Hintikka Games for PCTL on Labeled Markov Chains

Harald Fecher Michael Huth  Nir Piterman Daniel Wagner
Informatik, Universitat Freiburg Dept. of Computing, Imperial College London
fecher @nformati k. uni -frei burg. de {mrh, nir.piterman, dwagner }@loc.ic.ac. uk
Abstract truth values by casting such path probabilities through the

use of thresholds, e.qg. “with probability at leage, atomic
We present Hintikka games for formulae of the proba- propertyg remains to be true until atomic propertybe-

bilistic temporal logic PCTL and countable labeled Markov comes true”. This casting also allows the approximation of
chains as models, giving an operational account of the de- the probabilities of path sets: if an incremental compatati
notational semantics of PCTL on such models. Winning of the above probability attains a valae1/2, the compu-
strategies have a decent degree of compositionality in thetation may safely and conclusively terminate.
parse tree of a PCTL formula and express the precise evi- A source of complexity in probabilistic model checking
dence for truth or falsity of a PCTL formula. We also prove of PCTL on finite-state labeled Markov chains is that the
the existence of monotone winning strategies that are @lmos familiar fixed-point characterization of Until formulae
finitely representable. Thus this work serves as a foundatio
for witness and counterexample generation in probabilisti gUr=rv(gA X(qUr)) 1)
model checking and for a uniform treatment of abstraction- . s ) .
based probabilistic model checking through games. — saying that “either is true at present; of is true at

This work is also of independent interest as it displays present and the Until formula is true at the next state” -
a subtle interplay betweeniBhi acceptance conditions on cannot be carried through the casting process of thresholds

infinite plays, the strictness or non-strictness of probabi " PCTL in that same simple manner, since probabilistic

ity thresholds in Strong and Weak Until PCTL formulae in d€Pendencies may not reflect this compositional interpreta

“GreaterThan” normal form, and a finite-state approxima- tion of Boolegn conneptwes. This impediment to efficient

tion lemma for Strong Until formulae with strict threshalds  M0del-checking algorithms poses also an obstacle to the
synthesis of meaningful and compact evidence for the truth

or falsity of s € |¢[as. This is in striking contrast to the sit-

uation for the linear-time temporal logic LTL, where such

) evidence may be given by a finite state path, possibly fol-

1 Introduction lowed by a finite state path that loops [8, Chap. 9]. This is

furthermore in contrast to the situation for branchingdim

Motivation. Countable labeled Markov chains [14, 6] are temporal logics such as CTL and thecalculus, where such

an important class of stochastic processes for the modelingevidence is attainable by a characterizatiorsof |¢| s

of probabilistic systems. PCTL [12] is a probabilistic tem- through 2-person games that are determined (i.e. won by

poral logic whose formulae can express practically rele- exactly one of the two players), and through the synthesis

vant specifications, e.g. “with probability at ledst 1/100, of a winning strategy for the resulting game [9].

a device will be elected leader” may be a requirementwithin Finitary evidence. The benefit of winning strategies as

a telecommunications standard such as [1], and can be writcomplete and rigorous evidence of truth or falsity is ap-

ten as[tt UsomeleaderElected]>; 1,199 in PCTL. A de- pealing but winning strategies, as objects, may consume too
notational semanticks| s, over labeled Markov chaind/ much space or their synthesis may require too much time.
then renders truth or falsity of, where[¢] is the set of ~ One way in which to address this is to approximate a win-
states inM at whichg is true. ning strategy with a compact object that still retains some

Algorithms that compute this truth value require suffi- but not necessarily all evidence of truth or falsity. Altefn
cientinformation about the probabilities of sets of pattedt  tively, one may seek abstract representations of the wgnnin
satisfy path sub-formulae @fsuch as “atomic propertyis strategy that won’t lose any precision in terms of the evi-
true until atomic property becomes true” (writteg U r in dence of truth or falsity captured by the winning strategy.
linear-time temporal logic). PCTL formulae attain Boolean Conservative abstraction techniques (e.g., [18] and [8,



Chap. 13]) appear to fall into the latter category. If state games. For example, Verifier needs to make choices at dis-
in model A abstracts statein modelM such that € [¢] 4 junctions and existential quantifiers. A strategys win-
impliesc € [#]ar, then a winning strategy for a game that ning for a player if all plays played according to the choices
captures: € |¢] 4 may serve as complete evidence for the offered by strategy are won by that player. Since all plays
truth of ¢ € |¢[as. In particular, if A is finite-state then  for first-order logic are finite, classical game theory gnara
the game and any winning strategies fore |¢]4 may tees that gameS (M, ¢) are determined: exactly one of the
be representable as finitary objects. Conversely, if wignin two players has a winning strategy for that game. It is well
strategies in a game fere |¢[as have finitary representa-  known that in ordinary set theory ZF the assumption of the
tion even for infinite-state model&, such a representation Axiom of Choice is equivalent to that

may be interpretable as a finite-state madéhat abstracts
M and satisfies. (Correspondence) “Verifier wins the game

In that context, it is of interest that for existentially quia G(M, ¢)"if, and only if, “M = ¢ holds”.

tified formulae of CTL such finite-state abstractions won’t
existin general for abstractions that are like 3-valuegkei
structures [4]. It is a routine observation that the example

of *incompleteness” of abstraction in loc. cit. carry over t the composition of winning strategies for Until formulae

the world of labeled Markov chains and 3-valued, finite- _ . . s
state, labeled Markov chains as abstractions as soon as th\(’avIth non-strict probability thresholds from countably rgan

abstraction relation preserves the pasitivity of path prob winning strategies for Until formulae with strict probabil
bilities, e.g. as is the case for the probabilistic simolatf ity thresholds in provindCorrespondence)in our setting

Larsen & Skou [19 of PCTL and countable labeled Markov chains. This de-
arse ou[19). pendency appears to vanish for finite-state models and for

The work reported here means to establish firm foun- T formulae whose thresholds are never in control of the
dations on which questions about the existence and comypjyersal Refuter. The latter is of interest siragy PCTL

putation of finitary evidence of truth of PCTL formulae, qrmyia can be rewritten with the help of small perturba-
questions about the existence of finite-state abstradii@is  jons of thresholds that won't diminish their practicalwel
witness such truth, and questions about connections beyq gpecifiers but avoid the need for universally interpreted
tween witnessing abstractions and winning strategies can,ohapility thresholds. Our games retain to idea of Verifier
be phrased and studied. and Refuter as being existential and universal players (re-
Hintikka games. We now sketch the idea behind Hintikka spectively), and of both having to make choices of either
games [13]. The semantics of first-order logic over models syb-formulae or of structural elements, which for PCTL
is defined as a Tarskian notion of truts: is a formally de-  turn out to besub-distributionghat approximate transition
fined predicate between models and formulae of first-orderdistributions in labeled Markov chains.
logic and “propertyg is true in model)” is defined as  Contributions of paper. We formulate 2-person Hintikka
“M = ¢ holds". For each moded, a Hintikka game  games between a Verifier and a Refuter for stated PCTL
G(M, ¢) involves two players, Verifier (who wants to prove  formula ¢ in a countable, labeled Markov chaif. We
that M satisfiesp) and Refuter (who wants to prove thiat prove that these games are won by Verifier if, and only if,
does not satisfy). For example, in gam& (M, 1 A ¢2) states satisfiesp in M; and won by Refuter if, and only
Refuter has initial control and chooses a move to the contin-jf, state s does not satisfyp in /. In particular these
uation games (M, ¢1) or a move to the continuation game games are determined. We then show that winning strate-
G(M, ¢2). So Refuter is a “universal” player. Dually, in  gies can be assumed to have structural properties that make
gameG (M, 3z ¢), Verifier is in initial control, chooses an  them amenable to finitary representations. We also show
elementa of the structure inM/, bindsx to a, and moves  that such finitary representations have resemblaneite-
to the continuation gamé& (M [z — al, ¢) for the model  stateabstract models that witness truth of a PCTL formula
that is M but with z interpreted as:. So Verifier is an on the model they abstract.
“existential” player. Sequences of such moves generateQutline of paper. In Section 2 we discuss related work. In
plays which are always finite since the continuation gamesSection 3 we review the familiar denotational semantics of
involve proper subformulae. Eventually, a game of form PCTL for countable labeled Markov chains as models, and
G(M, R(t1,...,t2)) is reached fonary relation symboR prove a finite-state approximation lemma for (strong) Until
and termg;. Verifier wins that game if the interpretation of  formulae with non-strict thresholds under that semantics.
the tuple of terms inV/ is contained in the interpretation of  Section 4 the game semantics for PCTL over countable la-
relation R in M; otherwise Refuter wins. beled Markov chains is being defined and these games are
Strategies for both players are objects that allow them shown to be determined and to capture precisely the deno-
to make necessary choices for determining continuationtational semantics of PCTL. In Section 5 we discuss what

holds. So one gets an operational and “small-step” account
of truth in first-order logic from the Axiom of Choice.
In this paper we also rely on the Axiom of Choice for



structural properties one may assume in winning strategies This ability of witnessing truth in finite-state abstrac-
for our games. A discussion of the relevance of our resultstions seems to disappear for branching-time and probabilis
to finding finite abstractions is contained in Section 6, and tic logics as soon as certain fixed-points are added to the

we conclude in Section 7. logic. In [4] one finds an infinite-state Kripke structurettha
satisfies arexistentiallyquantified Weak Until formula but
2 Related work for which no simulating 3-valued variant of Kripke struc-

ture satisfies that Weak Until formula, for any sensible no-
Model checking f | fth lculus 1171 h tion of simulation: there is no finite-state simulation odth
odel checking formulae of the-calculus [17] has an infinite-state Kripke structure that satisfies this formula

efﬁqent reduction to determining thg winning regions in ;¢ easily seen that these results carry over into the world
parity games [9], 2-person games with a parity acceptance

