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Abstract

We present Hintikka games for formulae of the proba-
bilistic temporal logic PCTL and countable labeled Markov
chains as models, giving an operational account of the de-
notational semantics of PCTL on such models. Winning
strategies have a decent degree of compositionality in the
parse tree of a PCTL formula and express the precise evi-
dence for truth or falsity of a PCTL formula. We also prove
the existence of monotone winning strategies that are almost
finitely representable. Thus this work serves as a foundation
for witness and counterexample generation in probabilistic
model checking and for a uniform treatment of abstraction-
based probabilistic model checking through games.

This work is also of independent interest as it displays
a subtle interplay between Büchi acceptance conditions on
infinite plays, the strictness or non-strictness of probabil-
ity thresholds in Strong and Weak Until PCTL formulae in
“GreaterThan” normal form, and a finite-state approxima-
tion lemma for Strong Until formulae with strict thresholds.

1 Introduction

Motivation. Countable labeled Markov chains [14, 6] are
an important class of stochastic processes for the modeling
of probabilistic systems. PCTL [12] is a probabilistic tem-
poral logic whose formulaeφ can express practically rele-
vant specifications, e.g. “with probability at least1−1/100,
a device will be elected leader” may be a requirement within
a telecommunications standard such as [1], and can be writ-
ten as[tt U someLeaderElected]≥1−1/100 in PCTL. A de-
notational semantics[|φ|]M over labeled Markov chainsM
then renders truth or falsity ofφ, where[|φ|]M is the set of
states inM at whichφ is true.

Algorithms that compute this truth value require suffi-
cient information about the probabilities of sets of paths that
satisfy path sub-formulae ofφ such as “atomic propertyq is
true until atomic propertyr becomes true” (writtenqU r in
linear-time temporal logic). PCTL formulae attain Boolean

truth values by casting such path probabilities through the
use of thresholds, e.g. “with probability at least1/2, atomic
propertyq remains to be true until atomic propertyr be-
comes true”. This casting also allows the approximation of
the probabilities of path sets: if an incremental computation
of the above probability attains a value≥ 1/2, the compu-
tation may safely and conclusively terminate.

A source of complexity in probabilistic model checking
of PCTL on finite-state labeled Markov chains is that the
familiar fixed-point characterization of Until formulae

qU r ≡ r ∨ (q ∧ X (qU r)) (1)

– saying that “eitherr is true at present; orq is true at
present and the Until formula is true at the next state” –
cannot be carried through the casting process of thresholds
in PCTL in that same simple manner, since probabilistic
dependencies may not reflect this compositional interpreta-
tion of Boolean connectives. This impediment to efficient
model-checking algorithms poses also an obstacle to the
synthesis of meaningful and compact evidence for the truth
or falsity ofs ∈ [|φ|]M . This is in striking contrast to the sit-
uation for the linear-time temporal logic LTL, where such
evidence may be given by a finite state path, possibly fol-
lowed by a finite state path that loops [8, Chap. 9]. This is
furthermore in contrast to the situation for branching-time
temporal logics such as CTL and theµ-calculus, where such
evidence is attainable by a characterization ofs ∈ [|φ|]M
through 2-person games that are determined (i.e. won by
exactly one of the two players), and through the synthesis
of a winning strategy for the resulting game [9].
Finitary evidence. The benefit of winning strategies as
complete and rigorous evidence of truth or falsity is ap-
pealing but winning strategies, as objects, may consume too
much space or their synthesis may require too much time.
One way in which to address this is to approximate a win-
ning strategy with a compact object that still retains some
but not necessarily all evidence of truth or falsity. Alterna-
tively, one may seek abstract representations of the winning
strategy that won’t lose any precision in terms of the evi-
dence of truth or falsity captured by the winning strategy.

Conservative abstraction techniques (e.g., [18] and [8,
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Chap. 13]) appear to fall into the latter category. If statea
in modelA abstracts statec in modelM such thata ∈ [|φ|]A
impliesc ∈ [|φ|]M , then a winning strategy for a game that
capturesa ∈ [|φ|]A may serve as complete evidence for the
truth of c ∈ [|φ|]M . In particular, ifA is finite-state then
the game and any winning strategies fora ∈ [|φ|]A may
be representable as finitary objects. Conversely, if winning
strategies in a game forc ∈ [|φ|]M have finitary representa-
tion even for infinite-state modelsM , such a representation
may be interpretable as a finite-state modelA that abstracts
M and satisfiesφ.

In that context, it is of interest that for existentially quan-
tified formulae of CTL such finite-state abstractions won’t
exist in general for abstractions that are like 3-valued Kripke
structures [4]. It is a routine observation that the examples
of “incompleteness” of abstraction in loc. cit. carry over to
the world of labeled Markov chains and 3-valued, finite-
state, labeled Markov chains as abstractions as soon as the
abstraction relation preserves the positivity of path proba-
bilities, e.g. as is the case for the probabilistic simulation of
Larsen & Skou [19].

The work reported here means to establish firm foun-
dations on which questions about the existence and com-
putation of finitary evidence of truth of PCTL formulae,
questions about the existence of finite-state abstractionsthat
witness such truth, and questions about connections be-
tween witnessing abstractions and winning strategies can
be phrased and studied.
Hintikka games. We now sketch the idea behind Hintikka
games [13]. The semantics of first-order logic over models
is defined as a Tarskian notion of truth:|= is a formally de-
fined predicate between models and formulae of first-order
logic and “propertyφ is true in modelM ” is defined as
“M |= φ holds”. For each modelM , a Hintikka game
G(M,φ) involves two players, Verifier (who wants to prove
thatM satisfiesφ) and Refuter (who wants to prove thatM
does not satisfyφ). For example, in gameG(M,φ1 ∧ φ2)
Refuter has initial control and chooses a move to the contin-
uation gameG(M,φ1) or a move to the continuation game
G(M,φ2). So Refuter is a “universal” player. Dually, in
gameG(M, ∃xφ), Verifier is in initial control, chooses an
elementa of the structure inM , bindsx to a, and moves
to the continuation gameG(M [x 7→ a], φ) for the model
that isM but with x interpreted asa. So Verifier is an
“existential” player. Sequences of such moves generate
plays which are always finite since the continuation games
involve proper subformulae. Eventually, a game of form
G(M,R(t1, . . . , t2)) is reached fornary relation symbolR
and termsti. Verifier wins that game if the interpretation of
the tuple of terms inM is contained in the interpretation of
relationR in M ; otherwise Refuter wins.

Strategies for both players are objects that allow them
to make necessary choices for determining continuation

games. For example, Verifier needs to make choices at dis-
junctions and existential quantifiers. A strategyσ is win-
ning for a player if all plays played according to the choices
offered by strategyσ are won by that player. Since all plays
for first-order logic are finite, classical game theory guaran-
tees that gamesG(M,φ) are determined: exactly one of the
two players has a winning strategy for that game. It is well
known that in ordinary set theory ZF the assumption of the
Axiom of Choice is equivalent to that

(Correspondence) “Verifier wins the game
G(M,φ)” if, and only if, “M |= φ holds”.

holds. So one gets an operational and “small-step” account
of truth in first-order logic from the Axiom of Choice.

In this paper we also rely on the Axiom of Choice for
the composition of winning strategies for Until formulae
with non-strict probability thresholds from countably many
winning strategies for Until formulae with strict probabil-
ity thresholds in proving(Correspondence)in our setting
of PCTL and countable labeled Markov chains. This de-
pendency appears to vanish for finite-state models and for
PCTL formulae whose thresholds are never in control of the
universal Refuter. The latter is of interest sinceanyPCTL
formula can be rewritten with the help of small perturba-
tions of thresholds that won’t diminish their practical value
to specifiers but avoid the need for universally interpreted
probability thresholds. Our games retain to idea of Verifier
and Refuter as being existential and universal players (re-
spectively), and of both having to make choices of either
sub-formulae or of structural elements, which for PCTL
turn out to besub-distributionsthat approximate transition
distributions in labeled Markov chains.
Contributions of paper. We formulate 2-person Hintikka
games between a Verifier and a Refuter for states and PCTL
formula φ in a countable, labeled Markov chainM . We
prove that these games are won by Verifier if, and only if,
states satisfiesφ in M ; and won by Refuter if, and only
if, state s does not satisfyφ in M . In particular these
games are determined. We then show that winning strate-
gies can be assumed to have structural properties that make
them amenable to finitary representations. We also show
that such finitary representations have resemblance tofinite-
stateabstract models that witness truth of a PCTL formula
on the model they abstract.
Outline of paper. In Section 2 we discuss related work. In
Section 3 we review the familiar denotational semantics of
PCTL for countable labeled Markov chains as models, and
prove a finite-state approximation lemma for (strong) Until
formulae with non-strict thresholds under that semantics.In
Section 4 the game semantics for PCTL over countable la-
beled Markov chains is being defined and these games are
shown to be determined and to capture precisely the deno-
tational semantics of PCTL. In Section 5 we discuss what
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structural properties one may assume in winning strategies
for our games. A discussion of the relevance of our results
to finding finite abstractions is contained in Section 6, and
we conclude in Section 7.

2 Related work

Model checking formulae of theµ-calculus [17] has an
efficient reduction to determining the winning regions in
parity games [9], 2-person games with a parity acceptance
condition for infinite plays. Parity games are formulatedin-
dependentlyfrom the notion of model and semantics of the
µ-calculus, but winning regions of parity games are express-
ible through model checks ofµ-calculus formulae. Our
Hintikka games, in contrast, have Büchi acceptance condi-
tions and are formulated in terms of labeled Markov chains
and the familiar PCTL semantics.

In [10] a quantitativeµ-calculus with an explicit dis-
count operator, and with models whose transitions are la-
beled with discount factors has non-negative real numbers
as results of model checks. Quantitative parity games are
developed and shown to correspond to model checks for
formulae of the quantitativeµ-calculus in the same manner
as for their qualitative variants above. However, winning
strategies are no longer memoryless in general as they may
have to “make up” for discount factors encountered en-route
in a play – even in games with finite set of configurations.

