1

2
) is a dead end for Player 1 as

val(s0, q1 ∨ [[q2]]≥ 1
2
) = 1

2
and similarly configuration (s1, q1 ∨ [[q2]]≥ 1

2
). Therefore,

M ∈ L(A).

We now state the well-definedness of languages for p-automata and the com-
plexity of checking acceptance in case of finite automaton and Markov chain.

1Alternatively, for every state s and every i ∈ [n] the value val(s, qi) is pre-computed. Then,
it is enough to find a set {ai | i ∈ [n]} such that

∑
i∈[n] ai = 1 and for every i ∈ [n] we have

ai · val(s, qi) ./i pi. A formal proof of this alternative definition is omitted.
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Theorem 2 Given a p-automaton A = 〈2AP, . . .〉, its language L(A) is well de-
fined. If A and M ∈ MCAP are finite, M ∈ L(A) can be decided in EXPTIME.

Proof: Well definedness of acceptance follows directly from Theorem 1. For
finite Markov chain M and finite p-automata A we make two observations: First,
the stochastic weak game arising from the combination of M and an unbounded
MSCC of GA can be solved in EXPTIME. Second, the weak game arising from
the combination of M and a bounded MSCC of GA may be exponential due to the
large number of possible value assignment functions. Such a weak game can be
solved in linear time leading to an EXPTIME upper bound. Since there are only
linearly many such games in the sequence of weak games and stochastic weak
games, acceptance can be solved in EXPTIME. 2

For finite Markov chain M and p-automaton A with non-trivial, bounded
MSCCs, checking acceptance M ∈ L(A) is exponential in the branching degree
ofM and in the branching degree of ∗ and ∗∨ operators ofA, but not in the number
of states or locations. IfA has only trivial bounded-MSCCs, checkingM ∈ L(A)
reduces to solving a linear number of linear sized stochastic weak games.

5. Expressiveness of p-Automata

We now consider different aspects of the expressiveness of p-automata. We
show that languages of p-automata are closed under Boolean operations. It follows
that emptiness and containment of p-automata are equi-solvable. We then show
that the language of every p-automaton is closed under bisimulation. For every
Markov chain, we show how to construct a p-automaton accepting its bisimulation
equivalence class. Finally, we show that each PCTL formula has a p-automaton
whose language consists of all Markov chains satisfying that formula.

5.1. Closure of Languages
It is routine to see that the set of languages of p-automata is closed under union

and intersection. But that set of languages is also closed under complementation:
Given a p-automatonA = 〈Σ, Q, δ, ϕin, α〉, its dual dual(A) is 〈Σ, Q, δ, dual(ϕin), Q \ α〉
with bijection Q = {q | q ∈ Q} and δ(q, σ) = dual(δ(q, σ)), where dual(ϕ) is
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defined as follows:
dual(∗∨(t1, . . . , tn)) = ∗(dual(t1), . . . , dual(tn))
dual(∗(t1, . . . , tn)) = ∗∨(dual(t1), . . . , dual(t2))

dual(ϕ1 ∧ ϕ2) = dual(ϕ1) ∨ dual(ϕ2)
dual(ϕ1 ∨ ϕ2) = dual(ϕ1) ∧ dual(ϕ2)

dual(q) = q
dual(q) = q

dual([[q]]./p) = [[q]]dual(./p)

dual(≥ p) = > 1− p
dual(> p) = ≥ 1− p

The structure of uniform weak p-automata ensures that dual(A) is also uniform
weak. The languages of A and dual(A) are complements.

Theorem 3 For every p-automatonA with Σ = 2AP, L(dual(A)) is MCAP\L(A).

Proof: We prove a stronger claim, namely that val(s, ϕ) = 1 − val(s, dual(ϕ))
for all s ∈ S and ϕ ∈ cl(δ(Q,Σ)). The proof is by induction on the structure of
the automaton. Consider an equivalence class ((t)) in GA. Assume by induction
that the claim holds for all the MSCCs in GA that are greater than ((t)).

First, suppose that ((t)) is a nontrivial MSCC and that no transition in ((t)) is
in the scope of ∗∨. It follows that ((dual(t))) is also a nontrivial MSCC and that
no transition in ((dual(t))) is in the scope of ∗. Given a strategy for Player 0 in
GM,((t)), we show how to construct a strategy for Player 1 in GM,((dual(t))). The two
strategies produce plays that are always in the same locations of the Markov chain
M and same states of the automaton A (modulo dualization t 7→ dual(t)). For
sake of brevity, we denote GM,((t)) by G and GM,((dual(t))) by G.

Consider two matching configurations (s, ϕ) and (s, dual(ϕ)) in G and G. Let
ϕ be of form ∗([[q1]]./1p1 , . . . , [[qn]]./npn), where n > 1. Consider the configuration
(s, dual(ϕ)). By playing for Player 1 in G we make Player 0 ‘reveal’ her strategy
in G and using her strategy we react to the moves of Player 0 in G by constructing
a strategy for Player 1 in G.

Consider two plays ending in (s, ϕ) and (s, dual(ϕ)). Let f : [n]× succ(s)→
Vals,ϕ be the function chosen by Player 0 in G and let f ′ : [n] × succ(s) →
Vals,dual(ϕ) be the function chosen by Player 0 in G. By definition there are {ai,s′}
that witness the disjointness of f and for every i we have∑

s′∈succ(s)

ai,s′ · P (s, s′) · f(i, s′) ./i pi.
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By using the same {ai,s′} stemming from the fact that f ′ is intersecting, we get
that there is some i such that∑

s′∈succ(s)

ai,s′ · P (s, s′) · f ′(i, s′)dual(./i pi).

It follows that there is an s′ ∈ succ(s) such that f(i, s′) + f ′(i, s′) > 1.
It is now Player 1’s turn to move in both G and G. In G we make Player 1

choose (s′, δ(qi, L(s)), f(i, s′)) and the strategy for Player 1 in G is extended by
(s′, dual(δ(qi, L(s))), f ′(i, s′)). We now proceed by utilizing the duality between
∨ and ∧ to use Player 0’s choices in G to suggest moves for Player 1 in G and use
Player 0’s strategy in G to suggest how to extend the strategy for Player 1 in G.

If we reach configurations (s′, ϕ′, f(i, s′)) and (s′, dual(ϕ′), f ′(i, s′)) such that
val(s′, ϕ′) 6= ⊥ and val(s′, dual(ϕ′)) 6= ⊥, then, by assumption val(s′, ϕ′) =
1 − val(s′, dual(ϕ′)). And if val(s′, ϕ′) ≥ f(s′), then val(s′, dual(ϕ′)) < f ′(s′)
must hold. Otherwise the game proceeds to a new configuration in S× [[Q]]. If the
two plays are infinite, then by the duality of α and Q \ α if Player 0 wins the play
in G then Player 1 wins the play in G.

That a win of Player 1 in G is translated to a win of Player 0 in G is shown
similarly, and omitted.

Second, the case that ((t)) is a nontrivial MSCC and that some transitions in
((q)) are in scope of ∗∨ is similar, and omitted.

Third, suppose that ((t)) is a nontrivial MSCC and that all transitions in ((t))
are unbounded. Then, the claim follows from the dualization and the determinacy
of stochastic weak games.

Finally, if ((t)) is a trivial MSCC, the claim follows from the dualization and
the duality of min and max. 2

Corollary 1 Let Σ = 2AP. The set of languages accepted by p-automata with Σ
is closed under Boolean operations. Language containment of p-automata with Σ
reduces to language emptiness of such p-automata, and vice versa.

Proof: By Theorem 3, this set of languages is closed under complement. Show-
ing closure under intersection and union is routine, and omitted. That language
containment and non-emptiness are equi-solvable is a standard argument, since
p-automata have duals and since there are p-automata with empty language. 2
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5.2. Closure of Languages to Bisimulation
We now show that languages of p-automata are closed under bisimulation.

Lemma 1 For p-automaton A=〈2AP, Q, δ, ϕin, α〉 and M1,M2∈MCAP with M1∼
M2: Markov chain M1 is in L(A) iff Markov chain M2 is in L(A).

Proof: Let Mi = (Si, Pi, Li, s
in
i ), for i ∈ {1, 2}, with the same set of atomic

propositions AP. Let A = 〈Σ, Q, δ, [[q0]]./p, α〉, where Σ = 2AP. Let ∼ ⊆ S1 × S2

be the maximal bisimulation between M1 and M2.
We show that for every state q ∈ Q and locations s1 ∈ S1, and s2 ∈ S2 such

that s1 ∼ s2, we have val(s1, q) = val(s2, q). We prove this claim by induction
on the partial order on the MSCCs in GA. Suppose that the claim holds for all
MSCCs greater than ((q)) in the partial order. Consider the games GM1,((q)) and
GM2,((q)). Consider a winning strategy σ for Player 0 in GM1,((q)). We show how
this is also a winning strategy for Player 0 in GM2,((q)).

Consider a play in an unbounded MSCC ((q)). We inductively construct a
play in GM1,((q)) and a play in GM2,((q)) with the invariant that the plays end in
configurations of the form (s1, t) and (s2, t) such that s1 ∼ s2. Clearly, the initial
configurations in both games satisfy this invariant. We show how to extend the
play to maintain this invariant. If t is of the form ϕ1 ∧ ϕ2 and Player 1 chooses
ϕi in GM2,((q)), then we emulate the same choice in GM1,((q)). If t is of the form
ϕ1 ∨ ϕ2, then σ instructs Player 0 to choose ϕi in GM1,((q)) and we emulate the
same choice in GM2,((q)). If t is of the form q′ for some state q′ ∈ Q then choices
in (s1, q

′) and (s2, q
′) are resolved by the stochastic player.

As s1 ∼ s2, the successors of s1 and s2 can be partitioned into equivalence
classes such that, for each equivalence class C1 in M1 and C2 in M2, we have
P1(s1, C1) = P2(s2, C2). Consider now the measure of plays that are winning
according to this composed strategy. The plays can be partitioned according to
bisimulation equivalence classes and every choice has the same weight. So the
measure of winning plays is identical in both games.

