
Bounded Asynchrony:
Concurrency for Modeling Cell-Cell Interactions ⋆

Jasmin Fisher1, Thomas A. Henzinger2, Maria Mateescu2, and Nir Piterman3

1 Microsoft Research, Cambridge UK
2 EPFL, Switzerland

3 Imperial College London, UK

Abstract. We introducebounded asynchrony, a notion of concurrency tailored
to the modeling of biological cell-cell interactions. Bounded asynchrony is the
result of a scheduler that bounds the number of steps that oneprocess gets ahead
of other processes; this allows the components of a system tomove indepen-
dently while keeping them coupled. Bounded asynchrony accurately reproduces
the experimental observations made about certain cell-cell interactions: its con-
strained nondeterminism captures the variability observed in cells that, although
equally potent, assume distinct fates. Real-life cells arenot “scheduled”, but we
show that distributed real-time behavior can lead to component interactions that
are observationally equivalent to bounded asynchrony; this provides a possible
mechanistic explanation for the phenomena observed duringcell fate specifica-
tion.
We use model checking to determine cell fates. The nondeterminism of bounded
asynchrony causes state explosion during model checking, but partial-order meth-
ods are not directly applicable. We present a new algorithm that reduces the
number of states that need to be explored: our optimization takes advantage of
the bounded-asynchronous progress and the spatially localinteractions of com-
ponents that model cells. We compare our own communication-based reduction
with partial-order reduction (on a restricted form of bounded asynchrony) and
experiments illustrate that our algorithm leads to significant savings.

1 Introduction

Computational modeling of biological systems is becoming increasingly important in
efforts to better understand complex biological behaviors. In recent years, formal meth-
ods have been used to construct and analyze such biological models. The approach,
dubbed “executable biology” [10], is becoming increasingly popular. Various formalisms
are putting the executable biology framework into practice. For example, Petri-nets [3,
7], process calculi [22, 15], interacting state-machines [9, 11], and hybrid automata [13,
2]. In many cases, the analysis of these models includes reachability analysis and model
checking in addition to traditional simulations.

This paper focuses on interacting state-machines as a tool for biological modeling
[18, 8, 19, 12, 23, 9, 11]. This approach has recently led to various biological discov-
eries, and modeling works that were done using this approachhave appeared in high

⋆ Supported in part by the Swiss National Science Foundation (grant 205321-111840).

2

impact biological journals [12, 9, 11]. These are discrete,state-based models that are
used as high-level abstractions of biological systems’ behavior.

When using interacting state-machine models to describe a biological behavior, we
are facing the question of how to compose its components. We find that the two stan-
dard notions of concurrency (in this context), synchrony and asynchrony, are either
too constrained or too loose when modeling certain biological behaviors such as cell-
cell interactions. When we try to model cell-cell interactions, we find that synchronous
composition is too rigid, making it impossible to break the symmetry between pro-
cesses without the introduction of additional artificial mechanisms. On the other hand,
asynchronous composition introduces a difficulty in deciding when to stop waiting for
a signal that may never arrive, again requiring artificial mechanisms.4

Biological motivation.

We further explain why the standard notions of concurrency may be inappropriate for
modeling certain biological processes. We give a model representing very abstractly
a race between two processes in adjacent cells that assume two different cell fates.
The fate a cell chooses depends on two proteins, denotedpathwayandsignal, below.
The pathway encourages the cell to adopt fate1 while the signal encourages the cell to
adopt fate2. In the process we are interested in, pathway starts increasing slowly. When
pathway reaches a certain level, it forces the cell to adopt fate1. At the same time,
pathway encourages the signal in neighbor cells to increaseand inhibits the pathway
in the neighbor cell. The signal starts in some low level and if not encouraged goes
down and vanishes. If, however, it is encouraged, it goes up,inhibiting the pathway
in the same cell, and causing the cell to adopt fate2. A simplemodel reproducing this
behavior is given in Fig. 1.

We are interested in three behaviors. First, when a cell is run in isolation, the path-
way should prevail and the cell should assume fate1. Second,when two cells run in
parallel either of them can get fate1 and the other fate2. There are also rare cases where
both cells assume fate1. Third, when one of the cells gets an external boost to the path-
way it is always the case that this cell adopts fate1 and the other fate2.

Already this simplified model explains the problems with thenormal notions of
concurrency. In order to allow for the second behavior we have to break the symme-
try between the cells. This suggests that some form of asynchrony is appropriate. The
combination of the first and third behaviors shows that the asynchronicity has to be
bounded. Indeed, in an asynchronous setting a process cannot distinguish between the
case that it is alone and the case that the scheduler chooses it over other processes for a
long time.

Although very simple, this model is akin to many biological processes in differ-
ent species. For example, a similar process occurs during the formation of the wing
of the Drosophila fruit fly [13]. Ghosh and Tomlin’s work provides a detailed model

4 We treat here biological processes as computer processes. For example, when we say ‘waiting’,
‘message’, or ‘decide’ we relate to biological processes that take time to complete, and if
allowed to continue undisturbed may lead to irreversible consequences. Thus, as long as the
process is going on the system ‘waits’, and if the process is not disturbed (‘does not receive a
message’), it ‘decides’.