" o . . of labeled Markov chains if simulations preserve positive
condition for infinite play_s. Parity games are form_ularted probabilities of path sets, as is e.g. the case for the proba-
dependentljrom _the_ notion of model fand semantics of the bilistic simulation of Larsen & Skou [19]. Note that in the
_u—calculus, butwinning regions of parity games are express—settmg of labeled Markov chains the existential and univer
|b!e .through mo;lel checks qi-calcgllus. formulae. ~Our . sal path quantifier collapse into a single probabilistic.one
Hintikka games, in contrast, have Buchi acceptance condi-

tions and are formulated in terms of labeled Markov chains " [11] finite-state (discrete-time) labeled Markov chains
and the familiar PCTL semantics. and probabilistic CTL (PCTL) are considered in their stan-

In [10] a quantitativey-calculus with an explicit dis- dard semantics, and different forms of evidence being de-

count operator, and with models whose transitions are la-'€l0Ped for documenting the falsity ofa PCTL formulain a

beled with discount factors has non-negative real numbersgiven state. One form computes those paths that contribute

as results of model checks. Quantitative parity games are0St tO the falsity of a formula.  Another form computes

developed and shown to correspond to model checks formost probable subtrees t_o gain more precise diagnos'tic evi-
formulae of the quantitative-calculus in the same manner 9€NCe- Both forms, studied for Strong and Weak Until, are
as for their qualitative variants above. However, winning supportgd with shortest-pat.h type algorithms for C,Om@t'n
strategies are no longer memoryless in general as they maguch evidence. In [2] the line of work from [11] is being
have to “make up” for discount factors encountered en-routepUShed into the world of Markov dec_:|_5|on processes, with a
in a play — even in games with finite set of configurations. focus on upwards-bounded probability thresholds in PCTL
Another quantitative-calculus (qM) is studied in [21], folrmulae —whereas we §tudy the downwards-bounde:'d case
where models contain both non-deterministic and proba-W'thOUt loss of generality. The shortest-path algorithms

bilistic choice but no discounting. A denotational semesnti Ifr|] [2] sre then co(rjnblnedf W'thh AND/OR treheﬁ_lnhordelr 0
generalizes Kozen’s familiar semantics to that logic. For liter the computed set of paths to one with high explana-
any finite-state model and formula of gMhe authors pro-

tory value, and to compute the probability of that filtered
pose a probabilistic analogue of parity games, show thst thi path set. We believe that our Hintikka games provide a suit-
game is determined, prove that its game value equals tha

9ble foundation for understanding the trade-off between th

of the denotational semantics for the model and formula in Pr€cSion of extant and future forms of evidence and the

question, and establish that there exist memoryless wgnnin COMPIexity of their supporting algorithms.
strategies in this game. Games are an attractive candidate for describing model

The interplay of probabilistic approximation and logic, checks, abstraction between models, and model checks on
originally investigated in [15, 16], is being explored for abstract models within a single formalism through satis-
continuous-state labeled Markov processes in [7]. Eachfaction games, refinement games, and abstract satisfaction
model is being approximated by a chain of finite-state mod- 9ames, respectively. This has been developed for Kripke
els ordered by a transitive simulation relation. The logic Structures, focused transition systems as their absiregti
contains a constant for truth, conjunction, and the equiv- @nd the modal mu-calculusin [4]. Tree automata are equally
alent of the PCTL operato}( [']>p in the process Setting. attractive in that regard, as demonstrated in [5] It would
This approximating chain is linked to the logic as follows: therefore be of interest to generalize our Hintikka games so
the model satisfies a formula if, and only if, there is a model that they are formulated independently of a notion of model
in its approximating chain that satisfies it. The chain is be- and logic.
ing built from two parameters (as in our Lemma 1): one  Stochastic games [3] have not only adversarial players,
for the temporal depth of the unfolding of the model, an- e.g. the two player8 and1 for parity games, but an addi-
other for the precision with which transition probabil#ief tional random player5 whose game moves are determined
the model are represented in that truncated approximationby probability distributions. For such so-called-player
Thus, if a continuous-state model satisfies a formula, theregames one can consider the usual acceptance conditions
is a finite-state simulation of that model that witnesses. thi  for infinite plays. For reachability?.5-player stochastic



games have successfully been applied in improving the pre-

cision of abstractions of Markov decision processes [18]:
one adversarial player controls the partition of the cotecre

state space, the other adversarial player controls the non- ;

deterministic choices inherent in the concrete Markov de-
cision process. It would be of interest to se@.i-player
stochastic games with Biichi acceptance conditions peovid
finite-state abstractions that can witness the truth of PCTL
formulae of labeled Markov chains they abstract.

In [22], probabilistic bisimulation is modified to a no-
tion of bisimulation “up toe” that is shown to be of use
in quantitative analysis of confinement problems in secu-
rity. This notion is no longer transitive and bisimulatiang’
to 0” does not coincide with probabilistic bisimulation for
infinite-state systems. It would be of interest to undegtan
whether the=-moves in our Hintikka games correspond to
approximative versions of probabilistic simulations.

3 Preliminaries

(Countable) Labeled Markov chain® over a set of
atomic proposition\P are triples(S, P, L), where S is
a countable set of state®,: S x S — [0,1] is a count-

able stochastic matrix such that the countable sum of non-

negative reals _, ¢ P(s, s') convergestd forall s € S,
andL: AP — P(95) is a labeling function wherd.(q) is
the set of states at which atomic propositipis true. We
say thatM is finitely branching iff for alls € S the set
{s € S| P(s,s") > 0} is finite. A pathr from states
in M is an infinite sequence of statess; ... with sp = s
and P(s;,s;+1) > Oforalli > 0. ForY C S, we write
P(s,Y) as a shorthand for the (possibly infinite but well
defined) sund_ .y P(s,s').

The syntax of PCTL is given in Fig. 1. Path formulae
« are wrapping PCTL formulae into “LTL” operators for
Next, (strong) Until, and Weak Until. Path formulae are
interpreted as predicates over pathgof The semantics is
defined as usual: a path= sgs; ... satisfies

o Xoiff s1 € [d]ar

e pU=Fyiffthereisal € Nsuchthal < k,s; € |¢]u
and for all0 < j < [ we haves; € [¢]m

e ¢ W =Fyiff for all I € N such thad <[ < k we have
eithers; € [¢]ar orthereidd < j < lwiths; € [¢]n

Until formulae ¢ U =*¢) are strong untils since paths that
satisfy such a formula have to maintain temporary invariant
¢ until they reach a state satisfying and such a state has to
be reached within finite transitions, and also withitran-
sitions if k # co. Weak Until formulaep W =k areweak
untils since reaching a state satisfyinngs optional if¢ is

an invariant on the patkys; . .. sk, which is understood to
ber whenk = oo. We record the familiar duality between

¢ = PCXEL formulae = Path formulae
q om X ¢ Next
¢ Negation #U=ky  Until
A Conjunction W <ky) Weak Until

Path Probability

[@bap

Figure 1. Syntax of PCTL, wherg € AP, k € NU{oo},
p€[0,1],andx € {<, <, >, >}

(strong) Until and Weak Until:
“(oU¥) = () W (=9 A 1)) (2)

PCTL formulae wrap path formulae with probability thresh-
olds (turning predicates on paths into predicates on $tates
and may add a propositional logic layer on top of that,
which may then be used to build up new Path formulae.
We write ¢ U+ as a shorthand fap U <>°¢, and¢ W v/ as
shorthand fory W =>4, The operators (disjunction) and

— (implication) are derived as usual. L#tbe an abbrevi-
ation for any[a]-1, andtt a shorthand for anjn]>. For
labeled Markov chail/ = (S, P, L), the denotational se-
mantics of PCTL formulap is a subsef®[ss of S. We
write |¢] if M is clear from the context and defifi@] by
structural induction, as usual:

lal = L(q) lo A =9l N Y]
=] =S\ 1ol la)sp] = {s € S |Probun(s,a) > p}

whereProb (s, «) is the probability of the measurable set
Path (s, ) of paths in)M that begin ins and satisfy the path
formulac. Note that the semantics of PCTL and Path for-
mulae is mutually recursive, reflecting the mutual recursio
of their syntax. We say that PCTL formulgeand are
semantically equivalent iff for all labeled Markov chaihs

we have|g|rr = |¥]ar-

Example 1 For the labeled Markov chaid/ in Figure 2
we have[lgUr]>1/2]m = {s0,s1} and for the labeled
Markov chainM;° in Figure 3 we have[qW r]>5/9]v =
{So, S081,505151, 5050, 505051, SOSOSO}.