Consider a play in a bounded MSCC ((q)) where no transition uses ∗∨. Disjunc-
tions and conjunctions are handled as above. Consider a pair of configurations
(s1, t) and (s2, t), where s1 ∼ s2 and t is of the form ∗([[q1]]./1p1 , . . . , [[qn]]./npn).
Let f1 be the function chosen by Player 0 in GM1,((q)). As s1 ∼ s2, we can
find a function f2 such that for every s′2 we have f2(i, s′2) = f1(i, s′1) for some
s′1 ∼ s′2 that satisfies the requirement of the game. Next, Player 1 chooses a state
s′ ∈ succ(s2) and a state qi. The same choice can be mimicked in GM1,((q)). As
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s1 ∼ s2, it follows that L(s1) = L(s2) and the automaton component in both
configurations remains the same.

The treatment of a play in a bounded MSCC ((q)) with ∗∨ markings is similar.
2

5.3. Embedding of Markov Chains
A Markov chain M = (S, P, L, sin) ∈ MCAP can be converted into a p-

automaton AM = 〈2AP, Q, δ, ϕin, α〉 whose language L(AM) is the set of Markov
chains bisimilar to M :

Q = {(s, s′) ∈ S × S | P (s, s′) > 0}
δ((s, s′), L(s)) = ∗([[(s′, s′′)]]≥P (s′,s′′) | s′′ ∈ succ(s′))

δ((s, s′), σ) = ff if σ 6= L(s)

ϕin = ∗([[(sin, s′)]]≥P (sin,s′) | P (sin, s′) > 0)

α = Q

State (s, s′) represents the transition from s to s′. Labels are compared for location
s. Location s′ is used to require that there are successors of probability at least
P (s′, s′′). This p-automaton AM has only bounded transitions and uses only the ∗
operator. In particular, it is uniform weak.

Theorem 4 For every Markov chain M ∈ MCAP, the language L(AM) is the
bisimulation equivalence class of M .

Proof: By Lemma 1, we know thatM ′ ∼M impliesM ′ ∈ L(AM) as soon as we
have that M ∈ L(AM). To simplify the presentation of the proof of M ∈ L(AM),
we assume that all locations of M are in one MSCC. Consider a location s ∈ S
and (s, s′) ∈ Q. Let ϕs = ∗([[(s, s′)]]≥P (s,s′) | s′ ∈ succ(s)). We show that from
a configuration of the form (s, ϕs), Player 0 has a strategy that keeps returning to
configurations of this form. As α = Q, Player 0 can continue playing forever and
wins. We start from the configuration (s, ϕs). Then Player 0 chooses the function
f : [n]×succ(s)→ {0, 1} such that f(i, s′) = 1 iff si = s′. The trivial assignment
ai,s′ = 1 iff si = s′ shows that f is disjoint. Then, Player 1 chooses a successor
(si, δ((s, si), L(s)), 1). As δ((s, si), L(s)) = ϕsi the claim follows and Player 0
has a strategy to continue the play forever.

The initial configuration in the game is ∗([[(sin, s′)]]≥P (sin,s′) | s′ ∈ succ(sin)).
The same intuition shows that this is winning for Player 0 as well.
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Conversely, if M ′ 6∼ M we show that M ′ 6∈ L(AM). Let M = (S, P, L, sin)
and M ′ = (T, P, L, tin). To simplify notations we assume that S ∩ T = {}
and use P and L for the probability distribution and labeling of both Markov
chains. We use the partition refinement algorithm that computes the bisimulation
equivalence sets for a Markov chain. Let Ξ0 = {S ′ ⊆ S∪T | ∀s, s′ ∈ S ′ : L(s) =
L(s′) and S ′ is maximal with respect to that}. Clearly, Ξ0 is a partition of S ∪ T .
Let Ξi+1 be the coarsest partition of S ∪T that refines Ξi and in addition for every
G ∈ Ξi+1, for all s, s′ ∈ G, and for all G′ ∈ Ξi we have P (s,G′) = P (s′, G′). It
is known that if s 6∼ s′ there is is,s′ where s and s′ are in different sets in Ξis,s′

.
By assumption, sin 6∼ tin. Let i0 be minimal such that sin and tin are in different

sets in Ξi0 . Denote si0 = sin, ti0 = tin, ϕi0 = ϕin, and ci0 = (ti0 , ϕi0). Consider the
configuration cij = (tij , ϕij), where ϕij = ∗([[(sij , s′)]]≥P (sij ,s

′) | s′ ∈ succ(sij))
and sij and tij are in different sets in Ξij . We show that from configuration cij
Player 1 either wins immediately or finds a similar configuration for ij+1 < ij .

If ij = 0, then L(tij) 6= L(sij). Regardless of the immediate choices of
Player 0, we have δ((sij , s

′), L(tij)) = ff and Player 1 wins.
Otherwise, ij > 0. By assumption, there is some ij+1 < ij andG ∈ Ξij+1

such
that P (sij , G) 6= P (tij , G). Without loss of generality we assume that P (sij , G) >
P (tij , G). Indeed, if P (sij , G) < P (tij , G), then as P (sij , S) = 1 there must be a
different set G′ ∈ Ξij+1

such that P (sij , G
′) > P (tij , G

′).
Let Sij+1

= G ∩ S. Let (tij , ϕij , f) be the configuration chosen by Player 0.
By disjointness of f , and as P (tij , G) < P (sij , G), there must be sij+1

∈ G and
tij+1

/∈ G such that f(tij+1
, sij+1

) > 0. Player 1 chooses cij+1
= (tij+1

, ϕij+1
, v),

where ϕij+1
= δ((sij , sij+1

), L(tij)). As tij+1
/∈ G, Player 1 has forced the game

to a similar configuration with ij+1 < ij and eventually wins by reaching Ξ0. 2

The construction of AM for infinite Markov chains was the only reason why
we allow p-automata with infinite state sets. Finite state sets suffice for embedding
finite Markov chains. The construction of AM was also our initial reason for
introducing the ∗ and ∗∨ operators. But we believe that the separation of concerns
expressed in these operators is useful in p-automata in general. In the construction
of AM , the conjunctive operator ∗ effectively hides an exponential blowup.

If a Markov chain is deterministic (all successors of every location disagree on
their labelings), we can eliminate the use of ∗ in AM and still secure Theorem 4.
But this embedding does break Theorem 4 for non-deterministic Markov chains if
we replace ∗ with the much simpler ∧ in the definition of δ((s, s′), L(s)) and ϕin

for AM . We refer to this modified p-automaton as AwM subsequently.
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Figure 4: Markov chain whose uniform weak embedding accepts non-bisimilar Markov chains

Consider the Markov chain M in Figure 4 and let M1 be M with s1 as initial
location, and let M2 be M with s2 as initial location. First, we note that M1 and
M2 are not bisimilar since the transitions from s1 to locations whose label is b
have probability 2

3
and the transitions from s2 to locations whose label is b have

probability 1
3
. In fact, no two locations in M are bisimilar.

Second, we observe that AwM1
accepts M2. To see the latter, the initial config-

uration is (s2, ϕ
in). As ϕin is a conjunction, Player 1 can choose one of three suc-

cessor configurations: (s2, [[(s1, s3)]]≥ 1
3
), (s2, [[(s1, s4)]]≥ 1

3
), and (s2, [[(s1, s5)]]≥ 1

3
).

One can see that Player 0 wins from the latter two. In the other case, Player 1
chooses the configuration (s2, [[(s1, s3)]]≥ 1

3
). Then Player 0 chooses the config-

uration (s2, [[(s1, s3)]]≥ 1
3
, f) where f is the function that sets f(1, s4) = 1 and

f(1, s5) = f(1, s6) = 0. The next configuration is (s4, [[(s3, s1)]]≥1, 1). We com-
plete a cycle by going back to configuration (s2, ϕ

in). This completes a winning
strategy for Player 0.

5.4. Embedding of PCTL Formulas
A PCTL formula φ over AP yields a p-automaton Aφ without ∗ markings,

〈2AP, clp(φ) ∪ AP, ρx, ρε(φ), F 〉, that accepts exactly the Markov chains satisfy-
ing φ. The construction resembles the translation from CTL to alternating tree
automata:
• clp(φ) denotes the set of path subformulas of φ
• F consists of AP and their negations, and all ψ of clp(φ) not of form ψ1 Uψ2
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• functions ρx and ρε are defined in (3), where we interpret the evaluation of
a ∈ σ as a truth constant tt or ff:

ρx(a, σ) = (a ∈ σ)

ρx(¬a, σ) = ¬(a ∈ σ)

ρx( Xϕ1, σ) = ρε(ϕ1)

ρx(ϕ1 Uϕ2, σ) = (ρε(ϕ1) ∧ ϕ1 Uϕ2) ∨ ρε(ϕ2)

ρx(ϕ1 Wϕ2, σ) = (ρε(ϕ1) ∧ ϕ1 Wϕ2) ∨ ρε(ϕ2)

ρε(a) = a

ρε(¬a) = ¬a

ρε(ϕ1 ◦ ϕ2) = ρε(ϕ1) ◦ ρε(ϕ2) where ◦ ∈ {∧,∨}
ρε([ Xϕ1]./p) = [[ Xϕ1]]./p

ρε([ϕ1 Uϕ2]./p) = (ρε(ϕ1) ∧ [[ϕ1 Uϕ2]]./p) ∨ ρε(ϕ2)

ρε([ϕ1 Wϕ2]./p) = (ρε(ϕ1) ∧ [[ϕ1 Wϕ2]]./p) ∨ ρε(ϕ2) (3)

Function ρx records whether or not literals of the formula are consistent with
the input symbol, unfolds fix-points, and replaces the threshold context [·]./p with
[[·]]./p (through a recursive call to ρε). That replacement is also done by function
ρε for the initial condition. The effect of these functions is similar to that achieved
by using ε transitions to translate CTL formulas into two-way tree automata [29].

