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Abstract. We introducebounded asynchrony notion of concurrency tailored
to the modeling of biological cell-cell interactions. Baled asynchrony is the
result of a scheduler that bounds the number of steps thatrocess gets ahead
of other processes; this allows the components of a systemoi@ indepen-
dently while keeping them coupled. Bounded asynchronyrately reproduces
the experimental observations made about certain cdlifgeractions: its con-
strained nondeterminism captures the variability obsemecells that, although
equally potent, assume distinct fates. Real-life cellsnate‘scheduled”, but we
show that distributed real-time behavior can lead to corepbimteractions that
are observationally equivalent to bounded asynchrong, phovides a possible
mechanistic explanation for the phenomena observed desgfidate specifica-
tion.

We use model checking to determine cell fates. The nondétem of bounded
asynchrony causes state explosion during model checkingalbtial-order meth-
ods are not directly applicable. We present a new algorithat teduces the
number of states that need to be explored: our optimizatikas advantage of
the bounded-asynchronous progress and the spatially ilsteshctions of com-
ponents that model cells. We compare our own communicdtésed reduction
with partial-order reduction (on a restricted form of boeddasynchrony) and
experiments illustrate that our algorithm leads to sigaificsavings.

1 Introduction

Computational modeling of biological systems is becomimgeéasingly important in
efforts to better understand complex biological behaviorsecent years, formal meth-
ods have been used to construct and analyze such biologamelsn The approach,
dubbed “executable biology” [10], is becoming increasymgdpular. Various formalisms
are putting the executable biology framework into practiea example, Petri-nets [3,
7], process calculi [22, 15], interacting state-machi®e4 1], and hybrid automata [13,
2]. In many cases, the analysis of these models includebabdity analysis and model
checking in addition to traditional simulations.

This paper focuses on interacting state-machines as adpbidlogical modeling
[18,8,19,12,23,9,11]. This approach has recently led tioua biological discov-
eries, and modeling works that were done using this apprbaeh appeared in high
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impact biological journals [12,9, 11]. These are discrstate-based models that are
used as high-level abstractions of biological systemsal.

When using interacting state-machine models to describelagical behavior, we
are facing the question of how to compose its components. Nietliiat the two stan-
dard notions of concurrency (in this context), synchrong assynchrony, are either
too constrained or too loose when modeling certain biolalgiehaviors such as cell-
cell interactions. When we try to model cell-cell interacis, we find that synchronous
composition is too rigid, making it impossible to break thansnetry between pro-
cesses without the introduction of additional artificialahanisms. On the other hand,
asynchronous composition introduces a difficulty in dewdivhen to stop waiting for
a signal that may never arrive, again requiring artificiattmnisms'

Biological motivation.

We further explain why the standard notions of concurrenay e inappropriate for
modeling certain biological processes. We give a modelesgnting very abstractly
a race between two processes in adjacent cells that assumndifferent cell fates.
The fate a cell chooses depends on two proteins, dempattvayandsignal below.
The pathway encourages the cell to adopt fatel while theabencourages the cell to
adopt fate2. In the process we are interested in, pathwetg gtareasing slowly. When
pathway reaches a certain level, it forces the cell to adaflf At the same time,
pathway encourages the signal in neighbor cells to incraadeinhibits the pathway
in the neighbor cell. The signal starts in some low level dnalot encouraged goes
down and vanishes. If, however, it is encouraged, it goesnipbiting the pathway
in the same cell, and causing the cell to adopt fate2. A simqadel reproducing this
behavior is given in Fig. 1.

We are interested in three behaviors. First, when a cellridmusolation, the path-
way should prevail and the cell should assume fatel. Seawheln two cells run in
parallel either of them can get fatel and the other fate2réTaee also rare cases where
both cells assume fatel. Third, when one of the cells getstanral boost to the path-
way it is always the case that this cell adopts fatel and ther date2.

Already this simplified model explains the problems with ti@rmal notions of
concurrency. In order to allow for the second behavior weeh@avbreak the symme-
try between the cells. This suggests that some form of asgnghs appropriate. The
combination of the first and third behaviors shows that thgelsronicity has to be
bounded. Indeed, in an asynchronous setting a processtaistioguish between the
case that it is alone and the case that the scheduler chooses other processes for a
long time.