3

var pathway,signal:{0..4};

pathway_atom
init
[] true -> path := 1;
update
[] (0<path<4) & no_input & next(signal)<4 -> path := path+1;
[] (0<path<4) & input & next(signal)<4 -> path := 4;
[] (0<path<4) & next(signal)=4 -> path := 0;

signal_atom
init
[] true -> signal := 3;
update
[] neighborpath=4 & signal>0 -> signal := 4;
[] neighborpath<4 & path=4 -> signal := 0;
[] neighborpath<4 & path<4 & 0<signal<4 -> signal := signal-1;

Fig. 1. Program for abstract model.

(using hybrid automata) of this process. The formation of the C. elegans vulva also
includes a similar process [11]. Our model of C. elegans vulval development uses the
notion of bounded asynchrony. Using bounded asynchrony we separate the modeling
environment from the model itself and suggest biological insights that were validated
experimentally [11].

Formal modeling: bounded asynchrony.

For this reason, we introduce a notion ofbounded asynchronyinto our biological mod-
els, which allows components of a biological system to proceed approximately along
the same time-line. In order to implement bounded asynchrony, we associate a rate with
every process. The rate determines the timet that the process takes to complete an ac-
tion. A process that works according to ratet performs, in the long run, one action
everytth round. This way, processes that work according to the samerate work more
or less concurrently, and are always at the same stage of computation, however, the
action itself can be taken first by either one of the processesor concurrently, and the
order may change from round to round5. Other notions of bounded asynchrony either
permit processes to ‘drift apart’, allowing one process to take arbitrarily more actions
than another process, or do not generalize naturally to processes working according to
different rates.

Having the above mentioned example in mind, we define the notion of bounded
asynchrony by introducing an explicit scheduler that instructs each of the cells when
it is allowed to move. Thus, our system is in fact a synchronous system with a nonde-
terministic scheduler instructing which processes to movewhen. We find this notion of

5 We note that this process is not memoryless, making continuous time Markov chains inappro-
priate. This issue is discussed further below.

4

bounded asynchrony consistent with the observations made in cell-cell interactions. As
explained, asynchrony is essential in order to break the symmetry between cells (pro-
cesses). It is important to separate the biological mechanism from the synchronization
mechanism, otherwise the model seems removed from the biology. On the other hand,
much like in distributed protocols, a process has to know when to give up on waiting
for messages that do not arrive. With classical asynchrony this is impossible and we
are forced to add some synchronizing mechanism. Again, in the context of biology,
such a mechanism should be presented in terms of the modelingenvironment. When
introducing bounded asynchrony both problems are solved. The asynchrony breaks the
symmetry and the bound allows processes to decide when to stop waiting. In addition,
the asynchrony introduces limited nondeterminism that captures the diversity of results
often observed in biology.

Possible mechanistic explanation: real time.

In some cases, biological systems allow central synchronization. For example, during
animal development, it may happen that several cells are arrested in some state un-
til some external signal tells all of them to advance. However, these synchronization
mechanisms operate on a larger scale and over time periods that are much longer than
the events described by our model. Thus, we do not believe that there is a central-
ized scheduler that instructs the processes when to move. The behaviors we describe
are observed in practice, suggesting that there is some mechanism that actually makes
the system work this way. This mechanism has to be distributed between the cells.
We show that bounded asynchrony arises as a natural abstraction of a specific type of
clocked transition systems, where each component has an internal clock. This suggests
that similar ideas may be used for the abstraction of certaintypes of real time systems.
Of less importance here, it also may be related to the actual mechanism that creates the
emergent property of bounded asynchrony.

Model checking: scheduler optimization.

The scheduler we introduce to define bounded asynchrony consists of adding variables
that memorize which of the processes has already performed an action in the current
round. When we come to analyze such a system we find that, much like in asynchronous
systems, many different choices of the scheduler lead to thesame states. Motivated by
partial-order reduction [6], we show that in some cases onlypart of the interleavings
need to be explored. Specifically, our method applies in configurations of the system
where communication is locally restricted. In such cases, we can suggest alternative
schedulers that explore only a fraction of the possible interleavings, however, explore all
possible computations of the system. We also compare our techniques with partial-order
reduction in a restricted setting with no concurrent moves.Experimental evaluation
shows that our techniques lead to significant improvement. We are not familiar with
works that analyze the structure of communication in a specific concurrent system and
use this structure to improve model checking.

5

Related (and unrelated) models.

The comparison of such abstract models with the more detailed differential equations
or stochastic process calculi models is a fascinating subject, however, this is not the
focus of this paper. Here, we assume that both approaches cansuggest helpful insights
to biology. We are also not interested in a particular biological model but rather in ad-
vancing the computer science theory supporting the construction of abstract biological
models.