We now have that ψ ∈ clp(φ) for subformulas [ψ]./p of φ. Also, [ψ1 Uψ2]./p
may appear inside an element in clp(φ) whereas [[ψ1 Uψ2]]./p can only be an el-
ement of [[clp(φ)]]>, it wraps ψ1 Uψ2 ∈ clp(φ) in the probabilistic quantification
[[·]]./p of Aφ.

Example 6 Let ϕ = [a U [ X b]> 1
2
]≥0.3. Automaton Aϕ is 〈2{a,b}, clp(ϕ) ∪ {a, b},

ρx, ρε(ϕ), F 〉, where clp(ϕ) = {a U [ X b]> 1
2
, X b}, F is {X b, a, b}, ρε(ϕ) is (a ∧

[[a U [ X b]> 1
2
]]≥0.3)∨[[ X b]]> 1

2
, ρx( X b) is b, and ρx(a U [ X b]> 1

2
) is (a∧a U [ X b]> 1

2
)

∨ [[ X b]]> 1
2
.

Our acceptance game captures PCTL model checking, with same complexity.

Theorem 5 For M ∈ MCAP and PCTL formula φ over AP, M |= φ iff M ∈
L(Aφ). Deciding the latter is polynomial in the size of M , linear in the size of φ.

Proof:

22



1. We show the first statement of the theorem by proving

For all locations s of M and PCTL (state) subformulas ϕ′ of ϕ: con-
figuration (s, ρε(ϕ

′)) has value 1 for Player 0 in acceptance game of
Aϕ on M iff M, s |= ϕ′. Furthermore, the value is 0 otherwise.

by induction on the structure of the formula.

1.1. For a proposition a, notice that the value of (s, a) depends on the values of
(s′, ρx(a, L(s))) for successors s′ of s. By definition, ρx(a, L(s)) = tt if a ∈ L(s)
and ff otherwise. The claim holds similarly for the other Boolean operators.

1.2. Consider a subformula of the form ϕ′ = [ Xψ]./p. By inductionM, s′ |= ψ iff
the configuration (s′, ρε(ψ)) is winning for Player 0. By definition ρε([ Xψ]./p) =
[[ Xψ]]./p. Consider a state s such that s |= ϕ′. Let Y = {s′ | s′ |= ψ}.
It follows that P (s, Y ) ./ p. Then, the function f : [1] × succ(s) → [0, 1]
with f(1, s′) = 1 iff val(s′, ρε(ψ)) = 1 and f(1, s′) = 0 otherwise satisfies∑

s′∈succ(s) f(1, s′)P (s, s′) ./ p. It follows that for every s′ such that f(1, s′) > 0

we have (s′, ρε(ψ), 1) is a Player 1 configuration that is a dead-end, and hence
winning for Player 0. It follows that (s, ρε(ϕ

′)) has value 1 for Player 0. In
the other direction, suppose that (s, ρε([ Xψ]./p)) has value 1 for Player 0 in the
acceptance game of Aϕ on M . It follows that there is a function f : [1] ×
succ(s) → [0, 1] such that

∑
s′∈succ(s) f(1, s′)P (s, s′) ./ p and that Player 0

wins from (s, ρε([ Xψ]./p), f). Thus, for every s′ such that f(1, s′) > 0 we have
val(s′, ρε(ψ)) ≥ f(1, s′) > 0. However, by induction assumption, val(s′, ρε(ψ)) ∈
{0, 1} and val(s′, ρε(ψ)) = 1 iff s′ |= ψ. Thus, as

∑
s′∈succ(s) f(1, s′)P (s, s′) ./ p,

we conclude that P (s, Y ) ./ p, where Y = {s′ ∈ succ(s) | s′ |= ψ}, proving that
s |= [ Xψ]./p.

1.3. Consider a formula of the form ϕ′ = [ψ1 Uψ2]./p. By induction M, s |= ψi
iff the configuration (s, ρε(ψi)) is winning for Player 0, for i ∈ {1, 2}. Consider
the stochastic weak game induced by the MSCC ((ψ1 Uψ2)) in GAϕ . The optimal
strategy for both players is memoryless and pure. Restricting our attention to
these memoryless pure strategies we can think about the game as restricted to
configurations of the form (s′, ρε(ψ1)), where all configurations are probabilistic.
A play that is winning for Player 0 is exactly a play that remains in states s′ such
that M, s′ |= ψ1 until reaching states s′′ such that M, s′′ |= ψ2 (as ψ1 Uψ2 is
unfair). It follows that the value of (s, ψ1 Uψ2) in the stochastic game is exactly
ProbM(s, ψ1 Uψ2).

23



We note that ρε([ψ1 Uψ2]./p) = ρε(ψ1) ∧ [[ψ1 Uψ2]]./p ∨ ρε(ψ2).
Consider a location s such that s |= [ψ1 Uψ2]./p. We have to show that Player 0

wins from configuration (s, ρε([ψ1 Uψ2]./p)). In case that s |= ψ2 then, by induc-
tion val(s, ρε(ψ2)) = 1. It follows that the value of (s, ρε(ψ1) ∧ [[ψ1 Uψ2]]./p ∨
ρε(ψ2)) is also 1. In case that s 6|= ψ2 then it must be the case that s |= ψ1 and that
the set of paths that satisfy ψ1 Uψ2 and start with s is ./ p. It follows that the value
of (s, ρε(ψ1)) is 1. By our claim regarding the game above for every successor s′

of s we have val(s′, ψ1 Uψ2) is ProbM(s′, ψ1 Uψ2). Also, as s |= [ψ1 Uψ2]./p
it follows that

∑
s′∈succ(s) P (s, s′)ProbM(s′, ψ1 Uψ2) ./ p. Hence, the function

f that associates ProbM(s′, ψ1 Uψ2) with s′ is a disjoint function that leads to
Player 0 winning from (s, ρε([ψ1 Uψ2]./p)).

In the other direction, consider a location s such that Player 0 wins from
(s, ρε([ψ1 Uψ2]./p)). Then one of the following two cases holds. Either Player 0
wins from (s, ρε(ψ2)) and by induction s |= ψ2. Or Player 0 wins from (s, ρε(ψ1))
and Player 0 wins from (s, [[ψ1 Uψ2]]./p). By induction s |= ψ1. Furthermore,
there is a function f : succ(s) → [0, 1] such that

∑
s′∈succ(s) P (s, s′)f(s′) ./ p

and Player 0 wins from (s′, δ(ψ1 Uψ2, L(s)), f(s′)). However, by the observa-
tion about the stochastic games above, it follows that ProbM(s′, ψ1 Uψ2) ≥ f(s′).
Thus, this shows that s |= [ψ1 Uψ2]./p.

Finally, as ρε([ψ1 Uψ2]./p) = ρε(ψ1)∧ [[ψ1 Uψ2]]./p∨ ρε(ψ2) it follows that the
value of (s, ρε([ψ1 Uψ2]./p)) is in {0, 1}.

1.4. The cases of a formula of form ϕ′ = [ψ1 Wψ2]./p is similar.

2. Finally, we provide the complexity analysis showing that the acceptance game
for M ∈ L(Aφ) is linear in the PCTL formula φ and polynomial in M .

The number of MSCCs in GAφ is linear in the size of φ. Most MSCCs are
trivial and consist of a single subformula of φ. The corresponding games can
be solved by propagating pre-seeded game values. The only nontrivial MSCCs
in GAφ arise from states of the form φ1 Uφ2 and φ1 W φ2. It follows that for
each nontrivial MSCC, the choices for each of the players in the corresponding
weak stochastic game are determined by pre-seeded game values. Therefore, these
games have effectively only probabilistic configurations and can be solved in poly-
nomial time in the size of the Markov chain.

Overall, the number of games is linear in the size of φ and the solution of each
game is polynomial in the size of the Markov chain. 2

We note that our definition of PCTL does not include the bounded versions of
the Strong Until and Weak Until. However, the techniques above can be extended
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Figure 5: Markov chain M in L(AR) \ L(Aη)

to handle these operators. Essentially, in order to handle ψ1 U ≤kψ2 the automaton
would have states corresponding to ψ1 U ≤k

′
ψ2 for all 0 ≤ k′ ≤ k. The case of

bounded Weak Until would be similar. In particular, the proof of case 1.3 above
gives all the necessary ingredients for handling these cases as well.

Corollary 1 and Theorem 5 imply that the satisfiability of PCTL [6, 30] re-
duces to both the language emptiness and containment of p-automata. The decid-
ability status is open for all these problems at the time of writing.

In comparing automata and temporal logic, automata usually can count but
temporal logics cannot. Thus, just as alternating tree automata are more expressive
than CTL and CTL*, p-automata are more expressive than PCTL.

Also, p-automata can encode recursive, probabilistic properties that we believe
are not expressible in PCTL: AR = 〈2{a}, {q2}, δ, [[q2]]>0, {q2}〉 with δ(q2, {a}) =
[[q2]]≥ 1

2
and δ(q2, {}) = ff, asserts the recursive, probabilistic property that a loca-

tion is labeled a, and that the probability of its successors with the same prop-
erty is ≥ 1

2
. A naive attempt of expressing this in PCTL is through formula

η = a ∧ [(¬a ∨ [ X a]≥ 1
2
) W¬a]≥1. Then L(Aη) ⊂ L(AR) but this inclusion is

strict; e.g., the Markov chain in Fig. 5 is in L(AR) but not in the language of Aη.

6. Simulation of p-Automata

We now define simulation of p-automata that under-approximates language
containment: if p-automaton B simulates p-automaton A (denoted A ≤ B), then
L(A) is contained in L(B), under qualifications detailed in the formal theorem
below. This simulation is defined as a combination of fair simulation [17], simu-
lation for alternating word automata [31], probabilistic bisimulation [8], and the
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games defined in Section 3. The simulation takes into account the structure of
the automata, their acceptance condition, and local probabilistic constraints. We
show that whetherB simulatesA can be decided in EXPTIME and that simulation
under-approximates language containment.