Although very simple, this model is akin to many biologicabpesses in differ-
ent species. For example, a similar process occurs durimdofmation of the wing
of the Drosophila fruit fly [13]. Ghosh and Tomlin’s work priokes a detailed model

4 We treat here biological processes as computer processesxd&mple, when we say ‘waiting’,
‘message’, or ‘decide’ we relate to biological processest thke time to complete, and if
allowed to continue undisturbed may lead to irreversibleseguences. Thus, as long as the
process is going on the system ‘waits’, and if the processitglisturbed (‘does not receive a
message’), it ‘decides’.



var pat hway, signal:{0..4};

pat hway_at om

init

[] true -> path := 1;

updat e

[1 (O<path<4) & no_input & next(signal)<4 -> path := path+l;
[1 (O<path<4) & input & next(signal)<4 -> path := 4,

[1 (O<path<4) & next(signal)=4 -> path := 0;

si gnal _at om

init

[] true -> signal := G;

updat e

[T neighborpath=4 & signal >0 -> signal := 4;

[T neighborpath<4 & path=4 -> signal := 0;

[T neighborpath<4 & path<4 & O<signal <4 -> signal := signal-1

Fig. 1. Program for abstract model.

(using hybrid automata) of this process. The formation & @ elegans vulva also
includes a similar process [11]. Our model of C. elegansalulevelopment uses the
notion of bounded asynchrony. Using bounded asynchronyeparate the modeling
environment from the model itself and suggest biologicalghts that were validated
experimentally [11].

Formal modeling: bounded asynchrony.

For this reason, we introduce a notiontafunded asynchrorigto our biological mod-
els, which allows components of a biological system to pedcapproximately along
the same time-line. In order to implement bounded asynchioa associate a rate with
every process. The rate determines the tintteat the process takes to complete an ac-
tion. A process that works according to ratg@erforms, in the long run, one action
everytth round. This way, processes that work according to the sateework more

or less concurrently, and are always at the same stage of wtatign, however, the
action itself can be taken first by either one of the processe&®ncurrently, and the
order may change from round to rouh@ther notions of bounded asynchrony either
permit processes to ‘drift apart’, allowing one processatketarbitrarily more actions
than another process, or do not generalize naturally togss®s working according to
different rates.

Having the above mentioned example in mind, we define thenaif bounded
asynchrony by introducing an explicit scheduler that insts each of the cells when
it is allowed to move. Thus, our system is in fact a synchr@asystem with a nonde-
terministic scheduler instructing which processes to mekien. We find this notion of

5 We note that this process is not memoryless, making contismtime Markov chains inappro-
priate. This issue is discussed further below.



bounded asynchrony consistent with the observations nmackdlicell interactions. As
explained, asynchrony is essential in order to break thensgtny between cells (pro-
cesses). It is important to separate the biological meshafriom the synchronization
mechanism, otherwise the model seems removed from thegyiolan the other hand,
much like in distributed protocols, a process has to knowmioegive up on waiting
for messages that do not arrive. With classical asynchrbisyi¢ impossible and we
are forced to add some synchronizing mechanism. Again,enctimtext of biology,
such a mechanism should be presented in terms of the mod®iingnment. When
introducing bounded asynchrony both problems are solvlad.aBynchrony breaks the
symmetry and the bound allows processes to decide whenpgagtiting. In addition,
the asynchrony introduces limited nondeterminism thatwas the diversity of results
often observed in biology.

Possible mechanistic explanation: real time.

In some cases, biological systems allow central synchatioiz. For example, during
animal development, it may happen that several cells aesta in some state un-
til some external signal tells all of them to advance. Howetleese synchronization
mechanisms operate on a larger scale and over time periatiargn much longer than
the events described by our model. Thus, we do not believethieae is a central-
ized scheduler that instructs the processes when to moweb&haviors we describe
are observed in practice, suggesting that there is someanesh that actually makes
the system work this way. This mechanism has to be distibbttween the cells.
We show that bounded asynchrony arises as a natural ali@trafta specific type of
clocked transition systems, where each component hasemmahtlock. This suggests
that similar ideas may be used for the abstraction of cetjques of real time systems.
Of less importance here, it also may be related to the acteahanism that creates the
emergent property of bounded asynchrony.

