
Faster Solutions of Rabin and Streett Games∗

Nir Piterman†

EPFL - I&C - MTC
Lausanne, Switzerland

Amir Pnueli
Weizmann Institute of Science

Rehovot, Israel

Abstract

In this paper we improve the complexity of solving Rabin
and Streett games to approximately the square root of previ-
ous bounds. We introduce direct Rabin and Streett ranking
that are a sound and complete way to characterize the win-
ning sets in the respective games. By computing directly
and explicitly the ranking we can solve such games in time
O(mnk+1kk!) and space O(nk) for Rabin and O(nkk!)
for Streett where n is the number of states, m the num-
ber of transitions, and k the number of pairs in the win-
ning condition. In order to prove completeness of the rank-
ing method we give a recursive fixpoint characterization of
the winning regions in these games. We then show that by
keeping intermediate values during the fixpoint evaluation,
we can solve such games symbolically in time O(nk+1k!)
and spaceO(nk+1k!). These results improve on the current
bounds of O(mn2kk!) time in the case of direct (symbolic)
solution orO(m(nk2k!)k) in the case of reduction to parity
games.

1 Introduction

One of the most ambitious and challenging problems in
reactive system construction is the automatic synthesis of
programs and (digital) designs from logical specifications.
First identified as Church’s problem [4], several methods
have been proposed for its solution (cf. [2, 23]). The two
prevalent approaches to solving the synthesis problem are
by reducing it to the emptiness problem of tree automata,
and viewing it as the solution of a two-person game. These
two problems are essentially equivalent with efficient reduc-
tions between them [29].

A two-player game is a finite or infinite directed graph
where the vertices are partitioned between the two players.

∗This research was supported in part by the Israel Science Foundation
(grant no.106/02-1), European community project Prosyd, and the John
von-Neumann Minerva center for Verification of Reactive Systems.

†Part of this research was performed while this author was visiting the
Weizmann Institute.

A play proceeds by moving a token between the vertices
of the graph. If the token is found on a vertex of player 0,
she chooses an outgoing edge and moves the token along
that edge. If the token is found on a vertex of player 1, she
gets to choose the outgoing edge. The result is an infinite
sequence of vertices. In order to determine the winner in a
play we consider the infinity set, the set of states occurring
infinitely often in the play. Then, there are several methods
to define acceptance conditions that determine which infin-
ity sets are winning for which player.

Two of the most natural such acceptance conditions
are Rabin [22] and Streett [25]. Both conditions are de-
fined using a set of pairs of subsets of the vertices of
the graph. In order to win the Rabin condition over
{〈G1, R1〉, . . . , 〈Gk, Rk〉} the infinity set has to intersect
Gi and not intersect Ri for some i. The Streett winning
condition is the dual of the Rabin condition. In order to win
the Streett condition over {〈G1, R1〉, . . . , 〈Gk, Rk〉} the in-
finity set has to either be disjoint from Gi or to intersect Ri

for every i. Both Rabin and Streett acceptance conditions
are as general as every other ω-regular acceptance condi-
tion. That is, if the winning condition is defined using some
automaton over infinite words (cf. [26]) or as the set of
possible infinity sets (Muller condition) there is a way to
augment the game with a deterministic monitor such that
the winning condition over the states of the monitor is ei-
ther Rabin or Streett. Another general acceptance condition
is the parity acceptance condition [9]. In the parity condi-
tion , every vertex has a priority and a play is won if the
minimal priority visited infinitely often is even. We men-
tion parity games because our algorithms are derived from
similar algorithms that solve parity games.

Rabin conditions arise naturally when the winning con-
dition is supplied in the form of a nondeterminitic Büchi
automaton over infinite words. In such a case, the standard
approach to solving the game is by converting the nondeter-
minitic Büchi automaton to a deterministic Rabin automa-
ton [24]. A solution to the Rabin game is then used to solve
the original game.

Streett conditions arise naturally when considering syn-
thesis of controllers from temporal logic specifications. In

many such cases, the controller has to supply strong fair-
ness, that is, if some transition / resource is enabled / re-
quested infinitely often it should be taken / granted infinitely
often. These kind of requirements translate naturally to
Streett conditions.

In [20] we presented a framework for synthesizing a de-
sign from a temporal logic specification by converting it
into a two-player game, where the synthesized design plays
against an adversary environment, striving to maintain the
temporal specification. In that paper, we assumed that both
the environment and the design are only constrained by jus-
tice (weak fairness) requirements. As a result of this re-
stricting hypothesis, the resulting games were generalized
Street games with k = 1. A strong motivation for the re-
search reported in this paper is to remove this fairness re-
striction and allow compassion (strong fairness) both in the
environment and the synthesized design. This can give rise
to Street games with arbitrary k.