We determine whether B simulates A through solving a series of games G≤
on the product of states and transitions of A and B: state u of B simulates state
r of A iff Player 0 wins from configuration (r, u) in the corresponding game.
More general configurations (α, β) are such that α is part of a transition of A
and β is part of a transition of B. The classification of α and β as unbounded,
bounded with ∗, bounded with ∗∨, or simple classifies (α, β) as one of 16 cases.
As before, simple cases where either α or β belong to trivial MSCCs in their
respective automata reduce to one of the previous cases. Thus we are left with
“only” 9 interesting cases.

Here, we restrict our attention to A and B that do not use the ∗∨ operator.
These restrictions, and concentrating on the non-simple cases, reduce the number
of cases to consider to 4. This restriction is sufficient for handling simulation of
automata that result from embedding PCTL formulas or Markov chains, as such
automata do not use ∗∨ transitions. We also assume that tt and ff do not appear
in transitions of A and B. Clearly, this does not restrict the expressive power of
automata.

For simplicity of presentation, p-automata A = 〈Σ, Q, δ, ϕin
a , F 〉 and B =

〈Σ, U, δ, ψin
b , F 〉 satisfy Q ∩ U = {}. We also use δ for the transition function of

both automata and F for both acceptance conditions. The strict versions of the
partial orders on equivalence classes of GA and GB are well founded. We consider
their pointwise extension ≤A,B as an ordering on the MSCCs of the resulting
game. Namely, (((ϕ)), ((ψ))) ≤A,B (((ϕ̃)), ((ψ̃))) if ((ϕ)) ≤A ((ϕ̃)) and ((ψ)) ≤B
((ψ̃)) and (((ϕ)), ((ψ))) <A,B (((ϕ̃)), ((ψ̃))) if (((ϕ)), ((ψ))) ≤A,B (((ϕ̃)), ((ψ̃))) and
either ((ϕ)) <A ((ϕ̃)) or ((ψ)) <B ((ψ̃)). Clearly, order ≤A,B is well founded as
well.

As before, we start by setting val(ϕ, ψ) = ⊥ for all pairs (ϕ, ψ) ∈ δ(Q,Σ) ×
δ(U,Σ) and gradually set concrete values to all of them. Consider a pair of equiv-
alence classes (((ϕ)), ((ψ))), where ϕ is in A and ψ is in B. Suppose that all
pairs larger than (((ϕ)), ((ψ))) with respect to≤A,B have already been handled: for
every ϕ′ and ψ′ with (((ϕ)), ((ψ))) <A,B (((ϕ′)), ((ψ′))) value val(ϕ′, ψ′) 6= ⊥ is
pre-seeded.
Case 1. Let ((ϕ)) and ((ψ)) be MSCCs where ((ϕ)) has no transitions in Eb, and
((ψ)) no transitions in Eu and no ∗∨ markings. We set val(ϕ, ψ) = 0; bounded-
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with-∗ states cannot simulate unbounded states.
Case 2. Let ((ϕ)) and ((ψ)) be MSCCs such that both ((ϕ)) and ((ψ)) have no
transitions in Eb. Then G≤(((ϕ)), ((ψ))) is a stochastic weak game with

V = {(ϕ̃, ψ̃) | ϕ �A ϕ̃, ψ �B ψ̃}
Vp = {}
V0 = {c ∈ V | ∃ϕi, ψi : c = (ϕ1 ∧ ϕ2, ψ1 ∨ ψ2)}

∪ {c ∈ V | ∃q′∃ψi : c = (q′, ψ1 ∨ ψ2)}
∪ {c ∈ V | ∃ϕi∃u′ : c = (ϕ1 ∧ ϕ2, u

′)}
V1 = {c ∈ V | ∃q′, u′ : c = (q′, u′)}

∪ {c ∈ V | ∃ϕi, ψ : c = (ϕ1 ∨ ϕ2, ψ)}
∪ {c ∈ V | ∃ϕ, ψi : c = (ϕ, ψ1 ∧ ψ2)}

E = {((ϕ1 ∧ ϕ2, ψ2 ∨ ψ2), (ϕi, ψj)) ∈ V × V | 1 ≤ i, j ≤ 2}
∪ {((q′, ψ1 ∨ ψ2), (q′, ψi)) ∈ V × V | 1 ≤ i ≤ 2}
∪ {((ϕ1 ∧ ϕ2, u

′), (ϕi, u
′)) ∈ V × V | 1 ≤ i ≤ 2}

∪ {((q′, u′), (δ(q′, σ), δ(u′, σ))) ∈ V × V | σ ∈ Σ}
∪ {((ϕ1 ∨ ϕ2, ψ), (ϕi, ψ)) ∈ V × V | 1 ≤ i ≤ 2}
∪ {((ϕ, ψ1 ∧ ψ2), (ϕ, ψi)) ∈ V × V | 1 ≤ i ≤ 2}

(4)

The game G≤(((ϕ)), ((ψ))) does not have probabilistic configurations. How-
ever, pre-seeded values val(ϕ̃, ψ̃) for configurations (ϕ̃, ψ̃) with (((ϕ)), ((ψ))) <A,B

(((ϕ̃)), ((ψ̃))) may be in the range (0, 1). Thus, we treat G≤(((ϕ)), ((ψ))) as a
stochastic weak game.

Intuitively, Player 1 resolves disjunctions on the left and conjunctions on the
right and does this before Player 0 needs to move. Player 0 resolves conjunctions
on the left and disjunctions on the right when Player 1 cannot move. From config-
urations of the form (q′, u′), where q′ is a state of A and u′ is a state of B, Player 1
chooses a letter σ ∈ Σ and applies the transitions of q′ and u′ reading σ.

Finally, an infinite play inG≤(((q)), ((u))) is winning for Player 0 if ((ϕ))∩Q ⊆
F implies ((ψ)) ∩ U ⊆ F . By Theorem 1 every configuration c has a value for
Player 0. We set val(c) to that value.
Case 3. Let ((ϕ)) and ((ψ)) be MSCCs such that both have neither transitions inEu
nor ∗∨ markings. Below, let ϕ̃ have form ∗([[q1]]./1p1 , . . . , [[qn]]./npn), ψ̃ have form
∗([[u1]]./′

1p
′
1
, . . . , [[um]]./′

mp
′
m

). Clearly, for every qi, uj and σ ∈ Σ, we have δ(qi, σ)
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and δ(uj, σ) are finite. Then, so are

Rϕ̃,ψ̃ =
n⋃
i=1

m⋃
j=1

⋃
σ∈Σ

{(α, β) | α ∈ cl(δ(qi, σ)), β ∈ cl(δ(uj, σ))}

Valϕ̃,ψ̃ = {0, 1} ∪ {val(α, β) | (α, β) ∈ Rϕ̃,ψ̃, val(α, β) 6= ⊥}

As before, Rϕ̃,ψ̃ is the set of configurations reachable from (ϕ̃, ψ̃) using one tran-
sition in δ. Set Valϕ̃,ψ̃ includes 0, 1, and values of configurations in Rs,ϕ. We
define the set Fϕ̃,ψ̃ = [n]× [m]→ Valϕ̃,ψ̃.

Also, f ∈ Fϕ̃,ψ̃ is disjoint if there is {ai,j ∈ [0, 1] | i ∈ [n] and j ∈ [m]} such
that the following holds:

(i) for all i ∈ [n] we have
∑

j∈[m] ai,j = 1 and
(ii) for all j ∈ [m] we have either

∑
i∈[n] ai,j · pi · f(i, j) > p′j or

∑
i∈[n] ai,j · pi ·

f(i, j) = p′j and either ./′j is≥ or there is i′ with ai′,j > 0 such that ./i′= >.
Let F∗

ϕ̃,ψ̃
be the set of disjoint functions in Fϕ̃,ψ̃. Weak game G≤(((ϕ)), ((ψ))) is

defined as

V = {(ϕ̃, ψ̃, σ), (ϕ̃, ψ̃, σ, f) | ϕ̃ ∈ ((ϕ)), ψ̃ ∈ ((ψ)), σ ∈ Σ, f ∈ F∗
ϕ̃,ψ̃
}

∪ {(ϕ̃, ψ̃), (ϕ̃, ψ̃, v) | ϕ �A ϕ̃, ψ �B ψ̃, v ∈ Valϕ̃,ψ̃}
V0 = {(α1 ∧ α2, β1 ∨ β2, v), (α1 ∧ α2, ε, v), (γ, β1 ∨ β2, v), (γ, ε, σ)}

∪ {(α, β, v) | ⊥ 6= val(α, β) < v}
V1 = {(γ, ε, v), (γ, ε), (γ, ε, f), (α1 ∨ α2, β, v), (α, β1 ∧ β2, v)}

∪ {(α, β, v) | ⊥ 6= val(α, β) ≥ v}
E = {((α1 ∧ α2, β1 ∨ β2, v), (αi, βj, v)) | 1 ≤ i, j ≤ 2}

∪ {((α1 ∧ α2, ε, v), (αi, ε, v)) | 1 ≤ i ≤ 2}
∪ {((γ, β1 ∨ β2, v), (γ, βi, v)) | 1 ≤ i ≤ 2}
∪ {((γ, ε, σ), (γ, ε, σ, f))}
∪ {((γ, ε, v), (γ, ε))}
∪ {((γ, ε), (γ, ε, σ)) | σ ∈ Σ}
∪ {((γ, ε, σ, f), (δ(qi, σ), δ(uj, σ), f(i, j))) | f(i, j) > 0}
∪ {((α1 ∨ α2, β, v), (αi, β, v)) | 1 ≤ i ≤ 2}
∪ {((α, β1 ∧ β2, v), (α, βi, v)) | 1 ≤ i ≤ 2}

(5)

where α and β range over formulas in transitions of A and B, respectively, and γ
and ε range over formulas in ((ϕ)) ∩ [[Q]]∗ and ((ψ)) ∩ [[U ]]∗, respectively.