Each PCTL formulag is semantically equivalent to a
PCTL formula in “GreaterThan” normal form obtained
by replacing all occurrences of the forfn|-, in ¢ with
the PCTL formula—[a]>,, and by replacing any oc-
currences of the fornja]<, in ¢ with the PCTL for-
mula —[a]-,. For example, the “GreaterThan” nor-
mal form of the formulal[X[qU 7]y /3]<1/2U7]51/4 IS

[F[X=[gUr]>1/3]512Ur]s1/a

Assumption 1 (GreaterThan) Without loss of generality,
PCTL of Fig. 1 is restricted to “GreaterThan” normal form,
e, € {> >}



Figure 2. Labeled Markov chainM with sy €
|][q UT]Zl/Ql]]u, SinceProbM(so,qu) = 1/2.

We now state and prove a finite-state approximation lemma

for the validity of Until formulae with non-strict probaltiy

thresholds at states of labeled Markov chains. This lemma

will be crucial in proving that our game semantics of PCTL,

Figure 3. Unfolding M;° of the labeled Markov chain of
Figure 2 up to depth two.

developed in Section 4, captures exactly the denotational

semantics we defined above.

Definition 1 (Finite Unfoldings) Let M = (S, P, L) be a
labeled Markov chain. For each € N andsy, € S de-
fine the labeled Markov chaif/® = (S;, P;, L;), a ran-
dom tree with rootsy, as follows: unfoldM from sy as a
full tree of depthi, where edges have positive probability
according toP. This may duplicate states but such du-

plicates will satisfy the same atomic propositions. States

at leveli have a self-loop with probability. The proba-
bility measuresP(s, -) at levels< i are those in}M. For
eachj € N we restrict}; to the finite-branching, and so
finite-state, labeled Markov chaibl;$ = (S;,;, P ;. Li ;)
with one additional statégj,x which only satisfiest but
no otherq € AP: for eachs € S;, let t1,ts,... be
an enumeration oft;, € S; | P(s,ty) > 0} such that
P(s,ty) > P(s,tg41) for all & € N, thenP; ; is ob-
tained fromP; by settingP, ; (s, tx) = P;(s, tx) for k < j,
P; i(s,tsink) = 1 — X7 _, P; j(s,tg) and P; j (tsink, tsink) =
1; state setS; ; consists of those reachable froms, via
P; j,andL; ; is L, restricted to seb; ; and extended to the
new statégink.

Example 2 The unfolding)M;° for the labeled Markov
chain M of Figure 2 is depicted in Figure 3.

Lemma 1 (Finite-State Approximation) Let M
(S,P,L) be a labeled Markov chaing,» € AP, and
p € [0,1]. Thens € [[qUr]|>,[a iff for all n € N there
arek,l € Nwiths € |][qu]>,,_1/”|]sz[.

Example 3 Consider the labeled Markov chain in Fig. 2.
Probability Probys(so,qUr) = 1/2 is attained by paths
of increasing length, as the value of the infinite sum
Zj‘;l(l/3)j. However, for every: € N there exists some

i € N such that™’_,(1/3)7 > 1/2 — 1/n and where that

finite sum is attainable in a finite unfolding 8f. For ex-
ample, forM;° in Fig. 3 the probability ofy U r at sg is %

so for everyn < 18 we havesy € |][qu]>1/2_1/n|]M;o.

In M;° the probability of¢Ur at s¢ is é—f; and so for ev-
eryn < 54 we havesy € |[pU q]>1/2_1/n|]MZo. Lemma 1
promises that for every (countable) labeled Markov chain
there is a similar approximation.

Lemma 1 has a dual version, required in the proof of
Theorem 1: for labeled Markov chaid = (S, P, L),
g,v € AP, andp € [0,1]: s & |[gWr]sp[a iff for all
n € Nthere arék, [ € N with s ¢ ﬂ[qWT]zml/nHM;l-

4 Game semantics

Let M = (S, P, L) be a labeled Markov chain over set
of atomic proposition&P. For each state € .S and PCTL
formula¢ we define a 2-person Hintikka gantg (s, ¢).
As already mentioned, these games are played between two
playersv (the Verifier) andr (the Refuter). After having
defined these games and their winning conditions, we show
that each gam&,, (s, ¢) is won by playew iff s € [|¢[as;
and won by player iff s & |¢[a . In particular, each game
G (s, ¢) is determinedexactly one of the playefsandRr
wins that game.

The gameGy, (s, ¢) has as set of configurations

Chu(s,0) ={(s,9,C) | s € 8, ¢ € cl(¢), C € {R,V}}

where we define the set of PCTL formuldgy), theclosure

of ¢, below. There is a distinguished initial configuration
(s,9,V) € Cfar(s, ). Playsin gamé& (s, ¢) are finite or
infinite sequences of elements@f, (s, ¢) starting in the
initial configuration(s, ¢, V). A play is generated by game
moves, specified in detail below. Their intuition is similar
to that in Hintikka games for first-order logic, as described
in the introduction.



Our game semantics treats Boolean connectives in the We next define the notion of the closuiég) of a PCTL
same manner as Hintikka games for first-order logic (hereformulag, which is the union of two sets of PCTL formulae.
we take the point of view of Verifier): proving truth of for-  The first setl; (¢) is the actual set of sub-PCTL-formulae
mula¢ at states amounts to winning the game from config- of ¢, including ¢ itself. The second sets(¢) consists of
uration (s, ¢, V). In order to prove a conjunction we allow all formulae[a].,s such that either
Refuter to choose Whlch'branch of the conjpnctlo.n to prove. (@) a is 11 Ui, 5 is >, and for somep € [0,1] and
In order to handle negation, the game continues in the same ' € {>,>} we havea).y, € cli(¢)

. y P 1
state but with the unnegated formula and a swap of the rqle (b) « is 11 Wbn, 5 is >, and for somep € [0,1] and
of players, thus attempting to show that Refuter cannot win /
' € {>,>} we havela]uy, € cli(¢),
from the unnegated formula. : W -
Lo . (c) ais 11 U=%1hy and for somep € [0, 1] and a finite
In games for branching-time logics such as CTL orjthe , Sk
. o k> k' we have[yn U =5q]uq, € cli(),
calculus (see e.g. [23]), the universal quantificatiol' X D o WK 4 d afini
is resolved by Refuter’s choice of a successor state; and the(@ @ is 11)/1 ;] W2 an >(zr some € [0, 1] and a finite
existential quantification if X is resolved by Verifier sup- k> k" we havefy; U =*4s]nq, € cli(o)

plying one successor state, both as familiar from the case ofrhe second setl,(¢) allows us to replace any probability
quantifiers in first-order logic. For PCTL, however, things thresholdsy with other valueg’ € [0,1] and finite time
are more complicated. The next opergtsig].., includes  pounds with smaller ones, but to allow this in such a manner

a p_r(_)mised probabilityq_p, “at Ieas_tp" or “more _tha_np”. that it is consistent with the above intuition behinthoves:
Verifier now resolves this “probabilistic quantificationy b

showing how to re-distribute the required probability be- ~ ® (strong) Until formulae with non-strict bounds may

tween the successors of the state. change to (strong) Until formulae with strict bounds

In qua"tativegameS’ until Operators are resolved by us- o Weak Until formulae with strict bounds may Change to
ing the logical equivalence in (1) — and similarly for weak Weak Until formulae with non-strict bounds, and
until operators. The only problem in adopting this for ¢ the finite time bounds in bounded untils should be al-
PCTL is in the possibility of deferring promises forever. lowed to decrease.

For games in qualitative settings this is typically handled

by fairness, but for PCTL fairness is not strong enough: The difference between the strong and weak untils stems

from their duality, the negation of a Weak Until formula

is a (strong) Until formula and vice versa. Thus, a Weak
Until formula with strict bound is the negation of a (strong)
Until formula with non-strict bound. When Refuter is trying

to disprove a Weak Until formula with strict bound, she is
in fact trying to prove the dual (strong) Until formula with
non-strict bound, and requires the same possible moves for
the non-strict bound and strict bound versions.

Example 4 PCTL formulajq Ur]>, /- holds at states, in
the labeled Markov chain shown in Figure 2. But in order
to prove this we have to appeal to the entire infinite sum
¥22(1/3)%. Any fairness constraint forcing a transition
from sq into {s1, s2} would cut that infinite sum down to
a finite one, failing to prove that formula for statg.