Another quantitativeµ-calculus (qMµ) is studied in [21],
where models contain both non-deterministic and proba-
bilistic choice but no discounting. A denotational semantics
generalizes Kozen’s familiar semantics to that logic. For
any finite-state model and formula of qMµ the authors pro-
pose a probabilistic analogue of parity games, show that this
game is determined, prove that its game value equals that
of the denotational semantics for the model and formula in
question, and establish that there exist memoryless winning
strategies in this game.

The interplay of probabilistic approximation and logic,
originally investigated in [15, 16], is being explored for
continuous-state labeled Markov processes in [7]. Each
model is being approximated by a chain of finite-state mod-
els ordered by a transitive simulation relation. The logic
contains a constant for truth, conjunction, and the equiv-
alent of the PCTL operatorX [·]>p in the process setting.
This approximating chain is linked to the logic as follows:
the model satisfies a formula if, and only if, there is a model
in its approximating chain that satisfies it. The chain is be-
ing built from two parameters (as in our Lemma 1): one
for the temporal depth of the unfolding of the model, an-
other for the precision with which transition probabilities of
the model are represented in that truncated approximation.
Thus, if a continuous-state model satisfies a formula, there
is a finite-state simulation of that model that witnesses this.

This ability of witnessing truth in finite-state abstrac-
tions seems to disappear for branching-time and probabilis-
tic logics as soon as certain fixed-points are added to the
logic. In [4] one finds an infinite-state Kripke structure that
satisfies anexistentiallyquantified Weak Until formula but
for which no simulating 3-valued variant of Kripke struc-
ture satisfies that Weak Until formula, for any sensible no-
tion of simulation: there is no finite-state simulation of that
infinite-state Kripke structure that satisfies this formula. It
is easily seen that these results carry over into the world
of labeled Markov chains if simulations preserve positive
probabilities of path sets, as is e.g. the case for the proba-
bilistic simulation of Larsen & Skou [19]. Note that in the
setting of labeled Markov chains the existential and univer-
sal path quantifier collapse into a single probabilistic one.

In [11] finite-state (discrete-time) labeled Markov chains
and probabilistic CTL (PCTL) are considered in their stan-
dard semantics, and different forms of evidence being de-
veloped for documenting the falsity of a PCTL formula in a
given state. One form computes those paths that contribute
most to the falsity of a formula. Another form computes
most probable subtrees to gain more precise diagnostic evi-
dence. Both forms, studied for Strong and Weak Until, are
supported with shortest-path type algorithms for computing
such evidence. In [2] the line of work from [11] is being
pushed into the world of Markov decision processes, with a
focus on upwards-bounded probability thresholds in PCTL
formulae – whereas we study the downwards-bounded case
without loss of generality. The shortest-path algorithms
in [2] are then combined with AND/OR trees in order to
filter the computed set of paths to one with high explana-
tory value, and to compute the probability of that filtered
path set. We believe that our Hintikka games provide a suit-
able foundation for understanding the trade-off between the
precision of extant and future forms of evidence and the
complexity of their supporting algorithms.

Games are an attractive candidate for describing model
checks, abstraction between models, and model checks on
abstract models within a single formalism through satis-
faction games, refinement games, and abstract satisfaction
games, respectively. This has been developed for Kripke
structures, focused transition systems as their abstractions,
and the modal mu-calculus in [4]. Tree automata are equally
attractive in that regard, as demonstrated in [5]. It would
therefore be of interest to generalize our Hintikka games so
that they are formulated independently of a notion of model
and logic.

Stochastic games [3] have not only adversarial players,
e.g. the two players0 and1 for parity games, but an addi-
tional random player.5 whose game moves are determined
by probability distributions. For such so-called2.5-player
games one can consider the usual acceptance conditions
for infinite plays. For reachability,2.5-player stochastic

3



games have successfully been applied in improving the pre-
cision of abstractions of Markov decision processes [18]:
one adversarial player controls the partition of the concrete
state space, the other adversarial player controls the non-
deterministic choices inherent in the concrete Markov de-
cision process. It would be of interest to see if2.5-player
stochastic games with Büchi acceptance conditions provide
finite-state abstractions that can witness the truth of PCTL
formulae of labeled Markov chains they abstract.

In [22], probabilistic bisimulation is modified to a no-
tion of bisimulation “up toǫ” that is shown to be of use
in quantitative analysis of confinement problems in secu-
rity. This notion is no longer transitive and bisimulation “up
to 0” does not coincide with probabilistic bisimulation for
infinite-state systems. It would be of interest to understand
whether theǫ-moves in our Hintikka games correspond to
approximative versions of probabilistic simulations.

3 Preliminaries

(Countable) Labeled Markov chainsM over a set of
atomic propositionsAP are triples(S, P, L), whereS is
a countable set of states,P : S × S → [0, 1] is a count-
able stochastic matrix such that the countable sum of non-
negative reals

∑

s′∈S P (s, s′) converges to1 for all s ∈ S,
andL : AP → P(S) is a labeling function whereL(q) is
the set of states at which atomic propositionq is true. We
say thatM is finitely branching iff for alls ∈ S the set
{s′ ∈ S | P (s, s′) > 0} is finite. A pathπ from states
in M is an infinite sequence of statess0s1 . . . with s0 = s
andP (si, si+1) > 0 for all i ≥ 0. For Y ⊆ S, we write
P (s, Y ) as a shorthand for the (possibly infinite but well
defined) sum

∑

s′∈Y P (s, s′).
The syntax of PCTL is given in Fig. 1. Path formulae

α are wrapping PCTL formulae into “LTL” operators for
Next, (strong) Until, and Weak Until. Path formulae are
interpreted as predicates over paths ofM . The semantics is
defined as usual: a pathπ = s0s1 . . . satisfies

• Xφ iff s1 ∈ [|φ|]M
• φU≤kψ iff there is al ∈ N such thatl ≤ k, sl ∈ [|ψ|]M

and for all0 ≤ j < l we havesj ∈ [|φ|]M
• φW ≤kψ iff for all l ∈ N such that0 ≤ l ≤ k we have

eithersl ∈ [|φ|]M or there is0 ≤ j ≤ l with sj ∈ [|ψ|]M

Until formulaeφU≤kψ arestrong untils since paths that
satisfy such a formula have to maintain temporary invariant
φ until they reach a state satisfyingψ, and such a state has to
be reached within finite transitions, and also withink tran-
sitions if k 6= ∞. Weak Until formulaeφW ≤kψ areweak
untils since reaching a state satisfyingψ is optional ifφ is
an invariant on the paths0s1 . . . sk, which is understood to
beπ whenk = ∞. We record the familiar duality between

φ, ψ ::= PCTL formulae
q Atom
¬φ Negation
φ ∧ ψ Conjunction
[α]⊲⊳p Path Probability

α ::= Path formulae
Xφ Next
φU ≤kψ Until
φW ≤kψ Weak Until

Figure 1. Syntax of PCTL, whereq ∈ AP, k ∈ N∪{∞},
p ∈ [0, 1], and⊲⊳ ∈ {<,≤, >,≥}

(strong) Until and Weak Until:

¬(φUψ) ≡ (¬ψ)W (¬φ ∧ ¬ψ) (2)

PCTL formulae wrap path formulae with probability thresh-
olds (turning predicates on paths into predicates on states),
and may add a propositional logic layer on top of that,
which may then be used to build up new Path formulae.
We writeφUψ as a shorthand forφU≤∞ψ, andφWψ as
shorthand forφW ≤∞ψ. The operators∨ (disjunction) and
→ (implication) are derived as usual. Letff be an abbrevi-
ation for any[α]>1, andtt a shorthand for any[α]≥0. For
labeled Markov chainM = (S, P, L), the denotational se-
mantics of PCTL formulaφ is a subset[|φ|]M of S. We
write [|φ|] if M is clear from the context and define[|φ|] by
structural induction, as usual:

[|q|] = L(q) [|φ ∧ ψ|] = [|φ|] ∩ [|ψ|]
[|¬φ|] = S \ [|φ|] [|[α]⊲⊳p|] = {s ∈ S | ProbM (s, α) ⊲⊳ p}

whereProbM (s, α) is the probability of the measurable set
Path(s, α) of paths inM that begin ins and satisfy the path
formulaα. Note that the semantics of PCTL and Path for-
mulae is mutually recursive, reflecting the mutual recursion
of their syntax. We say that PCTL formulaeφ andψ are
semantically equivalent iff for all labeled Markov chainsM
we have[|φ|]M = [|ψ|]M .

Example 1 For the labeled Markov chainM in Figure 2
we have[|[qU r]≥1/2|]M = {s0, s1} and for the labeled
Markov chainM s0

2 in Figure 3 we have[|[qW r]≥5/9|]M =
{s0, s0s1, s0s1s1, s0s0, s0s0s1, s0s0s0}.

Each PCTL formulaφ is semantically equivalent to a
PCTL formula in “GreaterThan” normal form obtained
by replacing all occurrences of the form[α]<p in φ with
the PCTL formula¬[α]≥p, and by replacing any oc-
currences of the form[α]≤p in φ with the PCTL for-
mula ¬[α]>p. For example, the “GreaterThan” nor-
mal form of the formula[[ X [qU r]<1/3]≤1/2 U r]>1/4 is
[¬[ X¬[q U r]≥1/3]>1/2 U r]>1/4.

Assumption 1 (GreaterThan) Without loss of generality,
PCTL of Fig. 1 is restricted to “GreaterThan” normal form,
i.e.,⊲⊳ ∈ {≥, >}.
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Figure 2. Labeled Markov chainM with s0 ∈
[|[q U r]≥1/2|]M , sinceProbM (s0, qU r) = 1/2.

We now state and prove a finite-state approximation lemma
for the validity of Until formulae with non-strict probability
thresholds at states of labeled Markov chains. This lemma
will be crucial in proving that our game semantics of PCTL,
developed in Section 4, captures exactly the denotational
semantics we defined above.