There are mainly two approaches to handle concurrency in abstract biological mod-
els. One prevalent approach is to create a continuous time Markov chain (CTMC). This
approach is usually used with models that aim to capture molecular interactions [14,
22]. Then, the set of enabled reactions compete according toa continuous probability
rate (usually, theχ-distribution). Once one reaction has occurred, a new set ofenabled
reactions is computed, and the process repeats. This kind ofmodel requires exact quan-
titative data regarding number of molecules and reaction rates. Such accurate data is
sometimes hard to obtain; indeed, even the data as to exactlywhich molecules are in-
volved in the process may be missing (as is the case in theC. elegansmodel). Our mod-
els are very far from the molecular level, they are very abstract, and scheduler choices
are made on the cellular level. When considering processes abstractly the scheduling is
no longer memoryless, making CTMCs inappropriate. For example, consider a CTMC
obtained from our model in Fig. 1 by setting two cells in motion according to the same
rate. Consider the experiment where one of the cells is getting a boost to its pathway.
The probability of the other cell performing 4 consecutive actions (which would lead
to it getting fate1) is 1

16
, while this cannot occur in the real system. In addition, the

probability of both cells assuming fate1 is 0, as the cells cannot move simultaneously.
A different approach, common inBoolean networks[20, 4, 5], is to use asynchrony

between the substances. Again, this approach is usually applied to models that aim to
capture molecular interactions, however, in an abstract way. Asynchronous updates of
the different components is used as an over-approximation of the actual updates. If
the system satisfies its requirements under asynchronous composition, it clearly sat-
isfies them under more restricted compositions. We note, however, that these models
are used primarily to analyze the steady-state behavior of models (i.e., loops that have
no outgoing edges). As asynchrony over-approximates the required composition, such
steady-state attractors are attractors also in more restricted compositions, justifying this
kind of analysis. For our needs, we find unbounded asynchronyinappropriate.

Bounded asynchrony is in a sense the dual of GALS (globally-asynchronous-locally-
synchronous): it represents systems that look globally, viewed at a coarse time granu-
larity, essentially synchronous, while they behave locally asynchronous, at a finer time
granularity. Efficient implementations of synchronous embedded architectures also fall
into this category. For example, time-triggered languagessuch as Giotto [16] have a
synchronous semantics, yet may be implemented using a variety of different schedul-
ing and communication protocols.

2 Bounded Asynchrony

In this section we define the notion of bounded asynchrony. Wefirst define transition
systems and then proceed to the definition of bounded asynchrony.

6

2.1 Transition Systems

A transition system(TS) D = 〈V, W, Θ, ρ〉 consists of the following components.
– V = {u1, . . . , un} : A finite set of typedstate variablesover finite domains. We

define astates to be a type-consistent interpretation ofV , assigning to each variable
u ∈ V a values[u] in its domain. We denote byΣ the set of all states. For an
assertionϕ, we say thats is aϕ-state ifs |= ϕ.

– W ⊆ V : A set ofownedvariables. These are the variables that onlyD may change.
The setW includes the Booleanscheduling variablea.

– Θ : The initial condition. This is an assertion characterizing all the initial statesof
theTS. A state is calledinitial if it satisfiesΘ.

– ρ: A transition relation. This is an assertionρ(V, V ′), relating a states ∈ Σ to
its D-successors′ ∈ Σ by referring to both unprimed and primed versions of the
state variables. The transition relationρ(V, V ′) identifies states′ as aD-successor
of states if (s, s′) |= ρ(V, V ′). The transition relationρ has the form(a 6=a′ ∧
ρ′)∨ (W=W ′), wherea is the scheduling variable. In what follows we restrict our
attention to systems that use a scheduling variable.

A run of D is a sequence of statesσ : s0, s1, ..., satisfying the requirements of (a)Ini-
tiality: s0 is initial, i.e.,s0 |= Θ; (b) Consecution:for everyj ≥ 0, the statesj+1 is a
D-successor of the statesj . We denote byruns(D) the set of runs ofD. We can divide
the run to transitions whereD stutters (i.e.,a and all variables inW do not change) and
whereD moves (i.e.,a flips its value and variables inW may change).

Given systemsD1 : 〈V1, W1, Θ1, ρ1〉 andD2 : 〈V2, W2, Θ2, ρ2〉 such thatW1 ∩
W2 = ∅, theparallel composition, denoted byD1 ‖D2, is theTS 〈V, W, Θ, ρ〉 where
V = V1 ∪ V2, W = W1 ∪W2 ∪ {a}, Θ = Θ1 ∧Θ2, andρ = ρ1 ∧ ρ2 ∧ ρ′, the variable
a is the scheduling variable ofD1 ‖D2 andρ′ is as follows.6

ρ′ = (a 6= a′) ⇐⇒ [(a1 6= a′

1) ∨ (a2 6= a′

2)]

For more details, we refer the reader to [21].
Theprojectionof a states on a setV ′ ⊆ V , denoteds⇓

V ′
, is the interpretation of

the variables inV ′ according to their values ins. Projection is generalized to sequences
of states and to sets of sequences of states in the natural way.

2.2 Explicit Scheduler

We define bounded asynchrony by supplying an explicit scheduler that lets all processes
proceed asynchronously, however, does not permit any process to proceed faster than
other processes. Intuitively, the system has one macro-step in which each of the pro-
cesses performs one micro-step (or sometimes none), keeping all processes together
(regarding the number of actions). The order of actions between the subprocesses is
completely non-deterministic. Thus, some of the processesmay move together and
some one after the other. We start with a scheduler that allows all processes to pro-
ceed according to the same rate. We then explain how to generalize to a scheduler that
implements bounded asynchrony between processes with different rates.