However, allowing to defer the satisfaction of the strong
until indefinitely is unsound. For any: p being> p with
p € [0.5,1], and anyx p being> p with p € (0.5, 1], the
PCTL formula[q U 7], does not hold at, but allowing _ _ .
Verifier to dela[y pro]mipses forever may be unsound. tkor ¢ = [ AIXIp A=) W (g A=l ]>0) WHlo - (3)
p being> 0.5, e.g., Verifier could supply the promis¢3 Intuitively, ¢ says that there is an infinite path labeled by
immediately, promising more thaly6 in the future, and  such that every state on this path has a successor for which
then — by deferring the promise indefinitely — Verifier could ;v 4 holds on (almost) all paths on whiehdoes not hold
win gameGy (so, [g U r]>0.5). during the verification op W q. Letar = (p A =)W (g A
=r), B = X[a]so, andy = (r A [8]s0) W ff. The closure

Example 5 Consider the following formula:

To address this problem we add a speeiaiove as well

as acceptance conditions for infinite plays. If the probabil of pis:
ity is at leastp, playerv should be able to prove that it is &, [Y]=0, fF, (r A [B]50),
greater tharp — ¢ for everye > 0. On the other hand, if (@) =< [Bl0,[0]z6: (P A1), |be[0,1]

the probability is strictly less thap then there exists an
for which it is at mosip — €. Thus, playeR chooses the
and playen proves in finite time (appealing to Lemma 1) As~ appears ing with a strict bound, it is in the closure of
that she can get as close as needed to the bound. The samgewith its original bound as well as with all possible non-
intuition (but dual) works foMfeakUntil, when the Weak  strict bounds. Asw appears inp with a non-strict bound, it
Until formula in question doesot hold. appears in the closure af only with non-strict bounds.

p, 1, (g A T),q



Similarly, for formulag = [¢Ur]>,/, we havecl(¢) =
{#,q,r,[qUr]sp | b€ [0,1]}. As¢ is a strong until with
non-strict bound it is part o€l (¢) and for every possible
boundb its strict counterparfq U r]~; is incla(¢).

Subsequently, we write for the player other tha@, i.e.
'V =R and!R = V. The possible moves of gang, (so, ¢)
are defined through the moves of gartas(s, v) by struc-
tural induction ony) € cl(¢), simultaneously for alk € S.

M1. At configurations (s, [a]s1, C), player !C wins

M2. At configurations (s, [@]>0, C), player C wins

We may therefore assume that in subsequent moves con-

figurations of the form(s, [a]s, C) Never satisfy that< p
equals> 0or> 1.
M3. At configurations (s, q, C):

— player Cwinsif s € L(q)

— player !C wins if s & L(q)

M4. At configuration (s, ), C), the next configuration is

(s,9,1C)

In move M8 such a choice is possible since< 1. The
intuition is that a Weak Until with a> threshold is the dual
of a strong until with & threshold (based on (2)), so it is
like anexistentialquantification overn € N.

M9. At configuration (s, [&]sp, C) Where either cis 1 U )9
and s >; or acis 11 W by and > is >

— player C is able to move to next configuration

<Sa¢25C>

— if player C did not move, player !C is able to move

to next configuration (s, 1, C)
— if neither player moved above, the play must pro-

ceed as follows:
Player C chooses a sub-distribution d: S —
[0, 1] such that

ddsh)>0 & D dis)=p (4

s’eS s'es
Vs' € S:d(s') < P(s,s) (5)

Next, player !C chooses some s’ € S
with d(s’) > 0 and the next configuration is

<Slv [a]md(s’)~P(s,s’)—1 5 C>

So move M4 removes the negation from the formula but In move M9, sub-distributiod has positive mass, approxi-

also swaps the role of players.

M5. At configuration (s, ¢ A 12, C), player !C can choose
as next configuration either (s, 11, C) or (s, 2, C)

mates the probability distributioR(s, -), and specifies the
re-distribution of promise< p into promised probabili-
ties at successor states. Sintg’) > 0, we also have
0 < d(s")- P(s,s')~! <1inmove M9 by (5).

So player!c chooses a conjunct and the game continuesM10. At configuration (s, [a]>,,C) where « is either

with that conjunct instead of the conjunction.

M6. At configuration (s, [X]wp,C), player C chooses a
subset Y C S satisfying P(s,Y) < p; then player
IC chooses some s’ € YV
— if P(s,s’) =0, player !C wins
— otherwise, P(s,s’) > 0 and the next configura-
tionis (s’,1,C)

Move M6 is well defined. There is a non-empty $etvith
P(s,Y)pasp € [0,1], P(s,-) has mass one, and p is
neither equal to> 1 nor to> 0.

M7. At configuration (s, [)1 U ¢2]>,, C), player IC chooses
some n € N such that p — 1/n > 0 with resulting next

configuration (s, [¢)1 U 2]~ ,—1/n,C)

b1 U =Fahy or by W SFepy with k € N:

— if k = 0 and « is 11 U =Fq)y, the next configura-

tion is (s, ¥, C)
— ifk = 0and ais 1 W =Fq)y, player C chooses as

next configuration either (s, ¢, C) or (s, 9, C)
— if K > 0, the moves are defined as in M9 above;

except when the last item of M9 applies, in which
case the counter k in « is decreased to k& — 1 for
that next configuration (s, [a]sqa(s)- P(s,57)~15 C)

In move M10, a Bounded Until with bourtilhas to realize
19 right away; and a Bounded Weak Until with bound zero
has to realize at least one©f or i, right away.

A finite play is won as explained in M1-M10 above. In

most moves, the play either ends or moves to configurations

where the formula is propersubformula in the closure. In

a configuration with strong until with non-strict bound or
weak until with strict bound the next configuration changes
from non-strict to strict bound or vice versa. In a configu-

In move M7 such a choice is possible sineeannot be

0. The intuition is thatp, 1] = (N, cy(p — 1/n,1] so this
behaves like aniversalquantification overn. € N.

M8. Dually, at configuration (s, [1 W 3]~ ,, C), now player
C chooses n € N such thatp 4+ 1/n < 1 with resulting
next configuration (s, [t)1 W 2] >p11/n, C)

ration with strong until with strict bound or weak until with

non-strict bound the next configuration has the same path

formula and threshold type, or has a proper sub-formula.
It follows that every infinite play ends with an infinite
suffix of configurations that are



Al. all of the form(s;, [ W 2] >y, ,C) OF
A2. all of the fOl’m<S7;7 [¢1 u ¢2]>P7’, , C>

Configurations of these suffixes are either labeled by
strong until with strict bound or weak until with non-strict

bound, where the states and the exact probability bound

may still change, but where neither the plageror the sub-
formulaey; andiy, change.

Definition 2 (Acceptance conditions)Player v wins all
infinite plays with an infinite suffix either of type Al above
with C = V, or of type A2 above withh = R. PlayerR wins

all other infinite plays: those with an infinite suffix eithdr o
type Al wherg = R, or of type A2 wheg = V.

sgs1 and sgsg (respectively). Asgs; € |]r|]M§o the first
is clearly a winning configuration. Froms, [a]s5/1s, V)
and the corresponding locatiosy s in M,°, playerv no-
tices thatProb =0 (sosos1, ) = 1 and choosesi(s1) =
5/18. The next configuration i&;, (o]~ 15,15, V) (with cor-
respondingspsos: in M;°) and won by supplying.

Definition3 1. A strategyw for player C in game
G (s, ¢) is winning from a configuratiod” in that
game iff playerC wins all plays beginning in configu-
ration I when playe(C plays according to his strategy
w — regardless of how playée plays.

2. PlayerC winsgameGy (s, ¢) iff player C has a strat-
egy that is winning from configuratiof, ¢, V).

These are Buchi type acceptance conditions, and so our

games are known to be determined [20]. We use the no-

tion of strategy for playe€ informally. But such strategies

We can now formalize our main result that the denota-
tional semantics of PCTL is captured exactly by the exis-

contain, for each configuration of a game, at most one set oftence of winning strategies in gamés; (s, ¢).

choices as required by the applicable move from M1-M10.

Example 6 Consider gamé& (o, [q U r]>1/2), whereM
isasin Fig. 2, and letv = ¢ U . The initial configuration is
(50, [@]>1/2,V). Inthe first move playek chooses am ¢
N and the next configuration i, [a]-1/2—1/,V). Then,
as long as the play'(I'; ... remains in configurations of
the form(so, [@]~p,, V), playerV is going to choose the sub-
distributiond with constant valuedg(sy) = 0 andd(s;) =

+ — 5=, and dynamic valu€(sy) = p; — d(s1). A simple
calculation shows that as long as playerchoosessy as
the next state (clearly, if she choosgsshe is going to lose
assy € L(r)) the promised probability> p; is going to
decrease according to the following sequengg= % — 1

1 3 1 6 1 2 n
b1 =95 =5, P2=35 " 3,/P3=3
343

— 12 and in general
pi = % — 2= fori € N. Whenevep; decreases below
1 (and there is some e N for which this happens), player
V still chooses! with d(s3) = 0 as above but now defines
d(s1) = p; andd(sp) = 0, thereby forcing playek to move
to s; and lose. This describes a winning strategy for player

Vin gameGas (so, [qUr]>1/2).