Definition 1 (Finite Unfoldings) LetM = (S, P, L) be a
labeled Markov chain. For eachi ∈ N and s0 ∈ S de-
fine the labeled Markov chainM s0

i = (Si, Pi, Li), a ran-
dom tree with roots0, as follows: unfoldM from s0 as a
full tree of depthi, where edges have positive probability
according toP . This may duplicate states but such du-
plicates will satisfy the same atomic propositions. States
at level i have a self-loop with probability1. The proba-
bility measuresP (s, ·) at levels< i are those inM . For
eachj ∈ N we restrictM s0

i to the finite-branching, and so
finite-state, labeled Markov chainM s0

i,j = (Si,j , Pi,j , Li,j)
with one additional statetsink which only satisfiestt but
no other q ∈ AP: for each s ∈ Si, let t1, t2, . . . be
an enumeration of{tk ∈ Si | P (s, tk) > 0} such that
P (s, tk) ≥ P (s, tk+1) for all k ∈ N, thenPi,j is ob-
tained fromPi by settingPi,j(s, tk) = Pi(s, tk) for k ≤ j,
Pi,j(s, tsink) = 1 − Σj

k=1Pi,j(s, tk) andPi,j(tsink, tsink) =
1; state setSi,j consists of thoses reachable froms0 via
Pi,j , andLi,j isLi restricted to setSi,j and extended to the
new statetsink.

Example 2 The unfoldingM s0

2 for the labeled Markov
chainM of Figure 2 is depicted in Figure 3.

Lemma 1 (Finite-State Approximation) Let M =
(S, P, L) be a labeled Markov chain,q, r ∈ AP, and
p ∈ [0, 1]. Thens ∈ [|[qU r]≥p|]M iff for all n ∈ N there
arek, l ∈ N with s ∈ [|[q U r]>p−1/n|]Ms

k,l
.

Example 3 Consider the labeled Markov chain in Fig. 2.
Probability ProbM (s0, qU r) = 1/2 is attained by paths
of increasing length, as the value of the infinite sum
Σ∞

j=1(1/3)j. However, for everyn ∈ N there exists some
i ∈ N such thatΣi

j=1(1/3)j > 1/2 − 1/n and where that

1

3

1

3

r

r

r

q

q

s0

q

s0s1

s0s2

s0s0

s0s0s0

1

3
s0s0s2

s0s0s1

s0s2s2

s0s1s1

1

3

1

3

1

3

Figure 3. UnfoldingMs0

2
of the labeled Markov chain of

Figure 2 up to depth two.

finite sum is attainable in a finite unfolding ofM . For ex-
ample, forM s0

2 in Fig. 3 the probability ofqU r at s0 is 4
9

so for everyn < 18 we haves0 ∈ [|[qU r]>1/2−1/n|]Ms0
2

.

In M s0

4 the probability ofqU r at s0 is 13
27 and so for ev-

eryn < 54 we haves0 ∈ [|[pU q]>1/2−1/n|]Ms0
4

. Lemma 1
promises that for every (countable) labeled Markov chain
there is a similar approximation.

Lemma 1 has a dual version, required in the proof of
Theorem 1: for labeled Markov chainM = (S, P, L),
q, r ∈ AP, andp ∈ [0, 1]: s 6∈ [|[qW r]>p|]M iff for all
n ∈ N there arek, l ∈ N with s 6∈ [|[qW r]≥p+1/n|]Ms

k,l
.

4 Game semantics

Let M = (S, P, L) be a labeled Markov chain over set
of atomic propositionsAP. For each states ∈ S and PCTL
formulaφ we define a 2-person Hintikka gameGM (s, φ).
As already mentioned, these games are played between two
playersV (the Verifier) andR (the Refuter). After having
defined these games and their winning conditions, we show
that each gameGM (s, φ) is won by playerV iff s ∈ [|φ|]M ;
and won by playerR iff s 6∈ [|φ|]M . In particular, each game
GM (s, φ) is determined, exactly one of the playersV andR
wins that game.

The gameGM (s, φ) has as set of configurations

CfM (s, φ) = {〈s′, ψ, C〉 | s′ ∈ S, ψ ∈ cl(φ), C ∈ {R, V}}

where we define the set of PCTL formulaecl(φ), theclosure
of φ, below. There is a distinguished initial configuration
〈s, φ, V〉 ∈ CfM (s, φ). Plays in gameGM (s, φ) are finite or
infinite sequences of elements inCfM (s, φ) starting in the
initial configuration〈s, φ, V〉. A play is generated by game
moves, specified in detail below. Their intuition is similar
to that in Hintikka games for first-order logic, as described
in the introduction.
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Our game semantics treats Boolean connectives in the
same manner as Hintikka games for first-order logic (here
we take the point of view of Verifier): proving truth of for-
mulaφ at states amounts to winning the game from config-
uration〈s, φ, V〉. In order to prove a conjunction we allow
Refuter to choose which branch of the conjunction to prove.
In order to handle negation, the game continues in the same
state but with the unnegated formula and a swap of the role
of players, thus attempting to show that Refuter cannot win
from the unnegated formula.

In games for branching-time logics such as CTL or theµ-
calculus (see e.g. [23]), the universal quantification in∀X

is resolved by Refuter’s choice of a successor state; and the
existential quantification in∃X is resolved by Verifier sup-
plying one successor state, both as familiar from the case of
quantifiers in first-order logic. For PCTL, however, things
are more complicated. The next operator[ Xφ]⊲⊳p includes
a promised probability⊲⊳ p, “at leastp” or “more thanp”.
Verifier now resolves this “probabilistic quantification” by
showing how to re-distribute the required probability be-
tween the successors of the state.

In qualitativegames, until operators are resolved by us-
ing the logical equivalence in (1) – and similarly for weak
until operators. The only problem in adopting this for
PCTL is in the possibility of deferring promises forever.
For games in qualitative settings this is typically handled
by fairness, but for PCTL fairness is not strong enough:

Example 4 PCTL formula[qU r]≥1/2 holds at states0 in
the labeled Markov chain shown in Figure 2. But in order
to prove this we have to appeal to the entire infinite sum
Σ∞

i=1(1/3)i. Any fairness constraint forcing a transition
from s0 into {s1, s2} would cut that infinite sum down to
a finite one, failing to prove that formula for states0.

However, allowing to defer the satisfaction of the strong
until indefinitely is unsound. For any⊲⊳ p being> p with
p ∈ [0.5, 1], and any⊲⊳ p being≥ p with p ∈ (0.5, 1], the
PCTL formula[qU r]⊲⊳p does not hold ats0 but allowing
Verifier to delay promises forever may be unsound. For⊲⊳
p being> 0.5, e.g., Verifier could supply the promise1/3
immediately, promising more than1/6 in the future, and
then – by deferring the promise indefinitely – Verifier could
win gameGM (s0, [qU r]>0.5).

To address this problem we add a specialǫ-move as well
as acceptance conditions for infinite plays. If the probabil-
ity is at leastp, playerV should be able to prove that it is
greater thanp − ǫ for everyǫ > 0. On the other hand, if
the probability is strictly less thanp then there exists anǫ
for which it is at mostp − ǫ. Thus, playerR chooses theǫ
and playerV proves in finite time (appealing to Lemma 1)
that she can get as close as needed to the bound. The same
intuition (but dual) works forWeakUntil, when the Weak
Until formula in question doesnot hold.

We next define the notion of the closurecl(φ) of a PCTL
formulaφ, which is the union of two sets of PCTL formulae.
The first setcl1(φ) is the actual set of sub-PCTL-formulae
of φ, includingφ itself. The second setcl2(φ) consists of
all formulae[α]⊲⊳p′ such that either

(a) α is ψ1 Uψ2, ⊲⊳ is >, and for somep ∈ [0, 1] and
⊲⊳′ ∈ {>,≥} we have[α]⊲⊳′p ∈ cl1(φ),

(b) α is ψ1 Wψ2, ⊲⊳ is ≥, and for somep ∈ [0, 1] and
⊲⊳′ ∈ {>,≥} we have[α]⊲⊳′p ∈ cl1(φ),

(c) α is ψ1 U≤k′

ψ2 and for somep ∈ [0, 1] and a finite
k > k′ we have[ψ1 U≥kψ2]⊲⊳p ∈ cl1(φ),

(d) α is ψ1 W ≤k′

ψ2 and for somep ∈ [0, 1] and a finite
k > k′ we have[ψ1 U≥kψ2]⊲⊳p ∈ cl1(φ)

The second setcl2(φ) allows us to replace any probability
thresholdsp with other valuesp′ ∈ [0, 1] and finite time
bounds with smaller ones, but to allow this in such a manner
that it is consistent with the above intuition behindǫ-moves:

• (strong) Until formulae with non-strict bounds may
change to (strong) Until formulae with strict bounds

• Weak Until formulae with strict bounds may change to
Weak Until formulae with non-strict bounds, and

• the finite time bounds in bounded untils should be al-
lowed to decrease.

The difference between the strong and weak untils stems
from their duality, the negation of a Weak Until formula
is a (strong) Until formula and vice versa. Thus, a Weak
Until formula with strict bound is the negation of a (strong)
Until formula with non-strict bound. When Refuter is trying
to disprove a Weak Until formula with strict bound, she is
in fact trying to prove the dual (strong) Until formula with
non-strict bound, and requires the same possible moves for
the non-strict bound and strict bound versions.

Example 5 Consider the following formula:

φ = [(r ∧ [ X [(p ∧ ¬r)W (q ∧ ¬r)]≥1]>0)W ff]>0 (3)

Intuitively,φ says that there is an infinite path labeled byr
such that every state on this path has a successor for which
pW q holds on (almost) all paths on whichr does not hold
during the verification ofpW q. Letα = (p ∧ ¬r)W (q ∧
¬r), β = X [α]>0, andγ = (r ∧ [β]>0)W ff. The closure
of φ is:

cl(φ) =







φ, [γ]≥b,ff, (r ∧ [β]>0),
[β]>0, [α]≥b, (p ∧ ¬r),
p,¬r, r, (q ∧ ¬r), q

∣

∣

∣

∣

∣

∣

b ∈ [0, 1]







Asγ appears inφ with a strict bound, it is in the closure of
φ with its original bound as well as with all possible non-
strict bounds. Asα appears inφ with a non-strict bound, it
appears in the closure ofφ only with non-strict bounds.
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Similarly, for formulaφ = [qU r]≥1/2 we havecl(φ) =
{φ, q, r, [qU r]>b | b ∈ [0, 1]}. Asφ is a strong until with
non-strict bound it is part ofcl1(φ) and for every possible
boundb its strict counterpart[qU r]>b is in cl2(φ).