For (γ, ε) ∈ [[Q]]∗× [[U ]]∗ where γ is of form ∗([[q1]]./1p1 , . . . , [[qn]]./npn) and ε is
of form ∗([[u1]]./′

1p
′
1
, . . . , [[um]]./′

mp
′
m

), for Player 0 to demonstrate that ε simulates γ,
she is required to show that the probability of ε (and its partition) can be supported
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by γ. Accordingly, from (γ, ε) Player 1 chooses a letter σ ∈ Σ and moves to
configuration (γ, ε, σ). Then Player 0 chooses f : [n] × [m] → [0, 1] and moves
to configuration (γ, ε, σ, f). Such a configuration relates to the claim that qi is
related to uj with proportion f(i, j) and that f can be partitioned (using the {ai,j}
to support the different uj’s). Then, Player 1 chooses i and j such that f(i, j) > 0
and proceeds to (δ(qi, σ), δ(uj, σ), f(i, j)).2 Conjunctions and disjunctions are
resolved in the usual way until either reaching another configuration in [[Q]]∗ ×
[[U ]]∗×[0, 1], in which case the value f(i, j) is ignored (as f(i, j) ≤ 1), or until the
play reaches a configuration with a pre-seeded value v. Then, if f(i) ≤ v Player 0
has fulfilled her obligation and she wins. If f(i) > v, Player 0 failed and she
loses. An infinite play in G≤(((ϕ)), ((ψ))) is winning for Player 0 if ((ϕ))∩Q ⊆ F
implies ((ψ)) ∩ U ⊆ F . By Theorem 1, every c ∈ V has a value in {0, 1} for
Player 0. We set val(c) to that value.
Case 4. Let ((ϕ)) and ((ψ)) be MSCCs where ((ϕ)) has no Eu transitions or ∗∨
markings, and ((ψ)) has no Eb transitions. Stochastic weak game G≤(((ϕ)), ((ψ)))
is

V = {(ϕ̃, ψ̃) | ϕ �A ϕ̃, ψ �B ψ̃}
∪ ([[Q]]× U × Σ) ∩ (((ϕ))× ((ψ))× Σ)

V0 = {(α1 ∧ α2, β1 ∨ β2), (α1 ∧ α2, u), (γ, β1 ∨ β2)}
V1 = {(α1 ∨ α2, β), (α, β1 ∧ β2), (γ, u)}
Vp = ([[Q]]∗ × U × Σ) ∩ V
E = {((α1 ∧ α2, β1 ∨ β2), (αi, βj)) | 1 ≤ i, j ≤ 2}

∪ {((α1 ∧ α2, u), (αi, u)) | 1 ≤ i ≤ 2}
∪ {((γ, β1 ∨ β2), (γ, βj)) | 1 ≤ j ≤ 2}
∪ {((α1 ∨ α2, β), (αi, β)) | 1 ≤ i ≤ 2}
∪ {((α, β1 ∧ β2), (α, βi)) | 1 ≤ i ≤ 2}
∪ {((γ, u), (γ, u, σ))}
∪ {((γ, u, σ), (δ(qi, σ), δ(u, σ)))}

(6)

where κ((γ, u, σ), (δ(qi, σ), δ(u, σ))) = pi, in the implicit set comprehensions
α, αi and β, βi range over formulas in transitions of A and B (resp.), whereas γ
and u range over [[Q]]∗ and U (resp.). For probabilities pi that don’t sum up to 1,
we add a sink state (losing for Player 0) filling that gap.

An infinite play in G≤(((ϕ)), ((ψ))) is winning for Player 0 if ((ϕ)) ∩ Q ⊆ F

2We note that forcing Player 1 to choose the letter before Player 0 chooses the disjoint function
gives Player 0 more power. This is still strong enough to imply language containment and relaxes
the notion of simulation.
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implies ((ψ)) ∩ U ⊆ F . By Theorem 1 every configuration c has a value for
Player 0. We set val(c) to that value.

Intuitively, a state u measures the probability of some regular set of paths,
and a state [[q]]./p can restrict the immediate steps taken by a Markov chain as
well as enforce some regular structure on paths. Thus, this stochastic weak game
establishes the conditions under which a Markov chain accepted from [[q]]./p can
be also accepted from u.

The case when ((ϕ)) or ((ψ)) is a trivial MSCC is subsumed by at least one
of the four preceding cases. As for the acceptance game, this ambiguity is un-
problematic as the game values in G≤(((ϕ)), ((ψ))) are then determined by the
propagation of pre-seeded game values.

Definition 3 We say that B simulates A, denoted A ≤ B, if the value of configu-
ration (ϕin

a , ψ
in
b ), computed in the previous sequence of games, is 1.

We can now state and prove our main theorem on simulation of p-automata.

Theorem 6 For A and B p-automata over 2AP with no occurrence of ∗∨: If A and
B are finite, A ≤ B can be decided in EXPTIME and implies L(A) ⊆ L(B). If
A is AM for an M ∈ MCAP, then A ≤ B iff L(A) ⊆ L(B) for all B over 2AP.

Proof: Let A and B be finite p-automata. To see that A ≤ B can be decided
in EXPTIME, we make two observations: First, that the stochastic weak game
arising from the combination of a bounded MSCC with an unbounded MSCC or
from the combination of two unbounded MSCCs is linear in each of the automata
and can be solved in EXPTIME. Second, that the weak game arising from the
combination of two bounded MSCCs may be exponential due to the large number
of possible value assignment functions. Such a weak game can be solved in linear
time leading to an EXPTIME upper bound. As there are only linearly many such
games, the sequence of weak games and stochastic weak games can be solved in
EXPTIME.

To show the last claim of the theorem, we note that when A equals AM for
some M ∈ MCAP, the simulation game for AM ≤ B and the acceptance game
for M ∈ L(B) collapse to the same game. Thus, regardless of whether AM or B
is infinite-state we have AM ≤ B iff M ∈ L(B). And the latter is equivalent to
L(AM) ⊆ L(B) by Lemma 1 and Theorem 4.

It remains to show that A ≤ B implies L(A) ⊆ L(B) for finite-state A and
B. To that end, consider a Markov chain M = (S, P, L, sin) and two formulas ϕ
and ψ such that ϕ appears in the transition of A and ψ appears in the transition
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of B. Let GA and GB be the acceptance games to test whether M ∈ L(A) and
whether M ∈ L(B), respectively. We try to derive a result regarding GB from
the known results in GA and G≤. Thus, in GA and G≤ there are optimal strategies
for Player 0. We construct from them a strategy for Player 0 in GB. As we have
strategies in GA and G≤ that work against all possible strategies of Player 1, we
can “drive” Player 1 in these games in order to explore these optimal strategies.
It follows that we devise a strategy that answers actions of Player 1 in GB by
emulating Player 1 in GA and G≤ and using the strategies for Player 0 in GA and
G≤. This gives as a strategy for Player 0 in GB. In general, for a given play in
GB we construct matching plays in GA and G≤ that start from (s, ψ), (s, ϕ), and
(ϕ, ψ), respectively. We then show that the values obtained by the strategy we
construct satisfy val(s, ϕ) · val(ϕ, ψ) ≤ val(s, ψ). Thus, we prove that M ∈ L(A)
implies M ∈ L(B).

Suppose that the claim holds by induction for configurations (((ϕ̃)), ((ψ̃))),
where (((ϕ)), ((ψ))) <A,B (((ϕ̃)), ((ψ̃))).

1. If ϕ ∈ Q and ψ ∈ [[U ]]∗, then val(ϕ, ψ) = 0 and the claim holds trivially.

2. Suppose that both ϕ and ψ are in unbounded MSCCs. Then GM,((ϕ)), GM,((ψ)),
and G((ϕ)),((ψ)) are all stochastic weak games. To simplify notations we refer to
GM,((ϕ)) as GA, GM,((ψ)) as GB, and G((ϕ)),((ψ)) as G≤. We know that the optimal
strategy of Player 0 in GA secures at least val(s, ϕ). We have to show a strategy
in GB that secures at least val(s, ϕ) · val(ϕ, ψ). We note, however, that there
are no stochastic probabilistic condigurations in G≤. Thus, the combination of
the optimal strategy for Player 0 in G≤ with some strategy for Player 1 produces
a unique play. It follows that the value of this play must be at least val(ϕ, ψ).
Hence, either this play is infinite and winning (and val(ϕ, ψ) = 1) or this play is
finite, leading outside of G((ϕ)),((ψ)) and ending in a configuration whose value is at
least val(ϕ, ψ).

Consider the configurations (s, ϕ), (s, ψ), and (ϕ, ψ) in the games GA, GB,
and G≤, respectively.

If ϕ is a disjunction, (s, ϕ) is a Player 0 configuration in GA and (ϕ, ψ) is
a Player 1 configuration in G≤. Then, Player 0’s strategy in GA instructs her
to choose a disjunct ϕi of ϕ. As (ϕ, ψ) is a Player 1 configuration in G≤ we
can emulate Player 1 by choosing the successor configuration (ϕi, ψ). If ψ is a
conjunction, then (s, ψ) is a Player 1 configuration in GB and (ϕ, ψ) is a Player 1
configuration in G≤. Then, Player 1 chooses a successor (s, ψi) of (s, ψ) in GB.
We emulate Player 1 in G≤ by choosing the successor (ϕ, ψi) in G≤. If ϕ is a
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conjunction and ψ is not a conjunction, then (s, ϕ) is a Player 1 configuration
in GA and (ϕ, ψ) a Player 0 configuration in G≤. The strategy of Player 0 in
G≤ instructs Player 0 to choose a conjunct ϕi of ϕ. We emulate Player 1 in GA

by choosing the same conjunct leading to configuration (s, ϕi) in GA. If ϕ is
not a disjunction and ψ is a disjunction, then (ϕ, ψ) is a Player 0 configuration
in G≤ and (s, ψ) is a Player 0 configuration in GB. The strategy of Player 0 in
G≤ instructs her to choose a disjunct ψi of ψ. We use the same choice as the
strategy for Player 0 in GB leading to configuration (s, ψi). Finally, if ϕ is a state
of A and ψ is a state of B then (s, ϕ) and (s, ψ) are stochastic configurations in
GA and GB and (ϕ, ψ) is a Player 1 configuration in G≤. We advance G≤ by
emulating the choice of Player 1 for the letter L(s) advancing to configuration
(δ(ϕ,L(s)), δ(ψ,L(s))). In GA and GB the next configurations are of the form
(s′, δ(ϕ,L(s))) and (s′, δ(ψ,L(s))) for s′ ∈ succ(s).