6 Notice that, in the case thatD1 andD2 have stutter transitions, this composition is neither
synchronous nor asynchronous in the classical sense.

7

We start by considering a set of processes all working according to the same rate
(without loss of generality the rate is 1). In this case, the resulting behavior is that ev-
ery process does one micro-step in every macro-step of the system. Namely, we can
choose a subset of the processes, let them take a move, then continue with the remain-
ing processes until completing one macro-step. We create aTS that schedules actions
accordingly. The scheduler has a Boolean variablebi associated with every processPi.
A move ofPi is forced whenbi changes from false to true. Once allbis are set to true,
they are all set concurrently to false (and no process moves).

More formally, considern TSsP1, . . ., Pn. For1 ≤ i ≤ n, let ai be the scheduling
variable ofPi and let(ρi ∧ ai 6= a′

i) ∨ (Wi = W ′

i) be the transition relation ofPi. We
define a schedulerS = 〈V, W, Θ, ρ〉 , whereV = W = {b1, . . . , bn} andbi is Boolean
for all 1 ≤ i ≤ n, Θ =

∧n

i=1
bi, andρ is defined as follows:

ρ =

(

Ω →
n
∧

i=1

(bi → b′i) ∧ Ω →
n
∧

i=1

b′i

)

(1)

WhereΩ =
∨n

i=1
bi denotes the assertion that at least one variablebi is still false.

Thebounded asynchronous parallel compositionof P1, . . ., Pn according to the rate
1, denotedP 1

1 ‖
ba
· · · ‖

ba
P 1

n , isS ‖P1 ‖ · · · ‖Pn with the following additional conjunct
added to the transition:

n
∧

i=1

(ai 6= a′

i ⇐⇒ (bi ∧ b′i)) (2)

Thus, the scheduling variable ofPi is forced to change whenbi is set to true.
We consider now the more general case of processes working with general rates. In

this case, we use the same system of Boolean variables but in addition have a counter
that counts the number of steps. A process is allowed to make amove only when its rate
divides the value of the counter. More formally, let the rates ofP1, . . ., Pn bet1, . . ., tn.
For1 ≤ i ≤ n, let ai be the scheduling variable ofPi and let(ρi ∧ ai 6= a′

i) ∨ (Wi =
W ′

i) be the transition relation ofPi. We define a schedulerS = 〈V, W, Θ, ρ〉 with the
following components:

– V = W = {b1, . . . , bn, c}. Forall i we havebi is Boolean, andc ranges over
{1, . . . , lcm(t1, . . . , tn)}, wherelcm is the least common multiplier.

– Θ = (c=1) ∧
∧n

i=1
bi.

– Let Ω =
∨n

i=1
(bi ∧ (c mod ti=0)) denote the assertion that at least one variablebi

for which the rateti divides the counter is still false.

ρ = (Ω →
∧n

i=1
(bi → b′i) ∧ (c=c′))∧

(

Ω →
∧n

i=1
(b′i ∧ (c′=c ⊕ 1))

)

∧
(

∧n

i=1
((bi ∧ (c mod ti 6=0)) → bi

′

)
) (3)

Thebounded asynchronous parallel compositionof P1, . . ., Pn according to ratest1,
. . ., tn, denotedP t1

1 ‖ba · · · ‖ba P tn

n , is S ‖P1 ‖ · · · ‖Pn with the the conjunct in Equa-
tion (2) added to the transition.

We note that there are many possible ways to implement this restriction of the pos-
sible interleavings between processes. Essentially, theyall boil down to counting the
number of moves made by each process and allowing / disallowing processes to move
according to the values of counters.

8

3 Model Checking

Partial Order Reduction (POR) [6] is a technique that takes advantage of the fact that in
asynchronous systems many interleavings lead to the same results. It does this by not
exploring some redundant interleavings, more accurately,by shrinking the set of suc-
cessors of a state while preserving system behavior. Existing algorithms are designed
for (unbounded) asynchronous systems and do not directly adapt to our kind of models
(see below). Although, at the moment, we are unable to suggest POR techniques for
bounded asynchrony, we propose an algorithm that exploits the restricted communica-
tion encountered in systems that model cell-cell interaction, we refer to our algorithm as
communication based reduction, or CBR for short. Like POR, our algorithm searches
only some of the possible interleavings. For every interleaving, our algorithm explores
an interleaving that visits the same states on a macro-step level. We reduce the reach-
able region of the scheduler from exponential size to polynomial size in the number
of processes, and thus we have a direct and important impact on enumerative model
checking. Our approach is applicable to all linear time properties whose validity is pre-
served by restricting attention to macro steps. Much like POR, thenextoperator cannot
be handled. In particular, every property that relates to a single process (without next),
and Boolean combinations of such properties, retain their validity.