Subsequently, we write!C for the player other thanC, i.e.
!V = R and!R = V. The possible moves of gameGM (s0, φ)
are defined through the moves of gamesGM (s, ψ) by struc-
tural induction onψ ∈ cl(φ), simultaneously for alls ∈ S.

M1. At configurations 〈s, [α]>1, C〉, player !C wins

M2. At configurations 〈s, [α]≥0, C〉, player C wins

We may therefore assume that in subsequent moves con-
figurations of the form〈s, [α]⊲⊳p, C〉 never satisfy that⊲⊳ p
equals≥ 0 or> 1.

M3. At configurations 〈s, q, C〉:

– player C wins if s ∈ L(q)
– player !C wins if s 6∈ L(q)

M4. At configuration 〈s,¬ψ, C〉, the next configuration is
〈s, ψ, !C〉

So move M4 removes the negation from the formula but
also swaps the role of players.

M5. At configuration 〈s, ψ1 ∧ ψ2, C〉, player !C can choose
as next configuration either 〈s, ψ1, C〉 or 〈s, ψ2, C〉

So player!C chooses a conjunct and the game continues
with that conjunct instead of the conjunction.

M6. At configuration 〈s, [ Xψ]⊲⊳p, C〉, player C chooses a
subset Y ⊆ S satisfying P (s, Y ) ⊲⊳ p; then player
!C chooses some s′ ∈ Y :

– if P (s, s′) = 0, player !C wins
– otherwise, P (s, s′) > 0 and the next configura-

tion is 〈s′, ψ, C〉

Move M6 is well defined. There is a non-empty setY with
P (s, Y ) ⊲⊳ p asp ∈ [0, 1], P (s, ·) has mass one, and⊲⊳ p is
neither equal to> 1 nor to≥ 0.

M7. At configuration 〈s, [ψ1 Uψ2]≥p, C〉, player !C chooses
some n ∈ N such that p− 1/n ≥ 0 with resulting next
configuration 〈s, [ψ1 Uψ2]>p−1/n, C〉

In move M7 such a choice is possible sincep cannot be
0. The intuition is that[p, 1] =

⋂

n∈N
(p − 1/n, 1] so this

behaves like auniversalquantification overn ∈ N.

M8. Dually, at configuration 〈s, [ψ1 Wψ2]>p, C〉, now player
C chooses n ∈ N such that p+ 1/n ≤ 1 with resulting
next configuration 〈s, [ψ1 Wψ2]≥p+1/n, C〉

In move M8 such a choice is possible sincep < 1. The
intuition is that a Weak Until with a> threshold is the dual
of a strong until with a≥ threshold (based on (2)), so it is
like anexistentialquantification overn ∈ N.

M9. At configuration 〈s, [α]⊲⊳p, C〉 where eitherα is ψ1 Uψ2

and ⊲⊳ is >; or α is ψ1 Wψ2 and ⊲⊳ is ≥

– player C is able to move to next configuration
〈s, ψ2, C〉

– if player C did not move, player !C is able to move
to next configuration 〈s, ψ1, C〉

– if neither player moved above, the play must pro-
ceed as follows:

Player C chooses a sub-distribution d : S →
[0, 1] such that

∑

s′∈S

d(s′) > 0 &
∑

s′∈S

d(s′) ≥ p (4)

∀s′ ∈ S : d(s′) ≤ P (s, s′) (5)

Next, player !C chooses some s′ ∈ S
with d(s′) > 0 and the next configuration is
〈s′, [α]⊲⊳d(s′)·P (s,s′)−1 , C〉.

In move M9, sub-distributiond has positive mass, approxi-
mates the probability distributionP (s, ·), and specifies the
re-distribution of promise⊲⊳ p into promised probabili-
ties at successor states. Sinced(s′) > 0, we also have
0 < d(s′) · P (s, s′)−1 ≤ 1 in move M9 by (5).

M10. At configuration 〈s, [α]>p, C〉 where α is either
ψ1 U≤kψ2 or ψ1 W ≤kψ2 with k ∈ N:

– if k = 0 and α is ψ1 U≤kψ2, the next configura-
tion is 〈s, ψ2, C〉

– if k = 0 andα isψ1 W ≤kψ2, player C chooses as
next configuration either 〈s, ψ1, C〉 or 〈s, ψ2, C〉

– if k > 0, the moves are defined as in M9 above;
except when the last item of M9 applies, in which
case the counter k in α is decreased to k − 1 for
that next configuration 〈s′, [α]⊲⊳d(s′)·P (s,s′)−1 , C〉

In move M10, a Bounded Until with bound0 has to realize
ψ2 right away; and a Bounded Weak Until with bound zero
has to realize at least one ofψ1 orψ2 right away.

A finite play is won as explained in M1-M10 above. In
most moves, the play either ends or moves to configurations
where the formula is apropersubformula in the closure. In
a configuration with strong until with non-strict bound or
weak until with strict bound the next configuration changes
from non-strict to strict bound or vice versa. In a configu-
ration with strong until with strict bound or weak until with
non-strict bound the next configuration has the same path
formula and threshold type, or has a proper sub-formula.

It follows that every infinite play ends with an infinite
suffix of configurations that are
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A1. all of the form〈si, [ψ1 Wψ2]≥pi
, C〉 or

A2. all of the form〈si, [ψ1 Uψ2]>pi
, C〉

Configurations of these suffixes are either labeled by
strong until with strict bound or weak until with non-strict
bound, where the states and the exact probability bound
may still change, but where neither the playerC nor the sub-
formulaeψ1 andψ2 change.

Definition 2 (Acceptance conditions)Player V wins all
infinite plays with an infinite suffix either of type A1 above
with C = V, or of type A2 above withC = R. PlayerR wins
all other infinite plays: those with an infinite suffix either of
type A1 whenC = R, or of type A2 whenC = V.

These are Büchi type acceptance conditions, and so our
games are known to be determined [20]. We use the no-
tion of strategy for playerC informally. But such strategies
contain, for each configuration of a game, at most one set of
choices as required by the applicable move from M1-M10.

Example 6 Consider gameGM (s0, [qU r]≥1/2), whereM
is as in Fig. 2, and letα = qU r. The initial configuration is
〈s0, [α]≥1/2, V〉. In the first move playerR chooses ann ∈
N and the next configuration is〈s0, [α]>1/2−1/n, V〉. Then,
as long as the playΓ0Γ1 . . . remains in configurations of
the form〈s0, [α]>pi

, V〉, playerV is going to choose the sub-
distributiond with constant valuesd(s2) = 0 andd(s1) =
1
3 − 1

2n , and dynamic valued(s0) = pi − d(s1). A simple
calculation shows that as long as playerR choosess0 as
the next state (clearly, if she choosess1 she is going to lose
as s1 ∈ L(r)) the promised probability> pi is going to
decrease according to the following sequence:p0 = 1

2 −
1
n ,

p1 = 1
2 − 3

2n , p2 = 1
2 − 6

2n , p3 = 1
2 − 15

2n , and in general

pi = 1
2 − 3i+3

4n for i ∈ N. Wheneverpi decreases below
1
3 (and there is somei ∈ N for which this happens), player
V still choosesd with d(s2) = 0 as above but now defines
d(s1) = pi andd(s0) = 0, thereby forcing playerR to move
to s1 and lose. This describes a winning strategy for player
V in gameGM (s0, [qU r]≥1/2).

Example 7 Although the choice ofd in Example 6 may
seem arbitrary, it meshes well with the use of Lemma 1.
Consider again the gameGM (s0, [α]≥1/2) from Example 6.
Suppose that in the first move playerR chooses9 ∈ N,
and the next configuration is〈s0, [α]>7/18, V〉. Since for
theM2

s0
in Figure 3, ProbM

s0
2

(s0, α) = 4
9 > 7

18 , player
V can useM s0

2 to guide her choices. InM s0

2 we have
ProbM

s0
2

(s0s1, α) = 1 andProbM
s0
2

(s0s0, α) = 1
3 . Player

V uses the gap of118 and re-distributes it between the suc-
cessors ofs0. She can choose, for example,d(s1) = 1

3 −
1
54

andd(s0) = 1
9 − 1

54 . The next possible configurations are
then〈s1, [α]>17/18, V〉 and〈s0, [α]>5/18, V〉. PlayerV iden-
tifies the resulting states with those obtained inM s0

2 , here

s0s1 and s0s0 (respectively). Ass0s1 ∈ [|r|]Ms0
2

the first
is clearly a winning configuration. From〈s0, [α]>5/18, V〉
and the corresponding locations0s0 in M s0

2 , playerV no-
tices thatProbM

s0
2

(s0s0s1, α) = 1 and choosesd(s1) =

5/18. The next configuration is〈s1, [α]>15/18, V〉 (with cor-
respondings0s0s1 in M s0

2 ) and won by supplyingr.

Definition 3 1. A strategyw for player C in game
GM (s, φ) is winning from a configurationΓ in that
game iff playerC wins all plays beginning in configu-
ration Γ when playerC plays according to his strategy
w – regardless of how player!C plays.

2. PlayerC wins gameGM (s, φ) iff playerC has a strat-
egy that is winning from configuration〈s, φ, V〉.

We can now formalize our main result that the denota-
tional semantics of PCTL is captured exactly by the exis-
tence of winning strategies in gamesGM (s, φ).

Theorem 1 LetM = (S, P, L) be a labeled Markov chain
overAP, s ∈ S, andφ a PCTL formula. Then we have:

1. s ∈ [|φ|]M iff playerV wins gameGM (s, φ)

2. s 6∈ [|φ|]M iff playerR wins gameGM (s, φ).

In particular, gameGM (s, φ) is determined.