Model checking: scheduler optimization.

The scheduler we introduce to define bounded asynchronystsms adding variables
that memorize which of the processes has already performedtion in the current
round. When we come to analyze such a system we find that, rikedh Bsynchronous
systems, many different choices of the scheduler lead tedhee states. Motivated by
partial-order reduction [6], we show that in some cases @aly of the interleavings
need to be explored. Specifically, our method applies in ganditions of the system
where communication is locally restricted. In such cases.can suggest alternative
schedulers that explore only a fraction of the possiblelieéeings, however, explore all
possible computations of the system. We also compare dumigges with partial-order
reduction in a restricted setting with no concurrent moegperimental evaluation
shows that our techniques lead to significant improvemeet.a¥é not familiar with
works that analyze the structure of communication in a $pemdncurrent system and
use this structure to improve model checking.



Related (and unrelated) models.

The comparison of such abstract models with the more ddtdiféerential equations
or stochastic process calculi models is a fascinating stibf@wever, this is not the
focus of this paper. Here, we assume that both approachesiggest helpful insights
to biology. We are also not interested in a particular biaczagmodel but rather in ad-
vancing the computer science theory supporting the cortstruof abstract biological
models.

There are mainly two approaches to handle concurrency imatbdiological mod-
els. One prevalent approach is to create a continuous timmkdvahain (CTMC). This
approach is usually used with models that aim to capture cntde interactions [14,
22]. Then, the set of enabled reactions compete accordiagctmtinuous probability
rate (usually, the¢-distribution). Once one reaction has occurred, a new sehabled
reactions is computed, and the process repeats. This kimbadél requires exact quan-
titative data regarding number of molecules and reactidesreSuch accurate data is
sometimes hard to obtain; indeed, even the data as to exelcityn molecules are in-
volved in the process may be missing (as is the case i@ tieéegansnodel). Our mod-
els are very far from the molecular level, they are very attrand scheduler choices
are made on the cellular level. When considering procedsstsaatly the scheduling is
no longer memoryless, making CTMCs inappropriate. For epdantonsider a CTMC
obtained from our model in Fig. 1 by setting two cells in matexcording to the same
rate. Consider the experiment where one of the cells isrge#tiboost to its pathway.
The probability of the other cell performing 4 consecutieti@ns (which would lead
to it getting fatel) is%, while this cannot occur in the real system. In addition, the
probability of both cells assuming fatel is 0, as the cellsnoa move simultaneously.

A different approach, common Boolean networkf20, 4, 5], is to use asynchrony
between the substances. Again, this approach is usualliedgp models that aim to
capture molecular interactions, however, in an abstragt waynchronous updates of
the different components is used as an over-approximatidheoactual updates. If
the system satisfies its requirements under asynchronaupasition, it clearly sat-
isfies them under more restricted compositions. We note ghiewy that these models
are used primarily to analyze the steady-state behavioranfels (i.e., loops that have
no outgoing edges). As asynchrony over-approximates tipginexd composition, such
steady-state attractors are attractors also in morectesdrcompositions, justifying this
kind of analysis. For our needs, we find unbounded asynchrappropriate.

Bounded asynchrony is in a sense the dual of GALS (globaijynehronous-locally-
synchronous): it represents systems that look globalbwed at a coarse time granu-
larity, essentially synchronous, while they behave lgcatlynchronous, at a finer time
granularity. Efficient implementations of synchronous eahdbed architectures also fall
into this category. For example, time-triggered languagesh as Giotto [16] have a
synchronous semantics, yet may be implemented using aywafielifferent schedul-
ing and communication protocols.

2 Bounded Asynchrony

In this section we define the notion of bounded asynchronyfil&edefine transition
systems and then proceed to the definition of bounded asymghr



2.1 Transition Systems

A transition systen(ts) D = (V, W, ©, p) consists of the following components.

-V = {uy,...,u,} : Afinite set of typedstate variablever finite domains. We
define astates to be a type-consistent interpretatioriofassigning to each variable
u € V avalues[u] in its domain. We denote by’ the set of all states. For an
assertionp, we say that is ap-state ifs = ¢.