3.1 Communication Based Reduction

The explicit schedulerS defined in Subsection 2.2 allows all possible interleavings
of processes within a macro-step. We prove that we can construct a new scheduler
that preserves system macro behavior (macro-step level behavior) but allows fewer in-
terleavings. LetP = P 1

1 ‖
ba
· · · ‖

ba
P 1

n be the bounded asynchronous composition of
P1, P2, . . . , Pn according to rate 1 (see Section 2).7

We first formally define amacro-stepg ofP as a sequence of statesg : s = s0, s1, . . . , sm

satisfying:
– g is a subsequence of a run,
– s0 is initial with respect to the scheduler, i.e.,s0[bk] holds for all0 ≤ k ≤ n,
– sm is final with respect to the scheduler, i.e.,sm[bk] holds for all0 ≤ k ≤ n,
– sm is the only final state ing.

A macro-step induces a total and a partial order over the processes ofP . The to-
tal order represents the order in which the processes move and we refer to it as the
macro-step’s interleaving. The partial order represents the order in which processes pass
messages (via variables) and we refer to it as the macro-steps channel configuration.

Consider a macro-stepg : s = s0, s1, . . . , sm of P . Theinterleavingof g, denoted
Ig = (<Ig, =Ig), is an order such that:(Pk <Ig Pl) if there existssi in g such that
si[bk]si[bl] and(Pk =Ig Pl) if (Pk 6<Ig Pl) ∧ (Pl 6<Ig Pk). That is,(Pk <Ig Pl) if Pk

moves beforePl in the interleavingg.
We say that there is a communication channelckl connectingPk andPl if Vk ∩

Vl 6= ∅. The neighbor orderof g, denoted(<Ng, =Ng), is the partial order defined
as the restriction of the interleaving of g to the neighboring processes.Pk <Ng Pl iff

7 Here, we only describe the case of processes running at equalrates. The same ideas can be
easily extended to general rates.

9

Pk <Ig Pl and there exists a channelckl. We define in a similar way=Ng. Thechannel
configurationof g, denoted(<Cg, =Cg), is the transitive closure of the neighbor order.
That is,Pk <Cg Pl if a change in value of a variable ofPk in interleavingg can be
sensed byPl in the same interleaving.

Given a macro-stepg, a channelckl may have one of three states: enabled from k to
l, if Pk <Cg Pl, enabled from l to k, ifPl <Cg Pk, disabled, ifPl =Cg Pl. Intuitively,
a channel is enabled if it may propagate a value generated in the current macro-step.

Two interleavings areP-equivalentif they induce the same channel configuration.
Within P , we say thatt is amacro-successorof s with respect to interleavingI if

there exists a macro-stepg with initial states, interleavingI and final statet.
The following lemma establishes that two equivalent interleavings have the same

set of macro-successors.

Lemma 1. Consider twoP-equivalent interleavingsI andI ′. If s′ is a macro-successor
of s with respect toI, thens′ is a macro-successor ofs with respect toI ′.

A scheduler that allows only one of twoP-equivalent interleavings preserves system
macro-behavior. It follows that a scheduler that generatesonly one interleaving per
channel configuration produces a correct macro-state behavior.

Here after we focus on the case ofline communication scheme(Vk ∩ Vl = ∅, for all
l /∈ {k − 1, k + 1}, k ∈ (1..n)). This is a common configuration in biological models
where communication is very local. Extension to 2-dimensional configurations follows
similar ideas.

Let ck denote the channelck,k+1. In interleavingg, channelck is enabled-rightif
enabled fromk to k+1, enabled-leftif enabled fromk+1 to k, and disabled as before.

Given a channel configuration we construct one interleavingthat preserves it. Let
cr0

, cr1
, . . . , crmr

be the right-enabled channels. ProcessPr0
is oblivious to whatever

happens in the same macro step in processesPr0+1, . . . , Pn because its communication
with these processes happens through processPr0+1 which moves after it. Thus, what-
ever actions are performed by processesPr0+1, . . . , Pn they do not affect the actions of
processesP1, . . . , Pr0

. We may shuffle all the actions of processesP1, . . . , Pr0
to the

beginning of the interleaving preserving the right-enabled channelcr0
. The new inter-

leaving starts by handling all processesP1, . . . , Pr0
from right to left. Letcl0 , cl1 , . . . , clml

be the left-enabled channels in1, . . . , r0. Then, the order of moves is: first processes
Plm+1, . . . , Pr0

, thenPlm−1+1, . . . , Plm , and so on untilP0, . . . Pl1 .
Next, using the same reasoning, we can handle the processes in the ranger0 +

1, . . . , r1 from right to left according to the left-enabled channels, and so on.
The CBR scheduler also uses the Boolean variablesb1, . . . , bn, however, the possi-

ble assignments are those where the processes can be partitioned to at most four maxi-
mal groups of consecutive processes that have either moved or not. More formally, we
denote the value ofb1, . . . , bn by a sequence of0 and1, then the configurations can
be described by the following regular expressions:0+1+0+, 1+0+, 1+0+1+0+, and
1+. With similar intuition configurations of the form0+, 0+1+, and1+0+1+ are also
reachable. For example, in a system with 6 processes the configurations000111 and
110110 are reachable while the configuration010101 is not. There are onlyO(n3) such
reachable states, compared to2n reachable states in the original scheduler. Fig. 2(a)

10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 2 4 6 8 10 12 14
 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

S
ta

te
s

T
ra

ns
iti

on
s

Processes

none-states
none-transitions
CBR-states
CBR-transitions

(a) Theoretical States and Transitions

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 4 5 6 7 8 9 10 11 12

T
im

e[
s]