GameGM (s, φ) is defined such that its initial configura-
tion 〈s, φ, V〉 is owned by playerV. We can define a dual
game with the same moves but with initial configuration
〈s, φ, R〉. Theorem 1 and its proof then remain to be valid if
we swap the role of players in both.

Example 8 Consider gameGM (s0, [qU r]>1/2), whereM
is as in Fig. 2, and letα = qU r. From configuration
〈s0, [α]>1/2, V〉, player V won’t move to〈s0, r, V〉 as she
would then lose. For the same reason, playerR won’t move
to 〈s0, q, V〉. So if both players play strategies that are ’op-
timal’ for them, playerV has to choose a sub-distributiond
at the initial configuration.

If d(s2) > 0, playerV loses as playerR can then choose
s2. Sod(s2) = 0 for any ’optimal’ strategy of playerV.
But bothd(s1) and d(s0) have to be positive since oth-
erwise the mass ofd can be at most1/3 by (5), which
would violate (4). Since playerV plays an ’optimal’ strat-
egy,d(s1) 6= 1/3, as otherwise playerR could choose as
next configuration〈s1, [α]>(1/3)·(1/3)−1 , V〉 and would then
win by move M1. By (5) there is thereforeǫ > 0 such that
d(s1) = 1/3 − ǫ. In particular, playerR won’t chooses1
as she would lose the next configuration〈s1, [α]>1−3ǫ, V〉
(sinces1 ∈ L(r)). So playerR choosess0 and the next con-
figuration is〈s0, [α]>3d(s0), V〉. By (4),3d(s0) must be at
least1/2 + 3ǫ and so playerV promisesmorein > 3d(s0)
than she promised in the previous configuration.
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At configuration〈s0, [α]>3d(s0), V〉, playerV avoids los-
ing only by choosing a sub-distributiond that mapss0 to
0 and all other states to positive mass as before, and for
the same reasons. Similarly,d(s1) < 1/3 has to hold.
So although a new functiond with a new value ofǫ may
be chosen, the next configuration is still of the same type
〈s0, [α]>p′ , V〉 with p′ > 1/2. Thus, either the play is finite
and so lost for playerV as described above; or the play is
infinite and so lost for playerV by the acceptance conditions
A1 on infinite plays.

We conclude that playerR wins that game. A winning
strategy for her from the initial configuration only needs to
be specified for move M9:

• player R will never choose a configuration of form
〈s0, q, V〉, should such an opportunity arise

• whenever playerV chooses sub-distributiond with
d(s2) > 0, playerR will chooses2

• otherwise, it must be the case that bothd(s1) andd(s2)
are positive; ifd(s1) = 1/3, playerR choosess1

• if d(s1) 6= 1/3, playerR choosess0

5 Winning strategies

We show that when a player can win gameGM (s, φ) she
can use winning strategies that are of a very specific type.
In addition to being memoryless in the classical sense, they
choose very structured distributions when re-visiting a state
in a configuration with a strong or weak until operator.

As before we use the notion of strategy informally. A
strategy ismemorylessif the choices of its player depend
solely on the current configuration, not on the finite history
of configurations that preceded the current one in a play. In
our games, there can be configurations of type〈s, [α]⊲⊳p, C〉
for the same states and the same path formulaα (e.g.,
ψ1 Uψ2) but with different bounds⊲⊳ p. We show that it is
enough to consider winning strategies which induce bounds
that change monotonically, as defined below. Subsequently,
for sub-distributionsd, d′ : S → [0, 1], we write

• d ≤ d′ iff for all s ∈ S we haved′(s) ≤ d(s)
• d′ < d iff d′ ≤ d andd′(s) < d(s) for somes ∈ S

For a locally monotonestrategy the choice of sub-
distributiond at configuration〈s, [α]⊲⊳p, C〉 is monotone in
⊲⊳ p, regardless of the history of a play.

Definition 4 (Locally Monotone Strategies) A strategyσ
for playerC in gameGM (s, φ) is locally monotoneiff for
any two configurations〈s, [α]⊲⊳p, C〉 and〈s, [α]⊲⊳p′ , C〉 that
occur in plays consistent withσ (but not necessarily in the
same play), whered andd′ are the sub-distributions chosen
according toσ at these two configurations (respectively),
thenp ≥ p′ impliesd ≥ d′ andp > p′ impliesd > d′.

A cyclically monotonestrategy is monotone on cyclic
paths within single plays: its player can force a decrease
or increase of the thresholds depending on the path formula
and whether it is aV or R configuration.

Definition 5 (Cyclically Monotone Strategies)A strategy
σ for playerC in gameGM (s, φ) is cyclically monotoneiff
for any two configurations〈s, [α]⊲⊳p, C

′〉 and〈s, [α]⊲⊳p′ , C′〉
that occur in this order on some play consistent withσ, then

• α = ψ1 Uψ2 andC = C
′ implyp′ < p,

• α = ψ1 Wψ2 andC = C
′ implyp′ ≤ p,

• α = ψ1 Uψ2 and!C = C
′ implyp′ ≥ p,

• α = ψ1 Wψ2 and!C = C
′ implyp′ > p.

The existence of winning strategies implies the existence
of winning strategies that are locally monotone and cycli-
cally monotone.

Theorem 2 For every gameGM (s, φ), there exists a win-
ning strategy for playerC iff there exists a memoryless win-
ning strategy for playerC that is also locally monotone and
cyclically monotone.

Example 9 The winning strategy for Refuter in Example 8
is locally monotone as Refuter never encounters a pair of
configurations that need to be checked for local monotonic-
ity. That strategy is also cyclically monotone: From con-
figuration 〈s0, [qU r]>p, V〉 the only possible cycles leads
to configurations〈s0, [qU r]>p′ , V〉. As explained already,
Verifier is restricted tod(s2) = 0 andd(s1) < 1/3 or she
loses in the next step. Letp > 1/2 and ǫ = 1/3 − d(s1).
It follows that d(s0) ≥ 1/6 + (p − 1/2) + ǫ. Thus,
in the next configuration〈s0, [qU r]>p′ , V〉 we havep′ ≥
1/2 + 3(p− 1/2) + 3ǫ. Asǫ > 0 andp− 1/2 > 0 we have
p′ > p. Furthermore, ifp1, p2, . . . is the sequence of bounds
obtained in this manner, thenpi+2 − pi+1 > pi+1 − pi for
all i ≥ 1.

6 Discussion

Table 1 summarizes which PCTL sub-formulae that may
cause infinite plays can always be coerced into finite plays
with a winning strategy. For example, a strong until with
strict bound is ensured to have a finite strategy and ex-
plore a finite portion of the game before going to subfor-
mulae, and similarly from a negated weak until with a non-
strict bound. To determine whether a PCTL formula is
won by means of such finite plays only, we can either con-
vert it into “GreaterThan” normal form and check whether
each such sub-formula has a negation polarity that corre-
sponds to the desired player in that table, or we can con-
vert it into negation normal form and interpret that table
as ison the resulting sub-formulae. For example, formula
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Table 1. Sub-formulae that result in finite plays (
√

) or
don’t (x), for which winning player; ticks in parentheses
indicate finite plays after an initialǫ-correction of bounds

X > X ≥ W > W ≥ U > U ≥

Verifier
√

x (
√

) x x
√

x (
√

)

Refuter x x x(
√

)
√

x x

[qU r]>0.999∧¬[qW r]≥0.9991 is such that playerV can win
be ensuring only finite plays, if she can win at all. Fur-
thermore, if the Markov chain is infinite, the game explores
only a finite portion of it. From a practical point of view,
it may be possible to change the strictness of the bound by
slightly changing the required probabilities in the formula.
Thus, anǫ-correction of the formula may change a formula
that does not allow finite plays to a formula that does allow
finite plays.

7 Conclusions

We captured the PCTL semantics over countably labeled
Markov chains through Hintikka games with Büchi accep-
tance conditions. Games moves depend on the strictness
or non-strictness of probability thresholds for path formu-
lae. Winning strategies may be assumed to be memoryless
and monotone in their choice of structural elements (here
sub-distributions). PCTL formulae in “GreaterThan” nor-
mal form that contain until operators with a certain combi-
nation of threshold type and negation polarity – statically
derived from Table 1 – have winning strategies that may
be interpreted as a finite-state abstraction of the underlying
model that witnesses the falsity (respectively, truth) of the
formula under consideration.
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A Proofs

Proof of Lemma 1.

Consider first the case thatM is finitely branch-
ing. Recall thatPath(s, qU r) denotes the set of paths
beginning in s that satisfy qU r. Let Pathi(s, qU r)
be Path(s, (qU≤ir) ∧

∧

0≤j<i ¬(q U≤jr)), i.e., paths in
which q holds until locationi wherer holds andr does not
hold in locations smaller thani. We setPath0(s, qU r) to
bePath(s, qU≤0r), i.e. the set{π = s0 · · · | s = s0, s0 ∈
L(r)}.

• For the “if” part, assume that for alln ∈ N there is
k ≥ 0 such thats ∈ [|[qU r]>p−1/n|]Ms

k
. Then,s ∈

[|[qU r]>p−1/n|]M follows by the monotonicity of the
denotational semantics for “GreaterThan” thresholds.
Thus,s ∈

⋂

n∈N
[|[qU r]>p−1/n|]M = [|[qU r]≥p|]M .

• For the “only if” part, let s ∈ [|[qU r]≥p|]M and
n ∈ N. It suffices to find somek ≥ 0 with
s ∈ [|[q U r]>p−1/n|]Ms

k
. As Pathi(s, qU r) is of form

Path(s, α) for a path formulaα, that set of paths is
measurable. For alli 6= j note that setsPathi(s, qU r)
andPathj(s, qU r) are disjoint. Since

Path(s, qU r) =
⋃

i≥0

Pathi(s, qU r)

and as the latter is a disjoint union, we know that

ProbM (s,Path(s, qU r)) = Σi≥0ProbM (s,Pathi(s, qU r))

By definition of convergence for that infinite sum, for
everyn ∈ N there existsk ≥ 0 such that

Σk
i=0ProbM (s,Pathi(s, qU r)) ≥ ProbM (s,Path(s, qU r))−1/n

As Σk
i=1ProbM (s,Pathi(s, qU r)) equals

ProbMs
k
(s, qU r) we obtains ∈ [|[qU r]>p−1/n|]Ms

k

and we are done.