Consider for example the following specification of an
arbiter. The arbiter, controls the grant signals for n clients.
Each client, has a request signal ri which it may raise at
will. Once raised, the agent may withdraw the request but
only after at least one cycle. The controller has to allocate
grants (permission to access a shared resource) among the
clients, so that no two clients may access the resource at the
same time (mutual exclusion) and so that every client that
requests the resource infinitely often is granted the resource
infinitely often. The natural translation of this scenario into
a game results in a Streett game with one strong fairness
requirement for every client.

Rabin and Streett games are known to be NP-complete
and co-NP-complete respectively [8]. Emerson and Jutla
[8] and independently Pnueli and Rosner [21] proposed
algorithms that solve Rabin and Streett games in time
O((nk)3k) where n is the number of vertices and k the
number of pairs. This was later improved by Kupferman
and Vardi to O(mn2kk!) where m is the number of edges
[17]. Recently, a different solution with the same complex-
ity was given by Horn [13]. It is also possible to solve Ra-
bin and Streett games by reducing them to parity games
[9]. This reduction is by adding a deterministic monitor
with k2k! states. The resulting parity game has nk2k! states
and 2k priorities. Using the best current solution to parity
game [14], we can solve Rabin and Streett games in time
O((nk2k!)k) (enumerative algorithm).

As Rabin and Streett conditions are duals, it is enough to
reason about one of them in order to decide the winner in
a game. A player is winning according to the Streett con-
dition iff the other player is losing according to the Rabin
condition and vice versa. In order to synthesize programs
it is not sufficient to know who is the winner; we also need
the winning strategy. That is, what is the sequence of moves
that the winning player has to perform in order to ensure her

win. In order to produce the winning strategy we have to
reason separately about Rabin and Streett games. This way,
we can produce the winning strategy for the player that in-
terests us (be she Rabin or Streett). It is well known that
winning strategies in Rabin games are memoryless, i.e., de-
pend only on the current position in the game [6]. On the
other hand, winning strategies in Streett games may require
exponential memory [5, 13]. It follows, that the way to pro-
duce the winning strategy may be very different.

Solutions for parity games passed also a long line of im-
provements. For many years, the best solution to parity
games had been the symbolic fixpoint evaluation algorithm
of Emerson and Lei [10, 9]. The complexity of solving a
parity game using this approach ismnk where k is the num-
ber of priorities. One major improvement of the classical
algorithm has been the observation of Long et al. that by
saving intermediate values of the fixpoint computation the
run time can be improved to the square root, i.e., O(n

k
2)

[19]. Long et al. show that by storing intermediate values
of the fixpoint computation they can start fixpoint evalua-
tions from better approximations. Unfortunately, the space
complexity of this algorithm matches its time complexity.

Jurdziński matched the smaller upper bound while re-
ducing space complexity to linear [14]. His algorithm com-
putes the winning region in a parity game by computing
ranks for each vertex. Every vertex with a finite rank is
winning and all the rest are losing. The direct rank computa-
tion can be accomplished in time O(mn

k
2). A disadvantage

of this approach is that it cannot be applied symbolically.
Thus, forcing enumerative approach of the vertices of the
game.

Here we generalize these two approaches to Rabin and
Streett games. We give an enumerative algorithm that
solves Rabin and Streett games in time O(mnk+1kk!) and
O(mnkkk!) respectively and spaceO(nk) andO(nkk!) re-
spectively. We give a symbolic algorithm that solves Rabin
and Streett games in timeO(nk+1k!) and spaceO(nk+1k!).

We introduce Rabin and Streett ranking which resemble
Jurdziński’s ranking in that every winning state has a finite
rank and the ranking induces a winning strategy. The direct
computation of these ranks requires the square root of the
time of previous algorithms. Recall that in the worst case a
strategy to win a Streett game may require a memory of size
k! [5, 13]. Thus, it seems that the memory consumption of
the Streett algorithm is close to optimal.

In order to prove completeness of the ranking method
we introduce recursive fixpoint algorithms that compute the
winning regions in Rabin and Streett games. These algo-
rithms match the best previous upper bounds ofO(mn2kk!)
time and resemble the fixpoint characterization of parity
games [9].

We then combine the fixpoint characterization of the
winning regions and Long et al.’s method of fixpoint accel-

2

eration [19]. We show that by storing intermediate values of
the fixpoints in our algorithm we can accelerate the fixpoint
computation by starting the computation of fixpoints from
better approximations. The result is a symbolic algorithm
that matches the time of the enumerative algorithm.