Processes

conc none
conc POR
interl none
interl POR
conc CBR+POR
conc CBR
interl CBR
interl CBR+POR

(b) Execution Time

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 4 5 6 7 8 9 10 11 12

S
ta

te
s/

T
ra

ns
iti

on
s

Processes

none-transitions
POR-transitions
none-states
POR-states
CBR-transitions
CBR+POR-trans
CBR-states
CBR+POR-states

(c) Interleaving States and Transitions

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 4 5 6 7 8
S

ta
te

s/
T

ra
ns

iti
on

s

Processes

none-transitions
POR-transitions
none-states
POR-states
CBR-transitions
CBR+POR-trans
CBR-states
CBR+POR-states

(d) Concurrent States and Transitions

Fig. 2.Comparing theory and practice

compares the number of states and transitions of the two schedulers (none, the sched-
uler described in Section 2 with no reduction vs. CBR, the scheduler described above)
for different number of processes.

3.2 Experimental Evaluation

We compare experimentally the performance of the CBR scheduler with POR methods.
We translate the model in Fig. 1 to Promela and use Spin [17] for a thorough analysis
of the behavior of CBR.

We explain, intuitively, why POR is inappropriate for bounded asynchrony. We as-
sume basic familiarity with POR. First, we find it very important that processes may
move concurrently under bounded asynchrony. POR is developed for ‘classical’ asyn-
chronous systems, thus, it does not allow for processes to move concurrently. Second, a
macro-step in bounded asynchrony is a sequence of at mostn local steps, and noticing
that one interleaving is redundant may require explorationof more than 1 lookahead.
Let us further explore this with an example. Suppose that we give up on concurrent
moves and would like to use POR for reasoning about the same bounded asynchronous
system. That is, processes in a line configuration where onlyneighbor processes may

11

communicate. In the beginning of a macro-step, all processes are enabled. Communi-
cation between processes implies that we cannot find independent processes (such that
the order of scheduling them does not matter), and we have to explore all possiblen
processes as the first process to move. With one process aheadof others, it is clear that
the processes to the left of this process and to its right are no longer connected and the
order between scheduling every process on the left and everyprocess on the right can
be exchanged. However, among the processes on one side, there is still dependency and
the same selection by the scheduler has to be applied recursively. Overall, the number
of possible interleavings to be checked is still exponential in n.8 As exhibited by our
experiments, POR does offer some reduction, however, this cannot be compared to the
order of magnitude saving offered by using communication-based reduction.

We consider the bounded asynchronous composition ofn cells in a line configura-
tion. All processes start from the same state. If we disallowconcurrent moves, we verify
that there are no adjacent cells that assume fate1 (see Fig. 1). We add a mechanism that
allows us to model concurrent moves using Spin’s interleaving semantics. This mecha-
nism consists of deciding to store the next values of variables in a local copy, allowing
other processes to perform a computation according to the old values, and finally up-
dating the new values. Obviously, this mechanism increasesconsiderably the number
of states in the system. For this case we verify that a cell assumes fate2 only if it has
a neighbor that assumes fate1. We evaluate the CBR schedulerby considering the time
for enumerative model checking and the number of states and transitions explored dur-
ing model checking. We compare the behavior of the CBR scheduler with the basic
scheduler described in Section 2 (simple scheduler) when POR is enabled and disabled.
We perform two sets of experiments, both using Spin. The firstset of experiments uses
the normal interleaving semantics of Spin. In this case the size of the CBR scheduler is
reduced fromO(n3) to O(n2) states. This set of experiments includes running the sim-
ple scheduler without any reductions (none), the simple scheduler with POR (POR),
the CBR scheduler (CBR), and the CBR scheduler with POR (CBR+POR). The sec-
ond set of experiments includes a mechanism that makes Spin mimic the possibility of
concurrent moves. We note that this additional mechanism increases the size of each
process and that in order to communicate with the CBR scheduler each process has ad-
ditional variables. Thus, the experiment is unfair with respect to the CBR scheduler. As
before, this set of experiments includes running the simplescheduler (conc none), sim-
ple scheduler with POR (conc POR), CBR scheduler (conc CBR),and CBR scheduler
with POR (conc CBR+POR). In all experiments, increasing thenumber of processes
by one leads to memory overflow (10GB). For example, for the experiment with 9
processes, with the simple scheduler where POR is enabled, Spin requires more than
10GB of memory. Fig. 2(b) compares the model-checking time for the different exper-
iments. Figures 2(c) and 2(d) compare the numbers of states and transitions explored
in the first (interleaving semantics) and second (with mechanism mimicking concurrent
moves) sets of experiments, respectively. For better scaling, the range of values covered
by these figures does not include the number of transitions for the none-experiments
in the cases of 7 and 5 processes, respectively. Notice that the size of the system it-

8 More accurately, the analysis is as follows. The number of interleavings of one process is
f(1) = 1, the number of interleavings of zero processes isf(0) = 0. Generally,f(n) =
Σn

i=1(f(i − 1) + f(n − i)) = 2f(n − 1) + f(n − 1) = 3f(n − 1) andf(n) = 2 · 3n−2.