As M is finitely branching, there existsl such thatl is an
upper bound on the branching degree for all states inM s

k .
It follows thatProbMs

k
(s, qU r) = ProbMs

k,l
(s, qU r).

In the case thatM has infinite branching the proof is
similar. We have to be more careful in noticing that every
path setPathi(s, qU r) is still measurable and have to be
careful in the way in which we sum up the probability of
the setPath(s, qU r). But this works out since all infinite
sums have absolute convergence, establishing that for some
k we haves ∈ [|[qU r]>p−1/n|]Ms

k
. The existence ofM s

k,l

as required follows from convergence ofProbMs
k,l

(s, qU r)

to ProbMs
k
(s, qU r). 2

Corollary 1 For labeled Markov chainM = (S, P, L),
q, r ∈ AP, and p ∈ [0, 1]: s 6∈ [|[qW r]>p|]M iff for all
n ∈ N there arek, l ∈ N with s 6∈ [|[qW r]≥p+1/n|]Ms

k,l
.

Proof of Corollary 1.

This follows from Lemma 1 and the duality of weak
and strong until. We haves 6∈ [|[qW r]>p|]M iff s ∈
[|[¬rU (¬q ∧ ¬r)]≥1−p|]M , since (semantically)¬rU (¬q∧
¬r) is the negation ofqW r. By Lemma 1, s ∈
[|[¬rU (¬q ∧ ¬r)]≥1−p|]M holds iff for everyn ∈ N there
is k, l ∈ N with s ∈ [|[¬rU (¬q ∧ ¬r)]>1−p−1/n|]Ms

k,l
, i.e.

s 6∈ [|[qW r]≥p+1/n|]Ms
k,l

. 2

Proof of Theorem 1.

Given PCTL formulaφ, we show these two items by
structural induction on the PCTL formulaeψ in the closure
of φ, simultaneously on all states ofM . Since exactly one
of s ∈ [|ψ|]M ands 6∈ [|ψ|]M holds, it suffices to show both
items in Theorem 1 for such aψ in their “only if” versions,
which we do by splittingψ into six cases:
Case #1.The cases whenψ equalstt or ff are trivial. For
example, no state satisfiesff and all plays beginning in
〈s,ff, V〉 are won by playerR. So we may implicitly assume
in subsequent cases that⊲⊳ p equals neither> 1 nor≥ 0.
Case #2.The cases whenψ equalsq, ¬ψ1, or ψ1 ∧ ψ2 are
proved as in the case of Hintikka semantic games for propo-
sitional logic. We illustrate this for the case of conjunction
and playerV:

• Let s ∈ [|ψ1 ∧ ψ2|]M . Thens ∈ [|ψi|]M for all i =
1, 2. By induction, there is a winning strategywi for
playerV from configuration〈s, ψi, V〉 for all i = 1, 2.
Consider the strategyw for playerV which composes
his strategiesw1 andw2 as follows: at configuration
〈s, ψ, V〉, playerR has to choose as next configuration
some〈s, ψi, V〉 with i = 1, 2. But then playerV simply
responds according to his winning strategywi. This
describes a winning strategyw for playerV from con-
figuration〈s, ψ, V〉.

• Let s 6∈ [|ψ1 ∧ ψ2|]M . Then there is somej ∈ {1, 2}
such thats 6∈ [|ψj |]M . By induction, there is a winning
strategywj for playerR from configuration〈s, ψj , V〉.
Consider the strategyw for playerR which composes
his strategywj with an initial choice as follows: at con-
figuration〈s, ψ, V〉, playerR simply chooses〈s, ψj , V〉
as next configuration and then plays according to his
winning strategywj . This describes a winning strat-
egyw for playerR from configuration〈s, ψ, V〉.

Case #3.The case whenψ equals[ Xψ1]⊲⊳p, where⊲⊳ ∈
{≥, >}:
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• Let s ∈ [|[ Xψ1]⊲⊳p|]M . Let Y be the set of states
s′ such thatP (s, s′) > 0 and s′ ∈ [|ψ1|]M . From
the latter and induction we infer that playerV has a
winning strategyws′ for the configuration〈s′, ψ1, V〉,
for all s′ ∈ Y . We construct from all of thesews′

a winning strategyw for playerV from configuration
〈s, [ Xψ1]⊲⊳p, V〉 as follows: Sinces ∈ [|[ Xψ1]⊲⊳p|]M ,
we know thatP (s, Y ) ⊲⊳ p holds and thatY is
non-empty as⊲⊳ p isn’t ≥ 0. So at configuration
〈s, [ Xψ1]⊲⊳p, V〉 player V chooses this setY . Now
no matter what next configuration〈s′, ψ1, V〉 playerR
chooses, we haves′ ∈ Y and so playerV will play ac-
cording to his winning strategyws′ . In particular,w
is a winning strategy for playerV from configuration
〈s, [ Xψ1]⊲⊳p, V〉

• Let s 6∈ [|[ Xψ1]⊲⊳p|]M . PlayerV must choose a set
Y such thatP (s, Y ) ⊲⊳ p. In making this choice,
playerV would – by induction – lose from configu-
ration 〈s, [ Xψ1]⊲⊳p, V〉 if Y contained somes′ with
s′ 6∈ [|ψ1|]M (for then playerR could respond with con-
figuration〈s′, ψ1, V〉 and win the resulting game). Du-
ally, playerV can only increase her chances of winning
from configuration〈s, [ Xψ1]⊲⊳p, V〉 if she adds toY all
statess′ with s′ ∈ [|ψ1|]M andP (s, s′) > 0. Finally,
playerV has no incentive to add ans′ ∈ [|ψ1|]M to Y if
P (s, s′) = 0: this does not contribute toP (s, Y ) ⊲⊳ p
and only exposes playerV to a threat of playerR to
move to s′. To summarize, if playerV has a win-
ning strategy from that configuration, then she also
has a winning strategy from that same configuration
where she choosesY as in the previous item. But then
s 6∈ [|[ Xψ1]⊲⊳p|]M means thatP (s, Y ) ⊲⊳ p is false. So
playerV can only choose a setY for which playerR
can respond with a winning strategy.

Case #4. The cases whenφ equals [α]≥p where α is
ψ1 Uψ2:

• Let s ∈ [|φ|]M . ThenProbM (s, α) ≥ p and so for each
n ∈ N with p − 1/n ≥ 0 we haveProbM (s, α) >
p − 1/n and s ∈ [|[α]>p−1/n|]M . By induction,
playerV has a winning strategywn from configura-
tion 〈s, [α]>p−1/n, V〉, for each suchn ∈ N. PlayerV
can synthesize from these countably many strategies a
winning strategyw for her from configuration〈s, φ, V〉
as follows: if playerR chooses any suchn ∈ N, then
the next configuration is〈s, [α]>p−1/n, V〉 and player
V plays according town.

• Let s 6∈ [|φ|]M . ThenProbM (s, α) < p. Thus, there
is somen0 ∈ N with ProbM (s, α) ≤ p − 1/n0 <
1. But thenProbM (s, α) 6> p − 1/n0 implies s 6∈
[|[α]>p−1/n0

|]M . By induction, playerR has a winning
strategywn0

from configuration〈s, [α]>p−1/n0
, V〉. So

playerR gets a winning strategyw from configuration

〈s, φ, V〉 by first choosing thatn0 and then playing ac-
cording town0

.

Case #5. The cases whenφ equals [α]>p where α is
ψ1 Wψ2:

• Let s ∈ [|φ|]M . Then ProbM (s, α) > p. Thus,
there is somen0 ∈ N with p + 1/n0 ≤ 1 and
ProbM (s, α) ≥ p + 1/n0. But thenProbM (s, α) ≥
p + 1/n0 impliess ∈ [|[α]≥p+1/n0

|]M . By induction,
playerV has a winning strategywn0

from configuration
〈s, [α]≥p+1/n0

, V〉. So playerV gets a winning strategy
w from configuration〈s, φ, V〉 by first choosing thatn0

and then playing according town0
.

• Let s 6∈ [|φ|]M . ThenProbM (s, α) ≤ p. Thus, for ev-
eryn ∈ N with p+ 1/n ≤ 1 we haveProbM (s, α) <
p + 1/n. By induction, playerR has a winning strat-
egywn from configuration〈s, [α]>p+1/n, V〉, for each
n ∈ N with p + 1/n ≤ 1. PlayerR can synthesize
from these countable strategies a winning strategy for
her from configuration〈s, φ, V〉 as follows: if playerV
chooses such ann ∈ N, then the next configuration is
〈s, [α]>p+1/n, V〉 and playerR plays according town.

Case #6.The cases whenφ equals[α]⊲⊳p where either

(a) α isψ1 Uψ2 and⊲⊳ is>
(b) α isψ1 Wψ2 and⊲⊳ is ≥ or
(c) α is ψ1 U≤kψ2 or ψ1 W ≤kψ2 with k ∈ N and⊲⊳ is

either> or≥:

• Let s ∈ [|φ|]M .

The formulaα is logically equivalent toψ2∨(ψ1∧Xα)
and in case thatα is bounded the bound decreases by
1. It follows that it is either the case thats ∈ [|ψ2|]M
or s ∈ [|ψ1 ∧ [ Xα]⊲⊳p|]M . In the first case, player
V chooses to move to configuration〈s, ψ2, V〉 and by
induction she has a winning strategy from this con-
figuration. In the second case, by induction there is
a winning strategy for playerV from configuration
〈s, ψ1, V〉, so if playerR chooses to go to this con-
figuration, playerV wins. If playerR does not move
to ψ1, then M9 demands that playerV chooses a sub-
distributiond : S → [0, 1] satisfying (4)-(5). By as-
sumptions ∈ [|[ Xα]⊲⊳p|]M . Let T be the set of states
t such thatProbM (t, α) > 0 andP (s, t) > 0. We
choosed such thatd(s′) = 0 for all s′ ∈ S \ T .