Example 7 Although the choice ofl in Example 6 may
seem arbitrary, it meshes well with the use of Lemma 1.
Consider again the gan@ (so, [a]>1/2) from Example 6.
Suppose that in the first move playerchooses) € N,

and the next configuration isso, [a]~7/1s,V). Since for
the M2, in Figure 3, Probyo(s0,a) = § > 15, player

V can usel,° to guide her choices. In/;° we have
Prob:o (sos1, ) = LandProb =0 (soso, @) 3. Player

V uses the gap 0{1—8 and re-distributes it between the suc-
cessors ofy. She can choose, for examplés:) = 3 — =;
andd(sg) = § — =;. The next possible configurations are
then(sy, [a]>17/18, V) and(so, [a]>5/15, V). Playerviden-
tifies the resulting states with those obtained\ifj°, here

Theorem 1 Let M = (S, P, L) be a labeled Markov chain
overAPP, s € S, and¢ a PCTL formula. Then we have:

1. s € ¢ iff playerv wins gameG (s, ¢)
2. s & | @] iff playerR wins gameG (s, ¢).

In particular, gameG (s, ¢) is determined.

GameG (s, ¢) is defined such that its initial configura-
tion (s, ¢, V) is owned by playew. We can define a dual
game with the same moves but with initial configuration
(s, ®,R). Theorem 1 and its proof then remain to be valid if
we swap the role of players in both.

Example 8 Consider gamé& (o, [q U]~ 1/2), whereM

is as in Fig. 2, and let = ¢gUr. From configuration
(s0,[a]>1/2,V), playerV won't move to(sg,r,V) as she
would then lose. For the same reason, plagevon’t move
to (so, ¢, V). So if both players play strategies that are 'op-
timal’ for them, playew has to choose a sub-distributiah
at the initial configuration.

If d(s2) > 0, playerV loses as playeR can then choose
s2. Sod(sy) = 0 for any 'optimal’ strategy of playew.
But bothd(sy) and d(sg) have to be positive since oth-
erwise the mass of can be at mosti/3 by (5), which
would violate (4). Since player plays an 'optimal’ strat-
egy,d(s1) # 1/3, as otherwise player could choose as
next configuratior{sy, ]~ (1/3).(1/3)-1, V) and would then
win by move M1. By (5) there is therefare> 0 such that
d(s1) = 1/3 — €. In particular, playerk won't chooses;
as she would lose the next configuratien, [a]~1—3., V)
(sinces; € L(r)). So playeR chooses, and the next con-
figuration is (so, [~ 34(s0), V). BY (4),3d(so) must be at
leastl/2 + 3¢ and so playei promisesmorein > 3d(s)
than she promised in the previous configuration.



At configuration(so, [a]~ 34(s,), V), Playerv avoids los-
ing only by choosing a sub-distributiohthat mapss, to
0 and all other states to positive mass as before, and for
the same reasons. Similarly(s;) < 1/3 has to hold.
So although a new functios with a new value ot may
be chosen, the next configuration is still of the same type
(50, [a]>p, V) With p’ > 1/2. Thus, either the play is finite
and so lost for playew as described above; or the play is
infinite and so lost for player by the acceptance conditions
Al on infinite plays.

We conclude that playek wins that game. A winning
strategy for her from the initial configuration only needs to
be specified for move M9:

e player R will never choose a configuration of form
(s0,4,V), should such an opportunity arise

e whenever playew chooses sub-distributiod with
d(s2) > 0, playerR will choosess

e otherwise, it must be the case that bdtk; ) andd(s2)
are positive; ifd(s;) = 1/3, playerr chooses

e if d(s1) # 1/3, playerR chooses

5 Winning strategies

We show that when a player can win gafhg (s, ¢) she
can use winning strategies that are of a very specific type.
In addition to being memoryless in the classical sense, the
choose very structured distributions when re-visitingeest
in a configuration with a strong or weak until operator.

As before we use the notion of strategy informally. A
strategy ismemorylessf the choices of its player depend
solely on the current configuration, not on the finite history
of configurations that preceded the current one in a play. In
our games, there can be configurations of tyféa].,, C)
for the same state and the same path formuta (e.qg.,

11 U 1)) but with different bounds< p. We show that it is

A cyclically monotonestrategy is monotone on cyclic
paths within single plays: its player can force a decrease
or increase of the thresholds depending on the path formula
and whether it is & or R configuration.

Definition 5 (Cyclically Monotone Strategies) A strategy
o for playerC in gameGy (s, ¢) is cyclically monotoneff
for any two configurationss, [y, C") and (s, []s , C')
that occur in this order on some play consistent wittthen

a =11 Uty andC = ¢’ implyp’ < p,

a =11 Wihy andC = ¢" implyp’ < p,
a =11 Uty and!C = C"implyp’ > p,
a =11 Wipy and!C = " implyp’ > p.

The existence of winning strategies implies the existence
of winning strategies that are locally monotone and cycli-
cally monotone.

Theorem 2 For every gameG,, (s, ¢), there exists a win-
ning strategy for playec iff there exists a memoryless win-
ning strategy for playee€ that is also locally monotone and
cyclically monotone.

Example 9 The winning strategy for Refuter in Example 8
is locally monotone as Refuter never encounters a pair of
configurations that need to be checked for local monotonic-
ity. That strategy is also cyclically monotone: From con-

y1‘igurati0n (s0,[qUr]sp, V) the only possible cycles leads

to configurations(so, [¢ U7]s,, V). As explained already,
Verifier is restricted tai(sz) = 0 andd(s;) < 1/3 or she
loses in the next step. Lpt> 1/2 ande = 1/3 — d(s1).
It follows thatd(sg) > 1/6 + (p — 1/2) + €. Thus,

in the next configuratiorisy, [¢ U], , V) we havep’ >
1/2+3(p—1/2) + 3e. Ase > 0andp — 1/2 > 0 we have

p’ > p. Furthermore, ifp1, p, . . . is the sequence of bounds

obtained in this manner, thew o — p;+1 > pir1 — p; for
all 7 > 1.

enough to consider winning strategies which induce bounds
that change monotonically, as defined below. Subsequently,

for sub-distributionsl, d’: S — [0, 1], we write

o d < diffforall s € Swe haveld(s) < d(s)
o d' < diff d <dandd'(s) < d(s)forsomes € S

For a locally monotonestrategy the choice of sub-
distributiond at configurations, [a]sqp, C) iS monotone in
> p, regardless of the history of a play.

Definition 4 (Locally Monotone Strategies) A strategyo
for playerC in gameG,, (s, ¢) is locally monotonsff for
any two configurationss, [a]sqp, C) and (s, [a]s, C) that
occur in plays consistent witk (but not necessarily in the
same play), wheré andd’ are the sub-distributions chosen
according too at these two configurations (respectively),
thenp > p’ impliesd > d’ andp > p’ impliesd > d'.

Discussion

Table 1 summarizes which PCTL sub-formulae that may
cause infinite plays can always be coerced into finite plays
with a winning strategy. For example, a strong until with
strict bound is ensured to have a finite strategy and ex-
plore a finite portion of the game before going to subfor-
mulae, and similarly from a negated weak until with a non-
strict bound. To determine whether a PCTL formula is
won by means of such finite plays only, we can either con-
vert it into “GreaterThan” normal form and check whether
each such sub-formula has a negation polarity that corre-
sponds to the desired player in that table, or we can con-
vert it into negation normal form and interpret that table
as ison the resulting sub-formulae. For example, formula



Table 1. Sub-formulae that result in finite plays/§ or
don't (x), for which winning player; ticks in parentheses
indicate finite plays after an initiatcorrection of bounds

| [ xo [ xo Jwe [wefu. | v, |
‘ Verifier ‘ Vv ‘ x(v) ‘ X ‘ X ‘ Vv ‘ x (V) ‘
‘ Refuter ‘ X ‘ X ‘ X(v/) ‘ v ‘ X ‘ X ‘

[qUr]>0.999 A—[g W 7] >0.9991 iS such that player can win
be ensuring only finite plays, if she can win at all. Fur-

thermore, if the Markov chain is infinite, the game explores

only a finite portion of it. From a practical point of view,
it may be possible to change the strictness of the bound by
slightly changing the required probabilities in the foriul

Thus, are-correction of the formula may change a formula
that does not allow finite plays to a formula that does allow [11]
finite plays.