It follows that the games GA and GB produce Markov chains that have the
same probability distributions. Furthermore, there is a 1-1 and onto mapping be-
tween paths in the Markov chain induced by GA to paths in G≤ and paths in the
Markov chain induced by GB. Consider three matching paths in the three respec-
tive games. If all three are infinite, then if the path is winning for Player 0 in
GA then by the winning condition of G≤ the path in GB is winning for Player 0
as well. If one of the paths is finite, then the end configurations of the paths
get out from G≤ and reach the triplet (s′′, ϕ′), (ϕ′, ψ′) and (s′′, ψ′). We deduce
that val(ϕ′, ψ′) in G≤ is at least val(ϕ, ψ). Furthermore, by our assumptions re-
garding all configurations in G≤ such that (ϕ′, ψ′) /∈ ((ϕ)) × ((ψ)) it follows that
val(s′′, ϕ′)·val(ϕ′, ψ′) ≤ val(s′′, ψ′). In particular, as val(ϕ′, ψ′) ≥ val(ϕ, ψ) it fol-
lows that val(s′′, ϕ′)·val(ϕ, ψ) ≤ val(s′′, ψ′). Therefore, the inequality in the claim
holds for every matching paths in the two Markov chains and thus it must hold for
the value of the Markov chains. Therefore, val(s, ϕ) · val(ϕ, ψ) ≤ val(s, ψ) as
required.

3. Suppose that both ϕ and ψ are in bounded MSCCs. Then GM,((ϕ)), GM,((ψ)),
and G((ϕ)),((ψ)) are all weak games. We again use the notations GA, GB, and
G≤. Consider the three configurations (s, ϕ), (ϕ, ψ) and (s, ψ). By definition
val(s, ϕ) ∈ {0, 1} and similarly val(ϕ, ψ) and val(s, ψ). If either val(s, ϕ) or
val(ϕ, ψ) is 0, then the claim holds trivially. Consider the case that val(s, ϕ) = 1
and val(ϕ, ψ) = 1. That is, both in GA and G≤ there is a winning strategy for
Player 0 such that regardless of how Player 1 resolves her choice Player 0 wins.
We now give a strategy for Player 0 in GB that establishes val(s, ψ) = 1.

Let ϕ = ∗([[q1]]./1p1 , . . . , [[qn]]./npn) and ψ = ∗([[u1]]./′
1p

′
1
, . . . , [[um]]./′

mp
′
m

). It
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follows that configuration (s, ϕ) is a Player 0 configuration in GA, configuration
(ϕ, ψ) is a Player 1 configuration inG≤ and configuration (s, ψ) is a Player 0 con-
figuration inGB. First, we make Player 1 inG≤ choose the successor (ϕ, ψ, L(s)).
Then, Player 0’s strategy in GA instructs her to choose successor configuration
(s, ϕ, f), where f : [n]× succ(s)→ [0, 1]. Player 0’s strategy in G≤ instructs her
to choose successor configuration (ϕ, ψ, L(s), f ′)), where f ′ : [n]× [m]→ [0, 1].
Configuration (s, ψ) is a Player 0 configuration in GB and we set her strategy to
choose the successor (s, ψ, f ′′), where f ′′ : [m] × succ(s) → [0, 1] such that for
every j ∈ [m] and every s′ ∈ succ(s) we have f ′′(j, s′) is the minimal value in
Vals,ψ that is at least maxi∈[n] f(i, s′) · f ′(i, j).

We have to show that f ′′ is disjoint. To that end, let aj,s′ =
∑

i∈[n] ai,s′ · ai,j .
First, one can see that for every s′ ∈ succ(s) we have∑

j∈[m]

aj,s′ =
∑
j∈[m]

∑
i∈[n]

ai,s′ · ai,j =
∑
i∈[n]

ai,s′
∑
j∈[m]

ai,j =
∑
i∈[n]

ai,s′ = 1

Second, consider some j ∈ [m]. Then,∑
s′∈succ(s)

aj,s′ · f ′′(j, s′) · P (s, s′)

=
∑

s′∈succ(s)

∑
i∈[n]

ai,s′ · ai,j

 · f ′′(j, s′) · P (s, s′)

≥
∑

s′∈succ(s)

∑
i∈[n]

ai,s′ · ai,j

 ·max
i∈[n]

(f(i, s′) · f ′(i, j)) · P (s, s′)

≥
∑

s′∈succ(s)

∑
i∈[n]

ai,s′ · ai,j · f(i, s′) · f ′(i, j) · P (s, s′)

=
∑
i∈[n]

∑
s′∈succ(s)

ai,s′ · ai,j · f(i, s′) · f ′(i, j) · P (s, s′)

=
∑
i∈[n]

ai,j · f ′(i, j) ·
∑

s′∈succ(s)

ai,s′ · f(i, s′) · P (s, s′)

./
∑
i∈[n]

ai,j · f ′(i, j) · pi ./′ pj

and ./ is > if for some i ∈ [n] we have ./i equals > and then ./′ is ≥, otherwise
either ./′ is > or ./′j is ≥ and the proof is complete.

With f ′′ established as being disjoint, we get back to the games. In GB,
Player 1 chooses j and s′ ∈ succ(s) and moves to state (s′, δ(uj, L(s)), f ′′(j, s′)).
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We emulate Player 1 in GA and make her choose the state qi such that f(i, s′) ·
f ′(i, j) is maximal and move to (s′, δ(qi, L(s)), f(i, s′)). We emulate Player 1
in G≤ as well and make her choose the states qi and uj leading to configuration
(δ(qi, L(s)), δ(uj, L(s)), f ′(i, j)).

Consider three matching plays produced by following this strategy. Suppose
that the plays stay inside the same MSCC in G≤ indefinitely. Then, as Player 0 is
winning in GA it follows that the play in GA is winning. As Player 0 is winning
in G≤ it follows that the play in G≤ is winning as well. However, this implies that
the sequence of states of B on the right-hand-side of the configurations in G≤ is
winning. Thus, the infinite play in GB is winning as well.

Suppose that the plays exit the MSCC in G≤ and reach the triplet of con-
figurations (s′′, ϕ′′, v1), (s′′, ψ′′, v2), and (ϕ′′, ψ′′, v). By induction, val(s′′, ϕ′′) ·
val(ϕ′′, ψ′′) ≤ val(s′′, ψ′′) holds. Furthermore, we have to show that val(s′′, ψ′′) ≥
v2. Let (s′, ϕ′), (s′, ψ′) and (ϕ′, ψ′) be the last configurations that are part of
the MSCC before reaching the above triplet of configurations. It follows that
val(s′′, ψ′′) ∈ Vals′,ψ′ . By the choices of f , f ′ and f ′′ we know that v is the mini-
mal value in Vals′,ψ′ that is at least maxi∈[n] f(i, s′′) · f ′(i, j). In addition, the last
choice in GA was exactly the state qi such that i is maximal. As GA and G≤ are
won, we know that val(s′′, ϕ′′) ≥ v1 and that val(ϕ′′, ψ′′) ≥ v. It follows that
val(s′′, ϕ′′) · val(ϕ′′, ψ′′) ≥ v1 · v. But, v2 is the minimal possible value in Vals,ψ
that is at least v1 · v. Thus, val(s′′, ψ′′) ≥ v2.

4. Suppose that ϕ is in a bounded MSCC and ψ is in an unbounded MSCC. Then,
GM,((ϕ)) is a weak game and G((ϕ)),((ψ)) and GM,((ψ)) are stochastic weak games.
As before, we use the notations GA, GB, and G≤. As GA is a weak game, the
case that val(s, ϕ) = 0 is not interesting. Thus, we assume that val(s, ϕ) = 1. It
follows that in GA Player 0 has a winning strategy such that all possible plays in
GA are winning for Player 0.

Given a strategy of Player 1 in GB, we show how to use the winning strategies
of Player 0 in GA and G≤ to produce a winning strategy for Player 0 in GB.
Consider a triplet of configurations (s, ϕ), (ϕ, u), (s, u), where ϕ ∈ [[Q]]∗ and
u ∈ U . The configurations (ϕ, u) and (s, u) are probabilistic configurations in
their stochastic games. The successors of configurations of the form (ϕ, u) in G≤
are of the form (δ([[qi]]./ipi , L(s)), δ(u, L(s))). The successors of configurations of
the form (s, u) inGB are of the form (s′, δ(u, L(s))), where s′ ∈ succ(s). In order
to continue using the association between the three games (and the strategies in
GA andG≤) to give a strategy for Player 0 inGB we have to associate succeessors
of (s, u) to successors of (ϕ, u). However, it is not clear which mapping is most
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beneficial. Hence, we leave this mapping option open for a while. Instead of
elaborating GB and G≤ to Markov chains (by fixing strategies for Player 0 and
Player 1) we elaborate them to Markov decision processes. Thus, based on the
different mapping options, Player 0 is going to have multiple ways to proceed
in GB and Player 1 is going to have multiple ways to proceed in G≤. These
MDPs capture all possible evolutions of plays inGB andG≤ according to possible
mapping choices between configurations in G≤ and GB. We then use these MDPs
to prove that the claim holds.