— W C V: A set ofownedvariables. These are the variables that ddlsnay change.
The setiV includes the Booleascheduling variable.

— O : Theinitial condition. This is an assertion characterizing all the initial statks
theTs. A state is callednitial if it satisfies©.

— p: A transition relation This is an assertiop(V, V'), relating a state € X to
its D-successos’ € X' by referring to both unprimed and primed versions of the
state variables. The transition relatip(i/, V') identifies state’ as aD-successor
of states if (s,s") E p(V,V’). The transition relation has the form(a#£a’ A
) v (W=W"), whereq is the scheduling variable. In what follows we restrict our
attention to systems that use a scheduling variable.

A run of D is a sequence of states: s, s1, ..., satisfying the requirements of (h)i-
tiality: so is initial, i.e., so = ©; (b) Consecutionfor everyj > 0, the states;; is a
D-successor of the statg. We denote byungD) the set of runs oD. We can divide
the run to transitions wherP stutters (i.e.q¢ and all variables i/ do not change) and
whereD moves (i.e.q flips its value and variables il may change).

Given system®; : (V1,W1,601,p1) andDy : (Va, Wa, O, po) such thati; N
Wy = 0, the parallel compositiondenoted byD; || D2, is theTs (V, W, O, p) where
V=1uUV, W=W,UWyU{a}, ® =61 AOs, andp = p1 A p2 A p/, the variable
a is the scheduling variable @, || D, andy’ is as follows®

pl=(a#d) < [(a1 #a])V (a2 # ay)]

For more details, we refer the reader to [21].

Theprojectionof a states on a setfl’’ C V, denoteds| ,, is the interpretation of
the variables i/’ according to their values in Projection is generalized to sequences
of states and to sets of sequences of states in the natural way

2.2 Explicit Scheduler

We define bounded asynchrony by supplying an explicit scleethat lets all processes
proceed asynchronously, however, does not permit any psaceproceed faster than
other processes. Intuitively, the system has one macphustevhich each of the pro-
cesses performs one micro-step (or sometimes none), lgeefiiprocesses together
(regarding the number of actions). The order of actions betwthe subprocesses is
completely non-deterministic. Thus, some of the processag move together and
some one after the other. We start with a scheduler that allwprocesses to pro-
ceed according to the same rate. We then explain how to dereeta a scheduler that
implements bounded asynchrony between processes withaliffrates.

® Notice that, in the case thd?; and D, have stutter transitions, this composition is neither
synchronous nor asynchronous in the classical sense.



We start by considering a set of processes all working adgegria the same rate
(without loss of generality the rate is 1). In this case, #suiting behavior is that ev-
ery process does one micro-step in every macro-step of tsiersy Namely, we can
choose a subset of the processes, let them take a move, thémueowith the remain-
ing processes until completing one macro-step. We credtethat schedules actions
accordingly. The scheduler has a Boolean varidplssociated with every procegs.
A move of P; is forced wherb; changes from false to true. Once &l$ are set to true,
they are all set concurrently to false (and no process moves)

More formally, considen Tss P, ..., P,. Forl < i < n, leta; be the scheduling
variable of P; and let(p; A a; # a}) v (W; = W/) be the transition relation af;. We
define a schedule¥ = (V, W, O, p) , whereV = W = {by,...,b,} andb; is Boolean
forall1 <i<n,O = Al b;, andp is defined as follows:

i=1 i=1

Where2 = \/__, b; denotes the assertion that at least one variahtestill false.

Thebounded asynchronous parallel compositisiPy, . . ., P, according to the rate
1, denoted’} I,. -1, P isS| Pl | P, with the following additional conjunct
added to the transition:

N(ai # a; = (0 A 5)) 2)
=1
Thus, the scheduling variable &% is forced to change whep, is set to true.

We consider now the more general case of processes workthgyemeral rates. In
this case, we use the same system of Boolean variables bdtlitiom have a counter
that counts the number of steps. A process is allowed to meik@va only when its rate
divides the value of the counter. More formally, let the sadépP, .. ., P, bety, ..., t,.
Forl < i < n, leta; be the scheduling variable & and let(p; A a; # a}) vV (W; =
W/) be the transition relation aP;. We define a schedule& = (V, W, ©, p) with the
following components:

-V =W = {by,...,bn,c}. Foralli we haveb; is Boolean, and: ranges over

{1,...,lem(ty,...,t,)}, wherelem is the least common multiplier.