12

s s

1−ǫ≤xp<1; ap!;

xp=1; ; xp : =0

Fig. 3. CTS for one rate

self increases exponentially with the number of processes.The experiments confirm
that POR offers some improvement while the communication-based reduction affords
a significant improvement when compared with the simple scheduler with POR.

The success of CBR in the context of bounded asynchrony suggests that it may be
useful to analyze the communication structure in systems prior to model checking and
to apply specific optimizations based on this analysis. Further research in this direction
is out of the scope of this paper.

4 A Possible Mechanistic Explanation for Bounded Asynchrony

It is rather obvious that a scheduler such as the one we describe in Section 2 does not
exist in real biological systems. While trying to describe biological behavior (of this
type) in high-level requires us to use a notion like bounded asynchrony, it is not clear
what is responsible for this kind of behavior in real systems. Obviously, no centralized
control exists in this case, and there has to be some distributed mechanism that creates
this kind of behavior. In this section we show that bounded asynchrony can be naturally
used to abstract a special kind of distributed real-time mechanism. Thus, in some cases,
similar scheduling mechanisms can be used to construct rough abstractions of real-
time systems. From a biological point of view, it is an interesting challenge to design
biological experiments that will confirm or falsify the hypothesis that internal clock-like
mechanisms are responsible for the emerging behavior of bounded asynchrony.

We suggest clocked transition systems (CTS) as a possible distributed mechanism
that produces bounded asynchrony. The systems we consider use a single clock, perform
actions when this clock reaches a certain value, and reset the clock. We give a high-level
description of theCTS we have in mind.

Consider theCTSΦ depicted in Fig. 3. TheCTShas two Boolean variabless andap

and one clockxp. The values ofs correspond to the two states in the figure. TheCTS

is allowed to move froms to s when the clockx is in the range[1 − ǫ, 1), for someǫ.
When theCTS moves froms to s, it resets the clock back to 0. The variableap is the
scheduling variable that thisCTS sets; it changes when the system moves froms to s,
and does not change when the system moves froms to s. The possible computations of
this system include the clock progressing until some point in [1− ǫ, 1), then the system
makes a transition froms to s while changingap, then the clock progresses until it is
1, and finally the system makes a transition froms to s. Then, the process repeats itself
when the global time is[2 − ǫ, 2), [3 − ǫ, 3), and in general[i − ǫ, i) for everyi.

Consider now the composition ofΦ with a TS P that usesap as its scheduling
variable. The composition of the two is aCTS in which moves of theTS P happen in

13

the time range[i−ǫ, i) for every i ∈ N. Suppose that we have twoTS P andQ with
scheduling variablesap andaq, respectively. We take the composition of twoCTS as
above using clocksxp andxq and the variablesap andaq. It follows thatP andQ take
approximately one time unit to make one move. However, the exact timing is not set.
In a run of the system combined of the fourCTSs the order of actions betweenP and
Q is not determined. Every possible ordering of the actions ispossible. In addition, the
transitions that reset the clocksxp andxq ensure that the twoTSs stay coupled. However
long the execution, it cannot be the case thatP takes significantly more actions thanQ
(in this case more than one). Under appropriate projection,the sequence of actions taken
by the composition of the four systems, is equivalent to the sequence of actions taken
by the bounded-asynchronous composition ofP andQ with rate 1.

s1 s1

t1−ǫ≤xp<t1; ap!;

xp=t1; ; xp : =0

s2 s2

t2−ǫ≤xq<t2; aq!;

xq=t2; ; xq : =0

Fig. 4. CTSs for different rates

We now turn to consider the more general scheduler. Considerthe CTSs in Fig. 4.
They resemble the simpleCTS presented above, however use the bounds oft1 andt2
time units, respectively. Denote theCTSusing boundt1 by Φ1, and theCTSusing bound
t2 by Φ2. A computation ofΦ1 is a sequence of steps where time progresses until the
range[i · t1 − ǫ, i · t1), then the system takes a step, then the time progresses untili · t1,
and the system takes a step that resets the local clock. A computation ofΦ2 is similar,
with t2 replacingt1.

Let P andQ be twoTSs with scheduling variablesap andaq as above. Consider the
composition ofP andQ with Φ1 andΦ2. It follows thatP moves everyt1 time units and
Q everyt2 time units9. Everyt1 time unitsP performs an action, and everyt2 time units
Q performs an action. At timet such that botht1 andt2 divide t, bothP andQ make
moves, however, the order betweenP andQ is not determined. We can show that under
appropriate projection, the sequence of actions taken by the composition of the four
systems, is equivalent to the sequence of actions taken by the bounded-asynchronous
composition ofP andQ with ratest1 andt2, respectively.

We note that theCTSs have their resets set at exact time points, suggesting thata
composition of such systems requires a central clock. We canstill maintain ‘bounded-
asynchronous’ behavior if the reset occurs concurrently with the system, however, main-
tainingǫ small enough and restricting the number of steps made by the system. For ex-
ample, ifǫ is 1/100, then regardless of the exact behavior, the first 98 macro-steps still

9 For everyǫ and for every valuest1 andt2 there are some integersi1 andi2 such that[i1 · t1 −
ǫ, i1 · t1] intersects[i2 · t2 − ǫ, i2 · t2]. As we are interested only in the sequence of actions
taken byp1 andp2, restrictingt1 andt2 to range over integer values seems reasonable.