7 Conclusions

We captured the PCTL semantics over countably Iabeled[13

Markov chains through Hintikka games with Biichi accep-
tance conditions. Games moves depend on the strictness
or non-strictness of probability thresholds for path formu
lae. Winning strategies may be assumed to be memoryless

and monotone in their choice of structural elements (here[15]
sub-distributions). PCTL formulae in “GreaterThan” nor-
mal form that contain until operators with a certain combi- [16]

nation of threshold type and negation polarity — statically
derived from Table 1 — have winning strategies that may

be interpreted as a finite-state abstraction of the unadeylyi
model that witnesses the falsity (respectively, truth)he t
formula under consideration.
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A Proofs

Proof of Lemma 1.

Consider first the case that/ is finitely branch-
ing. Recall thatPath(s,qUr) denotes the set of paths
beginning in s that satisfyqUr. Let Path;(s,qUr)
be Path(s, (U ="r) A Ag<;; ~(¢U=/7)), i.e., paths in
which ¢ holds until locationi wherer holds and- does not
hold in locations smaller than We setPathy(s,qUr) to
bePath(s,qU=%),i.e.thesef{r = sy - | s = s0, 50 €

L(r)}.

e For the “if” part, assume that for alt € N there is
k > 0 such thats € [[qUr]s,_1/n[ame. Then,s €
llgUr]sp—1/n[n follows by the monotonicity of the
denotational semantics for “GreaterThan” thresholds.
Thus,s € (,,enllgUr]sp-1/nlm = [[gUr]>p]n

For the “only if” part, lets € [[gUr]>p[a and
n € N. It suffices to find somek > 0 with

s € [lgUr]sp_1/nln;- AsPath;(s,qUr) is of form
Path(s, ) for a path formulax, that set of paths is
measurable. For all# j note that setBath;(s,qUr)
andPath;(s, ¢ Ur) are disjoint. Since

Path(s,qUr) = U Path;(s,qUr)
i>0

and as the latter is a disjoint union, we know that

Probas (s, Path(s,qUr)) = X;>0Probas (s, Paths(s,qUr))

By definition of convergence for that infinite sum, for
everyn € N there existg > 0 such that

$¥_oProba(s, Pathi(s,qU)) > Probas (s, Path(s,qUr))—1/n

As ¥  Proby(s,Path;(s,qU7r))  equals
Probys: (s,qUr) we obtains € [lgU7]s,_1/n]n;
and we are done.

As M is finitely branching, there existssuch that is an
upper bound on the branching degree for all state/jn
It follows thatProbag (s, ¢ Ur) = Probasg  (s,qUr).

In the case thafl/ has infinite branching the proof is
similar. We have to be more careful in noticing that every
path setPath;(s,qUr) is still measurable and have to be
careful in the way in which we sum up the probability of
the setPath (s, ¢ Ur). But this works out since all infinite

sums have absolute convergence, establishing that for some

k we haves € [[qU7]s, 1/n]m;. The existence of};
as required follows from convergenceRoby: (s,qUr)

to Proby; (s, qUr). O
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Corollary 1 For labeled Markov chain\/ (S,P, L),
g,r € AP, andp € [0,1]: s & [[gWr]sp[ar iff for all
n € Nthere arek, ! € Nwith s & [[gWr]>p11/n]ar -

Proof of Corollary 1.

This follows from Lemma 1 and the duality of weak
and strong until. We have ¢ [[gWr]s,|a iff s €
[[=7 U (=g A =7)]>1-p] a1, Since (semantically)r U (—gA
—-r) is the negation of¢Wr. By Lemma 1,s €
|[=r U (=g A =r)]>1-p[ s holds iff for everyn € N there
isk,l € Nwith s € [[-rU (=g A =r)]s1p_1/n]ums . i€

ol
s € [laWrlspr1/nlng - 0

Proof of Theorem 1.

Given PCTL formulag, we show these two items by
structural induction on the PCTL formulaein the closure
of ¢, simultaneously on all states 8f. Since exactly one
of s € |¢]a ands & [¢[ar holds, it suffices to show both
items in Theorem 1 for sucheain their “only if” versions,
which we do by splittingy into six cases:

Case#1.The cases whet equalstt or ff are trivial. For
example, no state satisfiés and all plays beginning in
(s, ff, V) are won by playek. So we may implicitly assume

in subsequent cases thatp equals neither- 1 nor > 0.

Case #2.The cases whett equalsq, -1, Or¢1 A 1o are
proved as in the case of Hintikka semantic games for propo-
sitional logic. We illustrate this for the case of conjunocti
and playew:

e Lets € |1 Aa]ar. Thens € || forall i =
1,2. By induction, there is a winning strateay; for
playerv from configuration(s, ¢;, V) for all i = 1, 2.
Consider the strategy for playerv which composes
his strategiesvr; andw. as follows: at configuration
(s,1,V), playerR has to choose as next configuration
some(s, 1;, V) with i = 1, 2. But then playe¥ simply
responds according to his winning strategy This
describes a winning strategy for playerv from con-
figuration(s, v, V).

Lets & i1 Ao]a. Then there is somg € {1,2}
such thats ¢ [¢;] . By induction, there is a winning
strategyw; for playerR from configuration(s, 1;, V).
Consider the strategy for playerR which composes
his strategyw; with an initial choice as follows: at con-
figuration(s, ¢, V), playerR simply choosegs, v;, V)

as next configuration and then plays according to his
winning strategyw;. This describes a winning strat-
egyw for playerr from configuration(s, ¢, V).

Case #3.The case whem equals| X ¢1 ]y, Wheres €
{=,>}



o Lets € [[X9n]wp]m. LetY be the set of states
s’ such thatP(s,s’) > 0 ands’ € [¢1]a. From
the latter and induction we infer that playérhas a
winning strategyw, for the configuration(s’, v, V),
forall s € Y. We construct from all of these,.

a winning strategyw for playerv from configuration
(8, [ X1]oap, V) as follows: Sinces € [[ X1 ]sap|ar,
we know thatP(s,Y) o< p holds and thaty” is
non-empty as< p isn't > 0. So at configuration
(s, [ X1]ep, V) playerVv chooses this seY’. Now
no matter what next configuratigr’, ¢, V) playerR
chooses, we havé € Y and so playev will play ac-
cording to his winning strategy, . In particular,w
is a winning strategy for player from configuration
<S7 [le]va\w

Lets & |[X¢1]wplas. Playerv must choose a set
Y such thatP(s,Y) > p. In making this choice,
playerv would — by induction — lose from configu-
ration (s, [ X41]sqp, V) if Y contained some’ with
s" & |1 ar (for then playeR could respond with con-
figuration(s’, 41, V) and win the resulting game). Du-
ally, playerv can only increase her chances of winning
from configuration(s, [ X 11 |s«p, V) if she adds td” all
statess’ with s’ € [¢1]a andP(s, s”) > 0. Finally,

(s, ¢, V) by first choosing that, and then playing ac-
cording tow,,, .

Case#5. The cases whem equals|a]s, where«a is

Y1 Wty
e Let s € [@]am. ThenProby(s,«) > p. Thus,

there is someny € N with p + 1/ng < 1 and
Probys(s,a) > p + 1/ng. But thenProby, (s, ) >

p 4 1/ng impliess € [[a]>p41/n,[a- By induction,
playerv has a winning strategy,,, from configuration
(5, [@]>p+1/n0, V). SO playen gets a winning strategy
w from configurations, ¢, V) by first choosing that
and then playing according to,,, .

Lets & [¢]ar. ThenProby, (s, ) < p. Thus, for ev-
eryn € Nwithp + 1/n < 1 we haveProby, (s, a) <

p + 1/n. By induction, playeR has a winning strat-
egyw, from configuration(s, [a]-41/x, V), for each
n € Nwith p + 1/n < 1. PlayerR can synthesize
from these countable strategies a winning strategy for
her from configuratioris, ¢, V) as follows: if playefv
chooses such am € N, then the next configuration is
(s, [@]spt1/n, V) and player plays according tav,,.

| ! _ Case #6.The cases whet equalga]., Where either
playerV has no incentive to add ah € |4 | tOY if

P(s,s") = 0: this does not contribute tB(s,Y") < p
and only exposes playérto a threat of player to

(8) aisyy Uy andeis >
(b) «ais iy Waps andexiis > or
(€) v is 11 U=Fpy or 1oy W =Fepy with & € N andp< is

move tos’. To summarize, if playev has a win-
ning strategy from that configuration, then she also
has a winning strategy from that same configuration
where she choosés as in the previous item. But then

s & [[X1]sap] e means thaP(s,Y) pap is false. So
playerv can only choose a séf for which playerr
can respond with a winning strategy.

Case#4. The cases whe equals|a]>, wherea is

1 Uaa:

e Lets € |¢]a. ThenProby,(s, ) > p and so for each
n € Nwith p —1/n > 0 we haveProb,(s, ) >
p—1/n ands € [[a]s,—1/,]n. By induction,
playerVv has a winning strategy,, from configura-
tion (s, [a]sp—1/n, V), for each sucm € N. Playerv

can synthesize from these countably many strategies a

winning strategyw for her from configurations, ¢, V)
as follows: if playemR chooses any such € N, then
the next configuration igs, [a]~,—1/,,V) and player
V plays according ta,, .