- 0= (c=1) AN bi
— Let2 = /", (b; A (c mod t;=0)) denote the assertion that at least one variaple
for which the rate; divides the counter is still false.

p= (2= Ny (b = W) A (=) A (B = N @A (F=c@ 1)) A

w o I )
A (B A (¢ mod t;£0)) — b; ))
The bounded asynchronous parallel compositahn?;, ..., P, according to rates,,
oy tn, denotedP ||, - ||, Pin,is S || Py || - - - || P, with the the conjunct in Equa-

tion (2) added to the transition.

We note that there are many possible ways to implement thigaton of the pos-
sible interleavings between processes. Essentially, alidyoil down to counting the
number of moves made by each process and allowing / disaltppriocesses to move
according to the values of counters.
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3 Model Checking

Partial Order Reduction (POR) [6] is a technique that takivsatage of the fact that in
asynchronous systems many interleavings lead to the sasuksidt does this by not
exploring some redundant interleavings, more accurabgiyshrinking the set of suc-
cessors of a state while preserving system behavior. Bgigtigorithms are designed
for (unbounded) asynchronous systems and do not directigtad our kind of models
(see below). Although, at the moment, we are unable to std@R techniques for
bounded asynchrony, we propose an algorithm that explugtsestricted communica-
tion encountered in systems that model cell-cell intecawtive refer to our algorithm as
communication based reductioor CBR for short. Like POR, our algorithm searches
only some of the possible interleavings. For every intetileg, our algorithm explores
an interleaving that visits the same states on a macro-steh M/e reduce the reach-
able region of the scheduler from exponential size to patyiab size in the number
of processes, and thus we have a direct and important impaehomerative model
checking. Our approach is applicable to all linear time jrtips whose validity is pre-
served by restricting attention to macro steps. Much likd&RPthenextoperator cannot
be handled. In particular, every property that relates tmgls process (without next),
and Boolean combinations of such properties, retain tradidity.

3.1 Communication Based Reduction

The explicit schedulef defined in Subsection 2.2 allows all possible interleavings
of processes within a macro-step. We prove that we can aartsr new scheduler
that preserves system macro behavior (macro-step leveMma but allows fewer in-
terleavings. Let> = P! || ---| P, be the bounded asynchronous composition of
P, P,,..., P, according to rate 1 (see Section’2).
We first formally define anacro-stepy of P as a sequence of statgss = sg, $1, .-, Sm
satisfying:

— gis asubsequence of arun,

— sp Is initial with respect to the scheduler, i.[b] holds for all0 < k < n,

— s Is final with respect to the scheduler, i.e,, [b] holds for all0 < & < n,

— s, is the only final state ifg.

A macro-step induces a total and a partial order over thegases ofP. The to-
tal order represents the order in which the processes modevanrefer to it as the
macro-step’s interleaving. The partial order represdraotrder in which processes pass
messages (via variables) and we refer to it as the macra-stegmnel configuration.

Consider a macro-step: s = sg, s1, - - -, $, Of P. Theinterleavingof g, denoted
Ty = (<14,=14), is an order such thatP, <;, P) if there existss; in g such that
S; [bk]si[bl] and(Py =g P if (P £Ig PHYN(P £Ig Py). Thatis,( Py <Ig p)if P
moves before’; in the interleaving;.

We say that there is a communication channglconnectingP, and P, if V, N
Vi # 0. Theneighbor orderof g, denoted(< 4, =n,), is the partial order defined
as the restriction of the interleaving of g to the neighbgnmocesses’, <y, F; iff

" Here, we only describe the case of processes running at eapeal The same ideas can be
easily extended to general rates.



Py, <14 P, and there exists a channg}. We define in a similar way- 4. Thechannel
configurationof g, denoted < ¢4, =cy), is the transitive closure of the neighbor order.
Thatis, P, <cg4 P, if a change in value of a variable @, in interleavingg can be
sensed by, in the same interleaving.