Consider three configurations (s, ϕ′) in GA, (ϕ′, ψ′) in G≤, and (s, ψ′) in GB.
If ψ′ is a conjunction, then (s, ψ′) is a Player 1 configuration inGB. It follows that
Player 1 chooses a conjunct ψi of ψ′ and proceeds to configuration (s, ψi). The
configuration (ϕ′, ψ′) is a Player 1 configuration in G≤. We emulate Player 1 in
G≤ by making her choose (ϕ′, ψi). If ψ′ is a disjunction, then (s, ψ′) is a Player 0
configuration in GB. There are now a few cases:
• If ϕ′ is a conjunction, then (ϕ′, ψ′) is a Player 0 configuration in G≤. Then,

Player 0’s strategy in G≤ instructs her to choose a conjunct ϕi of ϕ′ and
proceed to configuration (ϕi, ψ

′). We note that configuration (s, ϕ′) is a
Player 1 configuration inGA and we emulate Player 1 by making her choose
(s, ϕi).
• Ifϕ′ is a disjunction, then (s, ϕ′) is a Player 0 configuration inGA. Player 0’s

winning strategy in GA instructs her to choose a disjunct ϕi and proceed to
(s, ϕi). Configuration (ϕ′, ψ′) is a Player 1 configuration in G≤. We emu-
late Player 1 in G≤ and make her choose (ϕi, ψ

′).
• If ϕ′ is in [[Q]]∗ then (ϕ′, ψ′) is a Player 0 configuration in G≤. Then, the

strategy of Player 0 in G≤ instructs her to choose a disjunct ψi of ψ′ and
proceed to configuration (ϕ′, ψi). We set Player 0’s strategy in GB to make
the same choice and proceed to configuration (s, ψi).

The only remaining case is where (ϕ′, ψ′) ∈ [[Q]]∗ × U ∩ V . We denote
ϕ′ = ∗([[q1]]./1p1 , . . . , [[qn]]./npn) and ψ′ = u. The configuration (s, ϕ′) in GA

is a Player 0 configuration, the configuration (s, u) in GB is probabilistic, and
the configuration (ϕ′, u) in G≤ is a Player 1 configuration. We emulate Player 1
in G≤ by making her choose L(s) proceeding to the probabilistic configuration
(ϕ′, u, L(s)). The strategy of Player 0 in GA instructs her to choose a disjoint
function f : [n] × succ(s) → [0, 1] and proceed to (s, ϕ′, f). Let {ai,s′} be the
witnesses to the disjointness of f .

Consider a location s′ that is chosen with probability P (s, s′) in GB. Now, for
every possible index i such that ai,s′ > 0 the successor (s′, δ(qi, L(s)), f(i, s′)) is
a possible successor of (s′, ϕ′, f) in GA. Also, (δ(qi, L(s)), δ(u, L(s))) is a suc-
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cessor of (ϕ′, u, L(s)) in G≤ and the probability to get to it is pi. Here, we make
multiple possible choices of continuing in the games, giving rise to MDPs (with a
matching between the choices in them). Consider all indices i such that ai,s′ > 0.
It follows that for every such index there is a way to continue unraveling the
plays by making Player 1 in GA choose the successor (s′, δ(qi, L(s)), f(i, s′)) and
continuing to configurations (δ(qi, L(s)), δ(u, L(s))) inG≤ and (s′, δ(u, L(s))) in
GB. Notice that the choice in GB is implicitly based on the choice of f in GA. As
the future elaboration of the strategy in GB depends on the association between
configurations in the three games the choice of an index i such that ai,s′ > 0 is
effectively also a choice in GB that determines the way the strategy is extended.

By using these strategies and these associations between the games, this ef-
fectively creates from GB and G≤ MDPs where the choices are angelic in GB

and demonic in G≤. That is, the actual value of GB is the best possible value in
the MDP arising from GB and the value in G≤ is the worst possible value in G≤.
Hence, it is enough to show one choice such that the value in the MDP arising
from GB satisfies the requirement of the claim. Indeed, the actual value in GB

could only be higher while the actual value in G≤ could only be lower.
Consider now three configurations (s, ϕ′), (ϕ′, ψ′), and (s, ψ′), and the result-

ing MDPs from (ϕ′, ψ′) and (s, ψ′). By the construction of the strategy, every play
starting in (s, ψ′) is associated with plays that start in (s, ϕ′) and (ϕ′, ψ′) such that
at every stage the three configurations use the same state of the Markov chain and
formulas in the transitions of A and B. We consider four cases:

4.1. A triplet of configurations (s, ϕ′), (ϕ′, ψ′), (s, ψ′) where (ϕ′, ψ′) is not in the
equivalence class of (((ϕ)), ((ψ))). By induction val(s, ψ′) ≥ val(s, ϕ′)·val(ϕ′, ψ′).

4.2. A triplet of configurations (s, ϕ′), (ϕ′, ψ′), (s, ψ′) with some choice in the
MDP that arises fromGB where all plays starting in (ϕ′, ψ′) remain in (((ϕ)), ((ψ)))
and are winning for Player 0 in G≤. The matching choice of plays starting from
(s, ψ′) are winning for Player 0 in GB. Indeed, if this were not the case, there
would be a play in GB that is losing. It follows that the corresponding play in G≤
does not satisfy the acceptance of A and that the play in GA is losing. However
GA is a weak game and so this is impossible.

4.3. A triplet of configurations (s, ϕ′), (ϕ′, ψ′), (s, ψ′) where, for all choices in
the MDP that arises from G≤, plays starting in (ϕ′, ψ′) remain in (((ϕ)), ((ψ))) and
are losing for Player 0 in G≤. One can see that then val(s, ψ′) ≥ 0.
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4.4. A triplet (s, ϕ′), (ϕ′, ψ′), (s, ψ′) with (ϕ′, ψ′) ∈ (((ϕ)), ((ψ))) where (i) for no
choice in the MDP arising from G≤ are all paths winning for Player 0 and (ii) for
all such choices the probability for Player 0 to win is positive. As automaton and
Markov chain are finite, so are the resulting MDPs. It follows that the probability
of winning in G≤ equals the probability of getting to one of the previous three
types of configurations. That is, we have the MDP resulting from GB and we are
searching for a strategy for Player 0 with reachability objective to reach one of
the previous end components. We show that the probability to reach one of the
three previous types of configurations in n steps satisfies the requirements of the
Theorem, for every n. The requirement of the claim will follow. For that, we
compute the probability Pn to reach from a configuration (ϕ, ψ) in G≤ and from
a configuration (s, ψ) in GB one of these three types of configurations in n steps.
We compute Pn by induction starting from P0.

For each triplet (s′, ϕ′), (ϕ′, ψ′), (s′, ψ′) we let P0(ϕ′, ψ′) be val(ϕ′, ψ′) and
P0(s′, ψ′) be val(s′, ψ′) if (ϕ′, ψ′) is one of the three types of configurations men-
tioned above. Let P0(ϕ′, ψ′) and P0(s′, ψ′) be 0, otherwise.

Let ϕ′ = ∗([[q1]]./1p1 , . . . , [[qn]]./npn) and consider triplet (s, ϕ′), (ϕ′, ψ′), (s, ψ′)
where ψ′ = u, P0(ϕ′, ψ′) = P0(s, ψ′) = 0 but there are s′ ∈ succ(s) and i
such that P0(δ(qi, L(s′)), δ(u, L(s))) > 0 and P0(s′, δ(u, L(s′))) > 0. Then, P1

satisfies the requirement reasoned as follows. First,

P1(s, u) =
∑

s′∈succ(s)|∃i∈[n] : ai,s′>0

P (s, s′)P0(s′, δ(u, L(s)))

For every s′ let is′ be such that P0(δ(qis′ , L(s)), δ(u, L(s)))·val(s′, δ(qis′ , L(s))) is
maximal among all i ∈ [n] such that ai,s′ > 0. We know that P0(s′, δ(u, L(s))) ≥
P0(δ(qis′ , L(s)), δ(u, L(s)))·val(s′, δ(qis′ , L(s))). Indeed, if P0(δ(qis′ , L(s)), δ(u, L(s))) >
0 this holds by our proof for P0. If P0(δ(qis; , L(s)), δ(u, L(s))) = 0 then this holds
trivially. We obtain

P1(s, u) ≥∑
s′∈succ(s)|∃i∈[n] : ai,s′>0

P (s, s′) · P0(δ(qis′ , L(s)), δ(u, L(s))) · val(s′, δ(qis′ , L(s)))
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By f being disjoint, we have
∑

i∈[n] ai,s = 1. Therefore:

P1(s, u) ≥∑
s′∈succ(s)|∃i∈[n] : ai,s′>0

P (s, s′) · (
∑
i∈[n]

ai,s′) · P0(δ(qis′ , L(s)), δ(u, L(s))) · val(s′, δ(qis′ , L(s)))

But is′ maximizes P0(δ(qis′ , L(s)), δ(u, L(s))) · val(s′, δ(qis′ , L(s))), so that

P1(s, u) ≥∑
s′∈succ(s)|∃i∈I : ai,s′>0

P (s, s′) ·
∑
i∈[n]

ai,s′ · P0(δ(qi, L(s)), δ(u, L(s))) · val(s′, δ(qi, L(s)))

From the inequalities val(s′, δ(qi, L(s))) ≥ f(i, s′), which hold from the choice
of f and win in GA this yields

P1(s, u) ≥∑
s′∈succ(s)|∃i∈[n] : ai,s′>0

P (s, s′) ·
∑
i∈[n]

ai,s′ · f(i, s′) · P0(δ(qi, L(s)), δ(u, L(s)))

Moving P (s, s′) into the second sum and changing the order of summation,
we obtain

P1(s, u) ≥∑
i∈[n]

P0(δ(qi, L(s)), δ(u, L(s))) ·
∑

s′∈succ(s)|∃i∈[n] : ai,s′>0

f(i, s′) · ai,s′ · P (s, s′)