Lets & [|¢]ar. ThenProbys(s,«) < p. Thus, there
is someny € N with Proby/(s,a) < p —1/ng <
1. But thenProby(s,a) # p — 1/ng impliess ¢
l[a]>p—1/no |n- By induction, player has a winning
strategywy,, from configuration(s, [a]~,—1/n,, V). SO
playerr gets a winning strategy from configuration
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either> or >:

Lets € |@]as-

The formulax is logically equivalent tab V(11 A X )

and in case that is bounded the bound decreases by
1. It follows that it is either the case thate |2
ors € |1 A[Xalwpla. In the first case, player
V chooses to move to configuratids, 12, V) and by
induction she has a winning strategy from this con-
figuration. In the second case, by induction there is
a winning strategy for playev from configuration
(s,11,V), so if playerR chooses to go to this con-
figuration, playefv wins. If playerR does not move
to 1, then M9 demands that playérchooses a sub-
distributiond : S — [0, 1] satisfying (4)-(5). By as-
sumptions € [[ X a]wplar. LetT be the set of states

t such thatProb,/(t,«) > 0 and P(s,t) > 0. We
choosel such thati(s’) = 0 forall s € S\ 7.

So it suffices to specify on setT'. For that, letpy’ =
SierP(s,t) - Probps (¢, a).

— Consider the case that is >. By assumption
p’ > p. In the case that = 0, we choose some
statet € T such thatProby, (t,a) > 0, we set
d(t) = Proby(t, ) - P(s,t), andd(t’) = 0 for



all t # t. In the case that > 0, let§ bep’ —
p. We are going to distribute this gapbetween
all the states ifil" according to the distribution
P(s,-). Thatis, forallt € T'

d(t) = max(0, (Probys (¢, ) — 6) - P(s,t))

In case thatProb,/(t,«) < ¢ we thus have
d(t) = 0 (and so effectively removefrom set
T above). Ag' = Y gProby (¢, ) P(s, t) and
p > 0 there must be at least one sta®uch that
Proba (¢, «) > p’ and hencé®rob,, (¢, ) — § >
0, implyingd(t) > 0. It follows that¥;crd(t) >
§>

- Con5|derpthe case that is >. By assumption

p’ > p. Letd bep’ —p. Forallt € T, let

d(t) = max(0, Probys (t, ) — & - P(s,1))

Again, if Prob(t, &) < 6 we setd(t) = 0. This
completes the specification of sub-distributidn
chosen by playev.

Now regardless of the choice of playerthe next con-
figuration is(t, [a]sy, V) such that € [[a]sp [ 2. SO
playerv maintains the truth value of the configuration.
Notice that also the distance from the promised bound
p’ and the real probability is being maintained.

Case (c): For bounded operators, as the bound de-
creases, in a finite number of steps the play moves to
configurations of the form{s’, ¢;, V) for i € {1,2},
where induction applies directly, and in the desired
manner.

Case (b): For Weak Untiliyy Wapo, all infi-
nite plays have a suffix of configurations of form
(s', [1h1 W aha]>p, V) and are thus winning for player
V. Finite plays again reach configurations of the form
(s’ 4, V) for ¢ € {1,2}, where induction applies di-
rectly.

Case (a): For (strong) Until, we appeal to Lemma 1.
We treat subformulae); and v, as propositions
(respectively, theg and r in that lemma) and an-

notate states ofM by ¢y and v¢». Letp’ =
Probys (s, 11 Uty). By assumptionp’ > p. In
particular,s € [[¢1 Uts]>pm. Letn € N be

such thaty’ > p’ — 1/n > p. By Lemma 1 (ap-
plied to p’ instead ofp), there arek,l > 0 with

€ [l Uto]sp—1/mlar;, and so the probability
of Y1Uysin My, ats is greater tham. Playerv’s
strategy is to consider this systemf; ;. She chooses
sub-distributiongl: S — [0, 1] according to the prob-
abilities Proby: (t,«) (instead ofProby(t, o) but
as explained above) By definition of;;, there can
be only finite sequences of conflguratlons of the form
(¢, [a]>p, V), and so playev wins (cf. Example 7).
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o Lets ¢ |]¢|]M

It follows thatProb,/(s, ) < pin case that< is >;
andProby, (s, ) < pin case that«is >. As aboveq

is logically equivalent tay, v (¢¥1 A X ) and in case
thata is bounded the bound decreasesl bit follows
thats ¢ |v=]a and hence there is a winning strategy
for playerR from configuration(s, v», V). Also, it is
either the case that ¢ [v1]ar or s & [[Xalop]ar-

In the first case playek has a winning strategy from
configuration's, 11, V) and chooses this configuration.
In the second case, playechooses a sub-distribution
d: S — [0, 1] such that (4)-(5) hold.

We claim that there is som# € S with d(s") > 0 and
Proby(s’, ) 4 d(s")P(s,s")~ 1. Proof by contradic-
tion: otherwiseProb,, (s, «) > d(s’) for all s” with
d(s") > 0 implies that

Z Prob s ( s , Q) Zd

s'ld(s")>0 s'€S

by (4). But this renders

Z Proby (s, ) <

s'|d(s")>0
which directly contradicts ¢ [[ X asqp]as-

Thus, playeR can choose such ah and maintain the
play in configurations of the forns’, [a].q,, V) such
thats’ ¢ [[a]w, [as. Notice that playeR can choose
a successot’ such that

p’ — Probys(s',a) > p — Proby (s, a)

i.e., the gap between the promise and the actual proba-
bility does not decrease.

We now study the consequences of this capability of
playerR for the different forms of path formula in
this case:

Case (c): For bounded operators, as the bound de-
creases, in a finite number of steps the play moves to
configurations of the forngs’, v;, V) fori € {1,2} and

so playem® wins by induction.

Case (b): For (strong) Until formulae, infinite plays
of configurations of the forngs’, [¢)1 U 2]y, V) are
winning for playerR by the winning conditions for in-
finite plays. Any finite play reduces to configurations
of the form(s’, «;, V) for i € {1,2}, where induction
applies directly, and in the desired manner.

Case (a): For Weak Until formulae, we appeal to
Corollary 1. As before, we treat; and, as propo-
sitions and annotate states bf by them. Letp’ =
Probs (s, 11 Wby). By assumptiory’ < p. In par-
ticular, s ¢ [[1 Wo]sp|a. Letn € N be such



thatp’ < p+ 1/n < p. By Corollary 1 there are  strategy using the gapbetween the probability of the for-
k,l > 0with s ¢ [[t)1 Weba]>pq1/m]ame, and so  mulaand the required threshold. The strategy partitioiss th
the probability ofyy Wo in My, at s is less than  gap between all successors, so if the same state is visited

p. PlayerR’s strategy is to consider this systeh; ;. with different thresholds the partition of the gap implieatt
Letd: S — [0,1] be the sub-distribution chosen by the distribution decreases.

playerv. Ass ¢ [[11 Wipo]>p[arg . there is some Let p = Proby(s,a) andé; = p' — p; fori €

s’ € S such thats’ ¢ |[¢1 ng]zd(s/)P(s’t)flﬂM;J. {1,2}. According to the proof of Theorem 1 in configu-

So playeR chooses this'. By definition ofA/; , there  ration(s, [a]sp; , C) playerC chooses the distribution
can be only finite sequence of configuration of the form
(s',[a]>p, V), and so player wins. This is dual to the di(t) = max(0, (Probas(t, a) — &;) - P(s,1))

strategy depicted far in Example 7.
gy aep P It follows that if p; > p, then for everyt € S we have

O dy(t) > da(t). If follows that if p; = ps thend; = do.
Consider the case that > p, Thenp; > 0 and for some
we haved; (t) > 0 andd; (t) = Probys (t,a) — 1. Asd <
Proof of Theorem 2. d2 anddz(t) = Proby(t, ) — 02 it follows thatd, (¢t) >
da(t).
2. For the case whera = ); U1y andC = ¢/, the
strategy as defined in the proof of Theorem 1 is not lo-
cally monotone. We modify it as follows: For every con-
" figuration (s, [¢1 U 4], C) the sub-distributiorl is cho-
sen according to the minimél such that some fraction of
Prob: (s, ) is greater tham. The exact definition of this
fraction is given below. Furthermore, we use the gap be-
tween Prob (s,a) and ProbMijil(s,a) to ensure local
(and later cyclic) monotonicity. The definition of the sub-
distributiond and the proof itself are quite technical.
Consider the configuratiofs, [o]~,,C). We assume,

Assuming that there exists some winning strategy for
player C in game Gy,(s, ¢), it suffices to show that a
slight modification of the winning strategy synthesized in
the proof of Theorem 1 is memoryless, locally monotone
and cyclically monotone. That slightly modified strategy
will clearly be memoryless by construction. We now de-
scribe this modified winning strategy and first prove its lo-
cal monotonicity, by induction as in the proof of Theorem 1.
Then we prove that it is cyclically monotone.