Given a macro-step, a channet; may have one of three states: enabled from k to

I, if P, <cg4 P, enabled from|tok, itP, <c4 Py, disabled, ifP, =¢4 P Intuitively,

a channel is enabled if it may propagate a value generatée iourrent macro-step.
Two interleavings aré-equivalenif they induce the same channel configuration.
Within P, we say that is amacro-successasf s with respect to interleaving if

there exists a macro-stepwith initial states, interleavingZ and final state.

The following lemma establishes that two equivalent iet@vings have the same
set of macro-successors.

Lemma 1. Consider twdP-equivalentinterleaving® andZ’. If s’ is a macro-successor
of s with respect tcZ, thens’ is a macro-successor efwith respect taZ’.

A scheduler that allows only one of twW®&-equivalent interleavings preserves system
macro-behavior. It follows that a scheduler that generatdg one interleaving per
channel configuration produces a correct macro-state @hav

Here after we focus on the caseliole communication schen(®, N'V; = @, for all
¢ {k—1,k+1}, k€ (1..n)). This is a common configuration in biological models
where communication is very local. Extension to 2-dimenal@onfigurations follows
similar ideas.

Let ¢, denote the channe}, ;1. In interleavingg, channek;,, is enabled-rightf
enabled fronk to k+1, enabled-lefif enabled fromk+1 to £, and disabled as before.

Given a channel configuration we construct one interleattiag preserves it. Let
CrosCryy - - - Cr,,,,. DE the right-enabled channels. Procéssis oblivious to whatever
happens in the same macro step in processges, . . ., P, because its communication
with these processes happens through profess, which moves after it. Thus, what-
ever actions are performed by procesBgs. 1, . . . , P, they do not affect the actions of
processes’, ..., P,,. We may shuffle all the actions of procesd8s. .., P,, to the
beginning of the interleaving preserving the right-endhtbannet,,. The new inter-
leaving starts by handling all procesd®s. . ., P, fromrightto left. Letc;,, ¢;,, ..., ci,,,
be the left-enabled channelsin...,ry. Then, the order of moves is: first processes
B, +1,..., Py, thenP,  44,..., P, ,andsoonuntFy,...F,.

Next, using the same reasoning, we can handle the process$les ranger, +
1,...,r, fromright to left according to the left-enabled channety] ao on.

The CBR scheduler also uses the Boolean varidhles . , b,,, however, the possi-
ble assignments are those where the processes can beopattitd at most four maxi-
mal groups of consecutive processes that have either movsat.dViore formally, we
denote the value adf, ..., b, by a sequence df and1, then the configurations can
be described by the following regular expressiabisi*0+, 170*, 170T1+0", and
1*+. With similar intuition configurations of the fora™, 0+1+, and1T0*1* are also
reachable. For example, in a system with 6 processes thegooations000111 and
110110 are reachable while the configuratioh)101 is not. There are onlg(n?) such
reachable states, compared2to reachable states in the original scheduler. Fig. 2(a)
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Fig. 2. Comparing theory and practice

compares the number of states and transitions of the twalsé#rs (none, the sched-
uler described in Section 2 with no reduction vs. CBR, theedciter described above)
for different number of processes.

3.2 Experimental Evaluation

We compare experimentally the performance of the CBR sdeedith POR methods.
We translate the model in Fig. 1 to Promela and use Spin [17 tbhorough analysis
of the behavior of CBR.

We explain, intuitively, why POR is inappropriate for bowttasynchrony. We as-
sume basic familiarity with POR. First, we find it very impamt that processes may
move concurrently under bounded asynchrony. POR is degdlégr ‘classical’ asyn-
chronous systems, thus, it does not allow for processes e @ancurrently. Second, a
macro-step in bounded asynchrony is a sequence of atnriostl steps, and noticing
that one interleaving is redundant may require exploratibmore than 1 lookahead.
Let us further explore this with an example. Suppose that iwe gp on concurrent
moves and would like to use POR for reasoning about the saoeded asynchronous
system. That is, processes in a line configuration where oeighbor processes may
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communicate. In the beginning of a macro-step, all procease enabled. Communi-
cation between processes implies that we cannot find indigmeprocesses (such that
the order of scheduling them does not matter), and we havepiore all possible:
processes as the first process to move. With one process ahethetrs, it is clear that
the processes to the left of this process and to its right atemger connected and the
order between scheduling every process on the left and @recess on the right can
be exchanged. However, among the processes on one siaeistséll dependency and
the same selection by the scheduler has to be applied reelyrsDverall, the number
of possible interleavings to be checked is still exponéitiaz.® As exhibited by our
experiments, POR does offer some reduction, however, #riaa be compared to the
order of magnitude saving offered by using communicatiasda reduction.