So it suffices to specifyd on setT . For that, letp′ =
Σt∈TP (s, t) · ProbM (t, α).

– Consider the case that⊲⊳ is >. By assumption
p′ > p. In the case thatp = 0, we choose some
statet ∈ T such thatProbM (t, α) > 0, we set
d(t) = ProbM (t, α) · P (s, t), andd(t′) = 0 for
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all t′ 6= t. In the case thatp > 0, let δ bep′ −
p. We are going to distribute this gapδ between
all the states inT according to the distribution
P (s, ·). That is, for allt ∈ T

d(t) = max(0, (ProbM (t, α) − δ) · P (s, t))

In case thatProbM (t, α) ≤ δ we thus have
d(t) = 0 (and so effectively removet from set
T above). Asp′ = Σt∈SProbM (t, α)P (s, t) and
p > 0 there must be at least one statet such that
ProbM (t, α) ≥ p′ and henceProbM (t, α)− δ >
0, implyingd(t) > 0. It follows thatΣt∈Td(t) ≥
p′ − δ ≥ p.

– Consider the case that⊲⊳ is ≥. By assumption
p′ ≥ p. Let δ bep′ − p. For all t ∈ T , let

d(t) = max(0,ProbM (t, α) − δ · P (s, t))

Again, if ProbM (t, α) ≤ δ we setd(t) = 0. This
completes the specification of sub-distributiond
chosen by playerV.

Now regardless of the choice of playerR, the next con-
figuration is〈t, [α]⊲⊳p′ , V〉 such thatt ∈ [|[α]⊲⊳p′ |]M . So
playerV maintains the truth value of the configuration.
Notice that also the distance from the promised bound
p′ and the real probability is being maintained.

Case (c): For bounded operators, as the bound de-
creases, in a finite number of steps the play moves to
configurations of the form〈s′, ψi, V〉 for i ∈ {1, 2},
where induction applies directly, and in the desired
manner.

Case (b): For Weak Untilψ1 Wψ2, all infi-
nite plays have a suffix of configurations of form
〈s′, [ψ1 Wψ2]≥p, V〉 and are thus winning for player
V. Finite plays again reach configurations of the form
〈s′, ψi, V〉 for i ∈ {1, 2}, where induction applies di-
rectly.

Case (a): For (strong) Until, we appeal to Lemma 1.
We treat subformulaeψ1 and ψ2 as propositions
(respectively, theq and r in that lemma) and an-
notate states ofM by ψ1 and ψ2. Let p′ =
ProbM (s, ψ1 Uψ2). By assumptionp′ > p. In
particular, s ∈ [|[ψ1 Uψ2]≥p′ |]M . Let n ∈ N be
such thatp′ > p′ − 1/n > p. By Lemma 1 (ap-
plied to p′ instead ofp), there arek, l ≥ 0 with
s ∈ [|[ψ1 Uψ2]>p′−1/n|]Ms

k,l
and so the probability

of ψ1 Uψ2 in M s
k,l at s is greater thanp. PlayerV’s

strategy is to consider this systemM s
k,l. She chooses

sub-distributionsd : S → [0, 1] according to the prob-
abilities ProbMs

k,l
(t, α) (instead ofProbM (t, α) but

as explained above). By definition ofM s
k,l there can

be only finite sequences of configurations of the form
〈s′, [α]>p, V〉, and so playerV wins (cf. Example 7).

• Let s 6∈ [|φ|]M .

It follows thatProbM (s, α) ≤ p in case that⊲⊳ is >;
andProbM (s, α) < p in case that⊲⊳ is≥. As above,α
is logically equivalent toψ2 ∨ (ψ1 ∧ Xα) and in case
thatα is bounded the bound decreases by1. It follows
thats 6∈ [|ψ2|]M and hence there is a winning strategy
for playerR from configuration〈s, ψ2, V〉. Also, it is
either the case thats 6∈ [|ψ1|]M or s 6∈ [|[ Xα]⊲⊳p|]M .
In the first case playerR has a winning strategy from
configuration〈s, ψ1, V〉 and chooses this configuration.
In the second case, playerV chooses a sub-distribution
d : S → [0, 1] such that (4)-(5) hold.

We claim that there is somes′ ∈ S with d(s′) > 0 and
ProbM (s′, α) 6⊲⊳ d(s′)P (s, s′)−1. Proof by contradic-
tion: otherwise,ProbM (s′, α) ⊲⊳ d(s′) for all s′ with
d(s′) > 0 implies that

∑

s′|d(s′)>0

ProbM (s′, α) ⊲⊳
∑

s′∈S

d(s′) ≥ p

by (4). But this renders

∑

s′|d(s′)>0

ProbM (s′, α) ⊲⊳ p

which directly contradictss 6∈ [|[ Xα]⊲⊳p|]M .

Thus, playerR can choose such ans′ and maintain the
play in configurations of the form〈s′, [α]⊲⊳p′ , V〉 such
thats′ 6∈ [|[α]⊲⊳p′ |]M . Notice that playerR can choose
a successors′ such that

p′ − ProbM (s′, α) ≥ p− ProbM (s, α)

i.e., the gap between the promise and the actual proba-
bility does not decrease.

We now study the consequences of this capability of
playerR for the different forms of path formulaα in
this case:

Case (c): For bounded operators, as the bound de-
creases, in a finite number of steps the play moves to
configurations of the form〈s′, ψi, V〉 for i ∈ {1, 2} and
so playerR wins by induction.

Case (b): For (strong) Until formulae, infinite plays
of configurations of the form〈s′, [ψ1 Uψ2]⊲⊳p, V〉 are
winning for playerR by the winning conditions for in-
finite plays. Any finite play reduces to configurations
of the form〈s′, ψi, V〉 for i ∈ {1, 2}, where induction
applies directly, and in the desired manner.

Case (a): For Weak Until formulae, we appeal to
Corollary 1. As before, we treatψ1 andψ2 as propo-
sitions and annotate states ofM by them. Letp′ =
ProbM (s, ψ1 Wψ2). By assumptionp′ ≤ p. In par-
ticular, s /∈ [|[ψ1 Wψ2]>p′ |]M . Let n ∈ N be such
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that p′ < p + 1/n < p. By Corollary 1 there are
k, l ≥ 0 with s /∈ [|[ψ1 Wψ2]≥p′+1/n|]Ms

k,l
and so

the probability ofψ1 Wψ2 in M s
k,l at s is less than

p. PlayerR’s strategy is to consider this systemM s
k,l.

Let d : S → [0, 1] be the sub-distribution chosen by
playerV. As s /∈ [|[ψ1 Wψ2]≥p|]Ms

k,l
, there is some

s′ ∈ S such thats′ /∈ [|[ψ1 Wψ2]≥d(s′)P (s,t)−1 |]Ms
k,l

.
So playerR chooses thiss′. By definition ofM s

k,l there
can be only finite sequence of configuration of the form
〈s′, [α]≥p, V〉, and so playerR wins. This is dual to the
strategy depicted forV in Example 7.

2

Proof of Theorem 2.

Assuming that there exists some winning strategy for
player C in game GM (s, φ), it suffices to show that a
slight modification of the winning strategy synthesized in
the proof of Theorem 1 is memoryless, locally monotone,
and cyclically monotone. That slightly modified strategy
will clearly be memoryless by construction. We now de-
scribe this modified winning strategy and first prove its lo-
cal monotonicity, by induction as in the proof of Theorem 1.
Then we prove that it is cyclically monotone.

Modified winning strategy and its local monotonic-
ity. The only configurations where playerC needs
to make choices are〈s, [α]⊲⊳p, C

′〉, 〈s, ψ1 ∨ ψ2, C〉, and
〈s, ψ1 ∧ ψ2, !C〉.

With the latter two, we restrictC’s strategy to chooseψ1

whenever possible and only when impossible chooseψ2.
This is similar to what one can do in Hintikka games for
first-order logic. We show that the way configurations of
the form 〈s, [α]⊲⊳p, C

′〉 are handled induces a memoryless
and monotone strategy.

If α = Xψ, then the strategy defined in the proof of
Theorem 1 chooses the set of successors according to the
states, and is clearly memoryless.

If !C = C
′ and eitherα = ψ1 Uψ2 and⊲⊳ = ≥ or

α = ψ1 Wψ2 and⊲⊳ = >, then playerC has to choose
a valuen. By choosing the minimal possiblen she ensures
that the strategy is memoryless.

Consider two configurations 〈s, [α]⊲⊳p1
, C〉 and

〈s, [α]⊲⊳p2
, C〉. Whenever the play moves to configu-

rations of the form〈s′, ψi, V〉 for i ∈ {1, 2}, the strategy is
memoryless, locally monotone, and cyclically monotone
by induction. We start with proving local monotonicity for
moves that may choose sub-distributions.
1. For configurations whereα = ψ1 Wψ2, α =
ψ1 W ≤kψ2, or α = ψ1 U≤kψ2, andC = C

′ we claim that
the strategy composed in the proof of Theorem 1 is locally
monotone by induction. Intuitively, this can be seen by the

strategy using the gapδ between the probability of the for-
mula and the required threshold. The strategy partitions this
gap between all successors, so if the same state is visited
with different thresholds the partition of the gap implies that
the distribution decreases.

Let p′ = ProbM (s, α) and δi = p′ − pi for i ∈
{1, 2}. According to the proof of Theorem 1 in configu-
ration〈s, [α]⊲⊳pi

, C〉 playerC chooses the distribution

di(t) = max(0, (ProbM (t, α) − δi) · P (s, t))

It follows that if p1 ≥ p2 then for everyt ∈ S we have
d1(t) ≥ d2(t). If follows that if p1 = p2 thend1 = d2.
Consider the case thatp1 > p2 Thenp1 > 0 and for somet
we haved1(t) > 0 andd1(t) = ProbM (t, α)− δ1. As δ1 <
δ2 andd2(t) = ProbM (t, α) − δ2 it follows thatd1(t) >
d2(t).
2. For the case whereα = ψ1 Uψ2 and C = C

′, the
strategy as defined in the proof of Theorem 1 is not lo-
cally monotone. We modify it as follows: For every con-
figuration〈s, [ψ1 Uψ2]>p, C〉 the sub-distributiond is cho-
sen according to the minimalk such that some fraction of
ProbMs

k
(s, α) is greater thanp. The exact definition of this

fraction is given below. Furthermore, we use the gap be-
tweenProbMs

k
(s, α) and ProbMs

k−1
(s, α) to ensure local

(and later cyclic) monotonicity. The definition of the sub-
distributiond and the proof itself are quite technical.