Crucially, since f is disjoint, we get the inequalities
∑

s′∈succ(s)|∃i∈[n] : ai,s′>0 f(i, s′)·
ai,s′ · P (s, s′) ≥ pi. Notice that the successors s′ that are not included in this sum
have ai,s′ = 0 for all i. Hence, adding other successors s′ to the sum does not
change anything and indeed the successors we considered in the equation are suf-
ficient. We thus obtain

P1(s, u) ≥
∑
i∈I

P0(δ(qi, L(s)), δ(u, L(s))) · pi

where the righthand side is P1(ϕ′, u) as desired.
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Assume now that the claim holds for all configurations and for Pn. That is, the
probability to reach end components, where values are defined as before, satisfies
the requirement of the claim for reachability in n steps. We now show that it
holds for reachability in n + 1 steps, i.e., for Pn+1. For a triplet (s, ϕ′), (ϕ′, ψ′),
(s, ψ′), the strategy defined makes most such configurations deterministic in their
respective MDPs. The only interesting case is when ϕ′ ∈ [[Q]] and ψ′ ∈ U . In this
case (ϕ′, ψ′) and (s, ψ′) are probabilistic configurations and the strategy above
includes some choice in the matching between successors of (ϕ′, ψ′) and (s, ψ′).
Let ϕ′ = ∗([[q1]]./1p1 , . . . , [[qn]]./npn) and ψ′ = u. Then,

Pn+1(s, u) =
∑

s′∈succ(s)

P (s, s′) · Pn(s′, δ(u, L(s)))

Recall that the way to extend the game from configuration (ϕ′, u) – matching a
move to δ(qi, L(s)) with the move to (s′, δ(u, L(s))) – depends on which ai,s′ are
positive in a disjoint function f . We thus have:

Pn+1(ϕ′, u) =
∑
i∈[n]

max
i:ai,s′>0

val(s′, δ(qi, L(s))) · Pn(δ(qi, L(s)), δ(u, L(s)))

By induction, for possible matching triplet (s, ϕ′), (ϕ′, ψ′), and (s, ψ′) we have:

Pn(s, ψ′) ≥ val(s, ϕ′) · Pn(ϕ′, ψ′)

We then prove the same inequality for Pn+1. We concentrate on the only in-
teresting case, where ϕ′ = ∗([[q1]]./1p1 , . . . , [[qn]]./npn) and ψ′ = u. The desired
inequality for Pn+1(s, u) is derived as follows. First,

Pn+1(s, u) =
∑

s′∈succ(s)

P (s, s′) · Pn(s′, δ(u, L(s)))

For every s′ let is′ be such that val(s′, δ(qis′ , L(s))) · Pn(δ(qis′ , L(s)), δ(u, L(s)))
is maximal among all i ∈ [n]. By induction

Pn(s′, δ(u, L(s))) ≥ val(s′, δ(qis′ , L(s))) · Pn(δ(qis′ , L(s)), δ(u, L(s)))

and we infer

Pn+1(s, u) ≥
∑

s′∈succ(s)

P (s, s′) · val(s′, δ(qis′ , L(s))) · Pn(δ(qis′ , L(s)), δ(u, L(s)))
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By f being disjoint, we have
∑

i∈[n] ai,s′ = 1, so

Pn+1(s, u) ≥∑
s′∈succ(s)

P (s, s′) · (
∑
i∈[n]

ai,s′) · val(s′, δ(qis′ , L(s))) · Pn(δ(qis′ , L(s)), δ(u, L(s)))

But is′ maximizes val(s′, δ(qis′ , L(s))) · Pn(δ(qis′ , L(s)), δ(u, L(s))), so that

Pn+1(s, u) ≥∑
s′∈succ(s)

P (s, s′) ·
∑
i∈[n]

ai,s′ · val(s′, δ(qi, L(s))) · Pn(δ(qi, L(s)), δ(u, L(s)))

From the inequality val(s′, δ(qi, L(s))) ≥ f(i, s′), which holds from the choice of
f and win in GA, this yields

Pn+1(s, u) ≥
∑

s′∈succ(s)

P (s, s′) ·
∑
i∈[n]

ai,s′ · f(i, s′) · Pn(δ(qi, L(s)), δ(u, L(s)))

After a change of summation order, we get

Pn+1(s, u) ≥
∑
i∈[n]

Pn(δ(qi, L(s)), δ(u, L(s))) ·
∑

s′∈succ(s)

ai,s′ · f(i, s′) · P (s, s′)

Again, using that f is disjoint, we obtain the inequalities
∑

s′∈succ(s)

ai,s′ · f(i, s′) ·

P (s, s′) ≥ pi from which we infer

Pn+1(s, u) ≥
∑
i∈[n]

Pn(δ(qi, L(s)), δ(u, L(s))) · pi

where the righthand side is the desired Pn+1(ϕ′, u). 2

We now get sound and complete verification of model checks through simula-
tions, in the sense of Dams and Namjoshi [19].

Corollary 2 For all infinite Markov chains M in MCAP and PCTL formulas φ
over AP: M |= φ iff there is a finite p-automaton A with AM ≤ A and A ≤ Aφ.
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To see this, every such A implies L(AM) ⊆ L(A) and L(A) ⊆ L(Aφ) by both
parts of Theorem 6. Thus, M |= φ holds by Theorems 4 and 5. By construction,
for every Markov chain M the automaton AM contains only ∗-transitions. Simi-
larly, for every PCTL formula φ we have Aφ does not contain occurrences of ∗∨. It
follows that simulation (without ∗∨) is sufficient.

Conversely, if there is no such A, then Aφ can also not be such an A. As
Aφ ≤ Aφ this implies AM 6≤ Aφ and so L(AM) 6⊆ L(Aφ). So there is some
M ′ ∼M with M ′ 6|= φ. Since M ′ ∼M , we get M 6|= φ as well by Lemma 1.

This method for decidingM |= φ via simulations is thus complete in the sense
of [19] – to our knowledge the first such result for PCTL and Markov chains.

7. Related and Future Work

Automata for coalgebras [32], for the functor whose coalgebras are Markov
chains, have a corresponding logic that enjoys the finite model property. Since
PCTL does not have that property, these automata cannot express PCTL – notably
its path modalities. Probabilistic processes [7] use automata-theoretic techniques
for refinement checking only. Probabilistic automata [33] give only rise to prob-
abilistic languages of non-probabilistic models, for example the language of all
Kripke structures that are accepted with probability at least 1

2
. And probabilistic

verification of specifications written in linear-time temporal logic (LTL) [4] uses
automata-theoretic machinery but cannot reason about combinations of LTL oper-
ators and probability thresholds as found in PCTL. The stochastic games of [34]
abstract Markov decision processes as a 2-person game where two sources of non-
determinism, stemming from the MDP and the state space partition respectively,
are controlled by different players. This separation allows for more precision of
abstractions but is not complete in the sense of [19], as shown in [35]. In [24], a
Hintikka game was defined for satisfaction, i.e. whether a Markov chain satisfies
a PCTL formula. That game resembles our acceptance game for p-automata that
are embeddings of PCTL formulas.

Concurrently with our own work, Caillaud et al. introduced constraint Markov
chains as a specification framework for Markov chains [36]. They generalize in-
terval Markov chains, where every transition is labeled by a possible interval of
probabilities [37]. A concrete Markov chain implements an interval Markov chain
if a bisimulation game between the two can be carried out in a way that proba-
bilities fall in intervals. Constraint Markov chains have formulas constraining the
probabilities of successors, and the implementation relation is defined through a
game that is similar to those showing implementations of interval Markov chains.
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They show that the resulting theory supports the notions of specification, imple-
mentation, refinement, conjunction, and parallel composition. The constraints
themselves are akin to our ∗-operator, also relate to disjoint probabilities, but do
not have the ability to use parts of the probability of the same successor for differ-
ent purposes. Furthermore, constraint Markov chains cannot reason about paths
in the Markov chain and, as a consequence, have no relation to model checking.
It would be interesting to explore a combination of ∗-operators with constraints,
leading, perhaps, to a normal form of possible transitions.

7.1. Future work
p-automata suggest a new approach to understanding the open problem of de-

cidability of PCTL satisfiability. Algorithms for checking emptiness of alternating
tree automata and solving satisfiability of monadic second-order logic, µ-calculus,
CTL*, and dynamic logic convert automata into non-deterministic versions, for
which non-emptiness is then decidable with standard techniques. We mean to
investigate whether a notion of non-deterministic p-automata exists such that (i)
all p-automata can be converted into non-deterministic versions, and (ii) all non-
deterministic p-automata have decidable non-emptiness checks. We aim to de-
velop a generalization of stochastic games such that acceptance of input for non-
uniform p-automata can be decided by solving a single such game, as opposed to a
sequence of such games. We also want to research the effectiveness of p-automata
in supporting counter-example guided abstraction refinement.

8. Conclusions

We presented a novel kind of automata, p-automata, that read in an entire
Markov chain and either accept or reject that input. We showed how this accep-
tance can be decided by a series of stochastic weak games and weak games, at
worst case exponential in the size of the automaton and of the Markov chain.

We proved p-automata to be closed under Boolean operations, that language
containment and emptiness are equi-solvable, and that a p-automaton’s language
is closed under bisimulation. Bisimulation equivalence classes of every Markov
chain as well as the set of models of every PCTL formula were shown to be ex-
pressible as such languages. In particular, the complexity of the acceptance game
matches that of probabilistic model checking for such formulas. Therefore the
emptiness, universality, and containment of p-automata seem all to be tightly re-
lated to the open problem of decidability of PCTL satisfiability.
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We developed a (fair) simulation between p-automata that stem from Markov
chains or PCTL formulas. We proved simulation to be decidable in EXPTIME
and to under-approximate language containment. In particular, p-automata are a
complete abstraction framework for PCTL: if an infinite Markov chain satisfies a
PCTL formula, there is a finite p-automaton that abstracts this Markov chain and
whose language is contained in that of the p-automaton for that PCTL formula.
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