We consider the bounded asynchronous compositiona#lls in a line configura-
tion. All processes start from the same state. If we disattomcurrent moves, we verify
that there are no adjacent cells that assume fatel (see)Filjeladd a mechanism that
allows us to model concurrent moves using Spin’s interlegigemantics. This mecha-
nism consists of deciding to store the next values of vaggbi a local copy, allowing
other processes to perform a computation according to theallies, and finally up-
dating the new values. Obviously, this mechanism increesesiderably the number
of states in the system. For this case we verify that a cellrass fate2 only if it has
a neighbor that assumes fatel. We evaluate the CBR schégutensidering the time
for enumerative model checking and the number of statesranditions explored dur-
ing model checking. We compare the behavior of the CBR sdeedhith the basic
scheduler described in Section 2 (simple scheduler) whdR B@nabled and disabled.
We perform two sets of experiments, both using Spin. Thedesbf experiments uses
the normal interleaving semantics of Spin. In this case iteecf the CBR scheduler is
reduced fromO(n?) to O(n?) states. This set of experiments includes running the sim-
ple scheduler without any reductions (none), the simpledaler with POR (POR),
the CBR scheduler (CBR), and the CBR scheduler with POR (GBBR). The sec-
ond set of experiments includes a mechanism that makes Spiit the possibility of
concurrent moves. We note that this additional mechanismeases the size of each
process and that in order to communicate with the CBR scleeédakh process has ad-
ditional variables. Thus, the experiment is unfair withrest to the CBR scheduler. As
before, this set of experiments includes running the sirapheduler (conc none), sim-
ple scheduler with POR (conc POR), CBR scheduler (conc CBf),CBR scheduler
with POR (conc CBR+POR). In all experiments, increasingribmber of processes
by one leads to memory overflow (10GB). For example, for thpeexnent with 9
processes, with the simple scheduler where POR is enalpéul r&uires more than
10GB of memory. Fig. 2(b) compares the model-checking tiorele different exper-
iments. Figures 2(c) and 2(d) compare the numbers of staeks$ransitions explored
in the first (interleaving semantics) and second (with magdm mimicking concurrent
moves) sets of experiments, respectively. For betterrsgatne range of values covered
by these figures does not include the number of transitionghf® none-experiments
in the cases of 7 and 5 processes, respectively. Notice ibadize of the system it-

8 More accurately, the analysis is as follows. The number tdri@avings of one process is
f(1) = 1, the number of interleavings of zero processeg (@) = 0. Generally,f(n) =
P (fi— 1)+ f(n— i) =2f(n— 1) + f(n—1) = 3f(n— 1) andf(n) = 2- 3",
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1—e<z,<ljap!; _

rp=1; _sxp:=0

Fig. 3. cTsfor one rate

self increases exponentially with the number of procesEhe. experiments confirm
that POR offers some improvement while the communicatiasel reduction affords
a significant improvement when compared with the simple dales with POR.

The success of CBR in the context of bounded asynchrony stgytfet it may be
useful to analyze the communication structure in systenas fir model checking and
to apply specific optimizations based on this analysis.Heuntesearch in this direction
is out of the scope of this paper.

4 A Possible Mechanistic Explanation for Bounded Asynchrown

It is rather obvious that a scheduler such as the one we #esariSection 2 does not
exist in real biological systems. While trying to descrilielbgical behavior (of this
type) in high-level requires us to use a notion like boundgdahrony, it is not clear
what is responsible for this kind of behavior in real syste@Bviously, no centralized
control exists in this case, and there has to be some digtdbaechanism that creates
this kind of behavior. In this section we show that boundsgghelsrony can be naturally
used to abstract a special kind of distributed real-timelmasm. Thus, in some cases,
similar scheduling mechanisms can be used to constructhrabgtractions of real-
time systems. From a biological point of view, it is an intieg challenge to design
biological experiments that will confirm or falsify the hyihesis that internal clock-like
mechanisms are responsible for the emerging behavior afdeaiasynchrony.