Modified winning strategy and its local monotonic-

ity.  The only configurations where playet needs without loss of generality, that ¢ [is]a. We measure

. /
to make choices ares, [a]oqy, C), (5,91 V ¥2,C), @nd 0 ovact probability to satisfy within i steps. For every
(8,91 Ao, IC). teSlet

With the latter two, we restrial’s strategy to choose,
whenever possible and only when impossible chopse
This is similar to what one can do in Hintikka games for .
first-order logic. We show that the way configurations of ni = Proby(t, ) = Proby: (1)
the form (s, [a]p, C') are handled induces a memoryless
and monotone strategy.

If @« = X4, then the strategy defined in the proof of

ng = Proby(t, @)

Consider the following increasing sequence:

t
Theorem 1 chooses the set of successors according to the N = e
states, and is clearly memoryless. 2 ‘ 1
If Ic = ¢’ and eithera = ; Uty ands = > or N! = NI ,+ E}:Omnj (i >0)
a = Y1 Wiy and = >, then playerC has to choose
a valuen. By choosing the minimal possibleshe ensures  Thatis, Nt = 3nd + int, Nf = Inf+ 3nt + ink, NI =
that the strategy is memoryless. Lng + Int + 2nb + Lnt, and so on. Notice that
Consider two configurations (s, [&]s,,C) and
(s, |@)ps-C).  Whenever the play moves to configu- lim N} = Prob: (t, )
rations of the form(s’, ¢;, V) for i € {1, 2}, the strategy is tee g

memoryless, locally monotone, and cyclically monotone Let i, be the minimal such that

by induction. We start with proving local monotonicity for

moves that may choose sub-distributions. SiesNi, P(s,t) > p

1. For configurations wherex = 1 Wi, a =

Y1 W SFepy, or a = ¢y U=k, andC = ¢’ we claim that By abuse of notation for > 0, we denote
the strategy composed in the proof of Theorem 1 is locally

monotone by induction. Intuitively, this can be seen by the Ni = YiesNiP(s,t)

(3
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That is, N¢ is the sum of the differenv}_; normalized by
their probabrlltles to getfromto¢. To srmpllfy notations,
fori < 0 and for allt we set

Nl =N, =0

The valueN/ P(s,t) is going to be the basis for defining
d(t). Notice that it must be the case th¥f < p and that
N} — Nf _; > 0. In order to maintain local monotonicity
we drstrrbute the gap between the required threspadd
N; between all the statgsvhereN/ ., > 0. We have to
be extremely careful with the statedor which N = p.
For these states, we take a constant fractioNpf— N}
and distribute it among the successarsNe then have to
scale the distributiod for all statess for which this constant
fraction surpasses the required bound.

We setd(t) as follows:

d(t) =
(N (F+ 3w ) (VL = L)) Pls.)
It is simple to see that

F40>

Indeed, ZS d(t) is the sum of the following three expres-
te

sions:
P NO P(s,t) = N;,
Nt — N! NS . — N$
to—1 ig+1 i0
tgs 4 N (8, ) 4
3_pP—N: t t 3
(N, — N, P(s,t)==(p— N?
tes 4 Ng i — Nfo (Vi io—1)P(5,1) 4(p 2)

As N; ., > pthe result follows.

Furthermore when going to some succegsof s the
choice ofi, for s implies that for the choice of the sub-
distribution d for ¢ some valuei, < i, is going to be
used. Thus, the sequence of configurations of the form
(t', [a]>p, C) is finite and playec is winning.

We show that this definition of the sub-distributian
implies local monotonicity. Consider two configurations
(s,|a]sp,,C) and(s, [@]>p,,C). Letd; andds be the sub-
distributions chosen by in these configurations and Igt
andi? be the values used to defide andd,, respectively.
By definitiond, (¢) is in the open interval

(N,

J
ip—1

P(s,t),N% P(s,t))

%0
for j € {1,2}. By definition if p; = p theni} = i3 and it
follows thatd; = dy. Similarly, if p; > p theniy > 2. If
iy > i3 the strictness of; > d> follows from the strictness
of the sequencd’!. If i} = i% thend; > ds asp; > po.
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Cyclic monotonicity of modified winning strategy. We
turn now to consider cyclic monotonicity. Consider the con-
figurations(s, [a]sp,, C') and(s, [&]sp,, C’) that appear in

a play consistent witlk according to this order.

e Consider the case where 1 Wahs, «
1 W =Fahy, or o = 1 U =Fqp, andC = ¢’. The strat-
egy defined in the proof of Theorem 1 is also cyclically
monotone. Indeed, from configuratidr, [¢]sqp, C)
where

Probys(s,a) —p =146

we pass to configuratioft, [a].,,C) and we know
that

Probys(t,a) —p' =6
Hence, if configurations (s,[a]wp,,C) and
(s, |a]p,,C) appear in the same play we have
p1 = p2.
Consider the case where = 1 Uy andC = C’
and the strategy defined above. Lgtbe the bound
used for choosing the sub-distributidrin configura-
tion (s, [a]>y, , C). By construction values smaller than
iy are going to be used to define the sub-distributions
in successor configurations. It follows that if config-
uration (s, [a]sp,,C) is visited, a valueiz < i} is
going to be used to define its sub-distribution. From
the strictness of the sequend€ (and N7) and as
N;g <p; < N:g;ﬂ it follows thatps < p;.

Consider the case where= v; U)o, a = 1 U=F,
or « P W=k andIC = C'. Let p
Proby(s',a) andé; = p; — p’ fori € {1,2}. Let
d be the distribution suggested by playerin con-
figuration (s, [a]wp, , IC). By definition ofd we have
Yiesd(t) > p1. By assumption(s, [a]wp,,!C) is
reachable froms, [a]w, , !C), SO both players do not
choose to go to configurations of the forjn ;, !C)
fori € {1,2}. If follows that

Probys (s, ) = XesP(s,t)Proby (¢, )

We know that
Siesd(t) > p' + 01

Then, there must exist some S such that

d(t) - P(s,t)™" > Probys(t, o) + 61

It follows that if playerC chooses this statiethe gap
between the actual probability and the threshold does
not decrease. Thyg < po.

Consider the case where = )1 W1, and!C = C'.
Then the proof is similar to the previous item. By as-
sumptionC wins from (s, [a]>,,!C) and hences ¢



l[o]>p, [ar. Letp’” = Probp(s, ). As playerC wins
from (s, [a]>, , !C) we conclude thap’ < p;. In par-
ticular,s ¢ |11 W12]s, | a- Letn € N be such that
p’ < p+1/n < p. By Corollary 1 there aré&,l > 0
with s ¢ [[1)1 Wtba]> 41/ ar; , @and so the probabil-
ity of 11 Wb in M7, at s is less tharp;. PlayerC
iS going to use systeiM,jJ to guide her decisions. As
usual

ProbMi;J (s,0) = Xes,  P(s, t)ProbMi;J (t, @)

Let
p" = Probys:  (s,0)

As mentioneg” < p;. Letd; = p; — p” and letd be
the distribution suggested by playéerin configuration
(s, [@]>p,, C). By definition ofd we have

Siesd(t) > p1 =61 +p”
Then, there must exist some= S such that
d(t) - P(s,t)~" > Probygs (t,@) + 61

It follows that if playerC chooses this statethe gap
between the actual probability i} ; and the thresh-
old does not decrease. We show below in Lemma 2
that when visiting the same state againiify;; the
probability of« increases. Hencey > p;.

Lemma 2 Let M be a labeled Markov chaing and » in
AP, o the path formulag W r, and M}, given for some
states of M andk, € N. Lett and¢’ be different states in
M;; , that both correspond to some stateof M/ such that

e thereis a path fromi to ¢’ in t in A/} ,, and
¢ ¢ holds throughout the unique and finite path from the
root of M, tot'.

If we haveProby: (t,«) < 1, thenProby: (', ) >
Probyy: (t, o) follows.

Proof.  As Proby: (t,qWr) < 1 it follows that there

is some “leaf"t” in M}, that is reachable fromin M},
such that the unique finite path frofrto ¢ in Mg, does

not satisfyg Wr. As M}, is an unwinding of2Z, it fol-
lows that the subtree reachable frafin M, is con-
tained in the subtree reachable franin M} ;. Clearly,
Probasg (', ) = Probass (¢, ). Indeed, if a path satis-
erSqW r then every prefix of the path also satisfigd/ r.

We use proof by contradiction to argue that there is a path
from ¢ that does not satisfy W r and does not pass through
t’. Assume such a path does not exist. Then every path be-
ginning int that does not satisfy W r has to pass through
t'. However, botht andt’ correspond to staté in M. It fol-

lows that the only option to falsify W r in gameG,, (s', «)

is by “going in a loop” from state’ to itself. But by as-
sumption all states on the path betweemndt’ satisfyq, a
contradiction. O
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