14

respect bounded asynchrony. It follows, that unsynchronized local clocks augmented
by frequent enough synchronizations would lead to the exactsame behavior. It is an
interesting question whether similar ideas can be used for the abstraction of real time
and probabilistic systems.

5 Acknowledgments

We thank Alex Hajnal for fruitful discussions, and Marc Schaub for comments on an earlier draft
of the manuscript.

References
1. http://mtc.epfl.ch/∼piterman/bio.
2. R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G. Pappas, H. Rubin, and J. Schug. Hy-

brid modeling and simulation of biomolecular networks. InFourth International Workshop
on Hybrid Systems: Computation and Control, volume 2034 ofLecture Notes in Computer
Science, pages 19–32. Springer-Verlag, 2001.

3. J. Barjis and I. Barjis. Formalization of the protein production by means of petri nets. InPro-
ceedings International Conference on Information Intelligence Systems, pages 4–9. IEEE,
1999.

4. G. Bernot, J.P. Comet, A. Richard, and J. Guespin. Application of formal methods to bio-
logical regulatory networks: extending thomas asynchronous logical approach with temporal
logic. Journal of Theoretical Biology, 229(3):339–347, 2004.

5. L. Calzone, N. Chabrier-Rivier, F. Fages, and S. Soliman.Machine learning biochemical
networks from temporal logic properties.Transactions on Computational Systems Biology,
4:68–94, 2006.

6. E.C. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.
7. D. Dill, M.A. Knapp, P. Gage, C. Talcott, K. Laderoute, andP. Lincoln. The pathalyzer: a

tool for analysis of signal transduction pathways. InProceedings of the First Annual Recomb
Satellite Workshop on Systems Biology, 2005.

8. S. Efroni, D. Harel, and I. R. Cohen. Toward rigorous comprehension of biological com-
plexity: modeling, execution, and visualization of thymicT-cell maturation.Genome Res,
13(11):2485–97, 2003.

9. S. Efroni, D. Harel, and I.R. Cohen. Emergent dynamics of thymocyte development and
lineage determination.PLoS Computational Biology, 3(1):127–136, 2007.

10. J. Fisher and T.A. Henzinger. Executable cell biology.Nature Biotechnology, 25(11):1239–
49, 2007.

11. J. Fisher, N. Piterman, A. Hajnal, and T.A. Henzinger. Predictive modeling of signalling
crosstalk duringC. elegansvulval development.PLoS Computational Biology, 3(5):e92,
2007.

12. J. Fisher, N. Piterman, E. J. Hubbard, M. J. Stern, and D. Harel. Computational insights
into Caenorhabditis elegansvulval development.Proc Natl Acad Sci U S A, 102(6):1951–6,
2005.

13. R. Ghosh and C. Tomlin. Lateral inhibition through delta-notch signaling: A piecewise affine
hybrid model. In4th International Workshop on Hybrid Systems Computation and Control,
volume 2034 ofLecture Notes in Computer Science, pages 232–246, Rome, Italy, 2001.

14. D. T. Gillespie. Exact stochastic simulation of coupledchemical reactions.J. of Phys.
Chemistry, 81(25):2340–61, 1977.

15. J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic model
checking of complex biological pathways.Theoretical Computer Science, 2008. Special
issue on Converging Sciences: Informatics and Biology. To appear.

15

16. T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A time-triggered language for em-
bedded programming. InProc. 1st International Workshop on Embedded Software, volume
2211 ofLect. Notes in Comp. Sci., pages 166–184. Springer-Verlag, 2001.

17. G.J. Holzmann. The model checker SPIN.IEEE Trans. on Software Engineering, 23(5):279–
295, May 1997. Special issue on Formal Methods in Software Practice.

18. N. Kam, D. Harel, and I.R. Cohen. The immune system as a reactive system: Modeling T-cell
activation with statecharts. InIEEE Symposium of Visual Languages and Formal Methods,
pages 15–22., 2003.

19. N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E. J. A.Hubbard, and M. J. Stern. Formal
modeling of C. elegans development: A scenario-based approach. InFirst International
Workshop on Computational Methods in Systems Biology, volume 2602 ofLecture Notes in
Computer Science, pages 4–20, Roverto, Italy, 2003. Springer-Verlag.

20. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of Theoretical Biology, 22(3):437–467, 1969.

21. Y. Kesten and A. Pnueli. Control and data abstractions: The cornerstones of practical formal
verification.Software Tools for Technology Transfer, 2(1):328–342, 2000.

22. C. Priami, A. Regev, E.Y. Shapiro, and W Silverman. Application of a stochastic name-
passing calculus to representation and simulation of molecular processes.Information Pro-
cessing Letters, 80(1):25–31, 2001.

23. A. Sadot, J. Fisher, D. Barak, Y. Admanit, M. J. Stern, E. J. Hubbard, and D. Harel. Towards
verified biological models.IEEE Transactions in Computational Biology and Bioinformat-
ics, 2007. To appear.