We suggest clocked transition systemg$) as a possible distributed mechanism
that produces bounded asynchrony. The systems we consiglardingle clock, perform
actions when this clock reaches a certain value, and resetdbk. We give a high-level
description of thecTswe have in mind.

Consider theeTs @ depicted in Fig. 3. TheTshas two Boolean variablesanda,,
and one clockz,,. The values ok correspond to the two states in the figure. TTes
is allowed to move frons to 5 when the clocke is in the rangdl — e, 1), for somee.
When thecTs moves froms to s, it resets the clock back to 0. The variallgis the
scheduling variable that thisTs sets; it changes when the system moves feoim s,
and does not change when the system moves frtows. The possible computations of
this system include the clock progressing until some paifit i~ €, 1), then the system
makes a transition from to s while changingz,, then the clock progresses until it is
1, and finally the system makes a transition fremo s. Then, the process repeats itself
when the global time i — ¢, 2), [3 — ¢, 3), and in generdl — ¢, ¢) for everyi.

Consider now the composition @ with a Ts P that usess, as its scheduling
variable. The composition of the two isar's in which moves of the's P happen in
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the time rangdi—e, ) for everyi € N. Suppose that we have twis P and @ with
scheduling variables, anda,, respectively. We take the composition of twos as
above using clocks, andz, and the variables, anda,. It follows thatP and() take
approximately one time unit to make one move. However, tteeetming is not set.
In a run of the system combined of the fozrss the order of actions betwedhand
Q@ is not determined. Every possible ordering of the actionmssible. In addition, the
transitions that reset the clocks andx, ensure that the twoss stay coupled. However
long the execution, it cannot be the case tAdakes significantly more actions thgh
(in this case more than one). Under appropriate projectiensequence of actions taken
by the composition of the four systems, is equivalent to #gusnce of actions taken
by the bounded-asynchronous compositio’and@ with rate 1.

t1—e<zp<ti;ap!; _ ta—e<xq<tz;aql; _
Tp=t1; _;2p : =0 Tq=t2; _ ;24 :=0

Fig. 4. cTss for different rates

We now turn to consider the more general scheduler. Contli@erTss in Fig. 4.
They resemble the simpleTs presented above, however use the bounds aindt.
time units, respectively. Denote thgsusing bound; by ¢, and thecTsusing bound
to by @5. A computation ofp, is a sequence of steps where time progresses until the
rangeli - t; — €4 - t1), then the system takes a step, then the time progresses until
and the system takes a step that resets the local clock. Autatign of®, is similar,
with ¢ replacingt; .

Let P and( be twoTss with scheduling variables, anda, as above. Consider the
composition ofP and@ with ¢, and®,. It follows that P moves every; time units and
Q everyt, time units. Everyt; time unitsP performs an action, and evefrytime units
Q@ performs an action. At timeé such that both; andt, divide ¢, both P and@ make
moves, however, the order betweBrand( is not determined. We can show that under
appropriate projection, the sequence of actions taken éytmposition of the four
systems, is equivalent to the sequence of actions takeneblgadbnded-asynchronous
composition ofP and@ with ratest; andt,, respectively.

We note that theeTss have their resets set at exact time points, suggestingthat
composition of such systems requires a central clock. Westihmaintain ‘bounded-
asynchronous’ behavior if the reset occurs concurrentlly thie system, however, main-
taininge small enough and restricting the number of steps made byy#ters. For ex-
ample, ife is 1/100, then regardless of the exact behavior, the first 98 maapstill

® For everye and for every values; andt. there are some integefs andi, such thafi; - t1 —
€,11 - t1] intersectdis - t2 — €, iz - t2]. As we are interested only in the sequence of actions
taken byp; andp., restrictingt; andt, to range over integer values seems reasonable.
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respect bounded asynchrony. It follows, that unsynchemhincal clocks augmented
by frequent enough synchronizations would lead to the esaigte behavior. It is an
interesting question whether similar ideas can be usechfoabstraction of real time
and probabilistic systems.

5
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