Consider the configuration〈s, [α]>p, C〉. We assume,
without loss of generality, thats /∈ [|ψ2|]M . We measure
the exact probability to satisfyα within i steps. For every
t ∈ S let

nt
0 = ProbMt

0
(t, α)

nt
i = ProbMt

i
(t, α) − ProbMt

i−1
(t, α)

Consider the following increasing sequence:

N t
0 =

nt
0

2

N t
i = N t

i−1 + Σi
j=0

1

2i+1−j
nt

j (i > 0)

That is,N t
1 = 3

4n
t
0 + 1

2n
t
1,N t

2 = 7
8n

t
0 + 3

4n
t
1 + 1

2n
t
2,N t

3 =
15
16n

t
0 + 7

8n
t
1 + 3

4n
t
2 + 1

2n
t
1, and so on. Notice that

lim
i→∞

N t
i = ProbMt

k
(t, α)

Let i0 be the minimal such that

Σt∈SN
t
i0P (s, t) > p

By abuse of notation fori ≥ 0, we denote

Ns
i+1 = Σt∈SN

t
iP (s, t)
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That is,Ns
i is the sum of the differentN t

i−1 normalized by
their probabilities to get froms to t. To simplify notations,
for i < 0 and for allt we set

N t
i = Ns

i+1 = 0

The valueN t
i0
P (s, t) is going to be the basis for defining

d(t). Notice that it must be the case thatNs
i0 ≤ p and that

N t
i0
−N t

i0−1 > 0. In order to maintain local monotonicity
we distribute the gap between the required thresholdp and
Ns

i0 between all the statest whereN t
i0+1 > 0. We have to

be extremely careful with the statess for whichNs
i0

= p.
For these states, we take a constant fraction ofN t

i0
−N t

i0−1

and distribute it among the successorst. We then have to
scale the distributiond for all statess for which this constant
fraction surpasses the required bound.
We setd(t) as follows:

d(t) =
(

N t
i0−1 +

(

1
4 + 3

4

p−Ns
i0

Ns
i0+1

−Ns
i0

)

(

N t
i0
−N t

i0−1

)

)

P (s, t)

It is simple to see that

Σ
t∈S

d(t) > p

Indeed, Σ
t∈S

d(t) is the sum of the following three expres-

sions:

Σ
t∈S

N t
i0−1P (s, t) = Ns

i0

Σ
t∈S

N t
i0 −N t

i0−1

4
P (s, t) =

Ns
i0+1 −Ns

i0

4

Σ
t∈S

3

4

p−Ns
i0

Ns
i0+1 −Ns

i0

(N t
i0 −N t

i0−1)P (s, t) =
3

4
(p−Ns

i0)

AsNs
i0+1 > p the result follows.

Furthermore, when going to some successort of s the
choice ofi0 for s implies that for the choice of the sub-
distribution d for t some valuei′0 < i0 is going to be
used. Thus, the sequence of configurations of the form
〈t′, [α]>p′ , C〉 is finite and playerC is winning.

We show that this definition of the sub-distributiond
implies local monotonicity. Consider two configurations
〈s, [α]>p1

, C〉 and〈s, [α]>p2
, C〉. Let d1 andd2 be the sub-

distributions chosen byσ in these configurations and leti10
andi20 be the values used to defined1 andd2, respectively.
By definitiondj(t) is in the open interval

(N t
ij
0
−1
P (s, t), N t

ij
0

P (s, t))

for j ∈ {1, 2}. By definition if p1 = p2 theni10 = i20 and it
follows thatd1 = d2. Similarly, if p1 > p2 theni10 ≥ i20. If
i10 > i20 the strictness ofd1 > d2 follows from the strictness
of the sequenceN t

i . If i10 = i20 thend1 > d2 asp1 > p2.

Cyclic monotonicity of modified winning strategy. We
turn now to consider cyclic monotonicity. Consider the con-
figurations〈s, [α]⊲⊳p1

, C′〉 and〈s, [α]⊲⊳p2
, C′〉 that appear in

a play consistent withσ according to this order.

• Consider the case whereα = ψ1 Wψ2, α =
ψ1 W ≤kψ2, orα = ψ1 U≤kψ2 andC = C

′. The strat-
egy defined in the proof of Theorem 1 is also cyclically
monotone. Indeed, from configuration〈s, [α]⊲⊳p, C〉
where

ProbM (s, α) − p = δ

we pass to configuration〈t, [α]⊲⊳p′ , C〉 and we know
that

ProbM (t, α) − p′ = δ

Hence, if configurations 〈s, [α]⊲⊳p1
, C〉 and

〈s, [α]⊲⊳p2
, C〉 appear in the same play we have

p1 ≥ p2.
• Consider the case whereα = ψ1 Uψ2 and C = C

′

and the strategy defined above. Leti10 be the bound
used for choosing the sub-distributiond in configura-
tion 〈s, [α]>p1

, C〉. By construction values smaller than
i10 are going to be used to define the sub-distributions
in successor configurations. It follows that if config-
uration 〈s, [α]>p2

, C〉 is visited, a valuei20 < i10 is
going to be used to define its sub-distribution. From
the strictness of the sequenceN t

i (andNs
i ) and as

Ns
ij
0

≤ pj < Ns
ij
0
+1

it follows thatp2 < p1.

• Consider the case whereα = ψ1 Uψ2, α = ψ1 U≤k,
or α = ψ1 W ≤kψ2 and !C = C

′. Let p′ =
ProbM (s′, α) andδi = pi − p′ for i ∈ {1, 2}. Let
d be the distribution suggested by player!C in con-
figuration〈s, [α]⊲⊳p1

, !C〉. By definition ofd we have
Σt∈Sd(t) ≥ p1. By assumption〈s, [α]⊲⊳p2

, !C〉 is
reachable from〈s, [α]⊲⊳p1

, !C〉, so both players do not
choose to go to configurations of the form〈t, ψi, !C〉
for i ∈ {1, 2}. If follows that

ProbM (s, α) = Σt∈SP (s, t)ProbM (t, α)

We know that

Σt∈Sd(t) ≥ p′ + δ1

Then, there must exist somet ∈ S such that

d(t) · P (s, t)−1 ≥ ProbM (t, α) + δ1

It follows that if playerC chooses this statet the gap
between the actual probability and the threshold does
not decrease. Thusp1 ≤ p2.

• Consider the case whereα = ψ1 Wψ2 and !C = C
′.

Then the proof is similar to the previous item. By as-
sumptionC wins from 〈s, [α]≥p1

, !C〉 and hences 6∈
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[|[α]≥p1
|]M . Let p′ = ProbM (s, α). As playerC wins

from 〈s, [α]≥p1
, !C〉 we conclude thatp′ < p1. In par-

ticular,s /∈ [|[ψ1 Wψ2]>p′ |]M . Letn ∈ N be such that
p′ < p + 1/n < p. By Corollary 1 there arek, l ≥ 0
with s /∈ [|[ψ1 Wψ2]≥p′+1/n|]Ms

k,l
and so the probabil-

ity of ψ1 Wψ2 in M s
k,l at s is less thanp1. PlayerC

is going to use systemM s
k,l to guide her decisions. As

usual

ProbMs
k,l

(s, α) = Σt∈Sk,l
P (s, t)ProbMs

k,l
(t, α)

Let
p′′ = ProbMs

k,l
(s, α)

As mentionedp′′ < p1. Let δ1 = p1 − p′′ and letd be
the distribution suggested by player!C in configuration
〈s, [α]≥p1

, !C〉. By definition ofd we have

Σt∈Sd(t) ≥ p1 = δ1 + p′′

Then, there must exist somet ∈ S such that

d(t) · P (s, t)−1 ≥ ProbMs
k,l

(t, α) + δ1

It follows that if playerC chooses this statet the gap
between the actual probability inM s

k,l and the thresh-
old does not decrease. We show below in Lemma 2
that when visiting the same state again inM s

k,l the
probability ofα increases. Hence,p2 > p1.

Lemma 2 Let M be a labeled Markov chain,q and r in
AP, α the path formulaqW r, andM s

k,l given for some
states ofM andk, l ∈ N. Let t andt′ be different states in
M s

k,l that both correspond to some states′ ofM such that

• there is a path fromt to t′ in t in M s
k,l, and

• q holds throughout the unique and finite path from the
root ofM s

k,l to t′.

If we haveProbMs
k
(t, α) < 1, thenProbMs

k
(t′, α) >

ProbMs
k
(t, α) follows.

Proof. As ProbMs
k
(t, qW r) < 1 it follows that there

is some “leaf”t′′ in M s
k,l that is reachable fromt in M s

k,l

such that the unique finite path fromt to t′′ in M s
k,l does

not satisfyqW r. As M s
k,l is an unwinding ofM , it fol-

lows that the subtree reachable fromt′ in M s
k,l is con-

tained in the subtree reachable fromt in M s
k,l. Clearly,

ProbMs
k,l

(t′, α) ≥ ProbMs
k,l

(t, α). Indeed, if a path satis-
fiesqW r then every prefix of the path also satisfiesqW r.
We use proof by contradiction to argue that there is a path
from t that does not satisfyqW r and does not pass through
t′. Assume such a path does not exist. Then every path be-
ginning in t that does not satisfyqW r has to pass through
t′. However, botht andt′ correspond to states′ inM . It fol-
lows that the only option to falsifyqW r in gameGM (s′, α)
is by “going in a loop” from states′ to itself. But by as-
sumption all states on the path betweent andt′ satisfyq, a
contradiction. 2
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