From our algorithms it follows that Rabin and Streett
games are in fact parity games with different orders on the
pairs. This has been implicit in the conversion of Rabin and
Streett games to parity games, as well as in the solution of
Kupferman and Vardi for Rabin games [17]. We are the
first to take advantage of this connection to improve the run
time of the algorithms for Rabin and Streett games almost
to a factor of k!. We conjecture that similar generalizations
can be applied to other algorithms that solve parity games
[27, 1, 15].

2 Preliminaries

2.1 Linear Temporal Logic

We assume some set of Boolean variables (propositions)
P . LTL formulas are constructed as follows.

ϕ ::= p ∈ P | ¬ϕ | ϕ ∨ ϕ | 2ϕ | ϕUϕ

As usual we denote ¬(¬ϕ ∨ ¬ψ) by ϕ ∧ ψ, TUϕ by1ϕ
and ¬1¬ϕ by0 ϕ. For a proposition p we denote ¬p by
p.

A model (alternatively, word) w for a formula ϕ is
an infinite sequence of truth assignments to propositions.
Namely, a word in (2P)ω is a model. We denote by wi

the set of propositions that are true in location i, that is
w = w0 ·w1 · · ·. We present an inductive definition of when
a formula holds in model w at time i.
• For p ∈ P we have w, i |= p iff wi(p) = 1.
• w, i |= ¬ϕ iff w, i 6|= ϕ
• w, i |= ϕ ∨ ψ iff w, i |= ϕ or w, i |= ψ
• w, i |=2ϕ iff w, i+ 1 |= ϕ
• w, i |= ϕUψ iff there exists k ≥ i such that w, k |= ψ

and forall i ≤ j < k we have w, j |= ϕ
For a formula ϕ and a position j ≥ 0 such that w, j |= ϕ,
we say that ϕ holds at position j of w. If w, 0 |= ϕ we say
that ϕ holds on w and denote it by w |= ϕ. We denote by
L(ϕ) the set of models that satisfy ϕ.

2.2 Games

A game is a tuple G = 〈V,E,W 〉 where V is the set of
states of the game, V is partitioned to V0 and V1 the sets
of states of player 0 and player 1 respectively, E ⊆ V ×
V is the transition relation, and W ⊆ V ω is the winning
condition of player 0. We assume that for every v ∈ V
there exists some state v′ ∈ V such that (v, v′) ∈ E.

A play in G is a maximal (hence infinite) sequence of
locations p = v0v1 · · · such that forall i ≥ 0 we have
(vi, vi+1) ∈ E. For a play p we define inf(p) to be
the set of states occurring infinitely often in p. Formally,
inf(p) = {v | v = vi for infinitely many is}. A play p is
winning for player 0 if p ∈W . Otherwise, player 1 wins.

A strategy for player 0 is a partial function f : V ∗ ×
V0 → V such that whenever f(pv) is defined (v, f(pv)) ∈
E. We say that a play p = v0v1 · · · is f -conform if when-
ever vi ∈ V0 we have vi+1 = f(v0 · · · vi). The strategy f
is winning from v if every f -conform play that starts in v is
winning for player 0. We say that player 0 wins from v if
she has a winning strategy. The winning region of player 0,
is the set of states from which player 0 wins. We denote the
winning region of player 0 byW0. A strategy, winning strat-
egy, win, and winning region are defined dually for player
1. We solve a game by computing the winning regions W0

and W1. For the kind of games handled in this paper W0

and W1 form a partition of V [12].
In this paper we solve Rabin and Streett games. Both

Rabin and Streett conditions are defined by a set of pairs
of subsets of states. Formally, a Rabin condition is α =
{〈G1, R1〉, . . . , 〈Gk, Rk〉} where forall i we have Gi and
Ri are subsets of V . The Rabin condition α defines the set
W of infinite sequences p ∈ V ω such that for some i we
have inf(p) intersects Gi and inf(p) does not intersect Ri.
A Streett condition is α = {〈G1, R1〉, . . . , 〈Gk, Rk〉}. The
Streett condition α defines the set W of infinite sequences
p ∈ V ω such that forall i we have inf(p) intersects Gi im-
plies inf(p) intersects Ri. The Streett condition is the dual
of the Rabin condition; when a play is winning according
to the Rabin condition it is losing according to the Streett
condition and vice versa. It follows that when the win-
ning condition for player 0 is the Rabin condition α then
the Streett condition α is the winning condition for player
1. In order to partition the set of states to the winning re-
gions it is enough to consider one of the two conditions.
For example, we compute the winning region of player 0
according to the Rabin condition and its complement is the
winning region for player 1 according to the Streett condi-
tion. However, when we are interested also in the winning
strategy, we may be required to solve separately the Rabin
and the Streett winning conditions according to the winning
strategy we wish to construct. We abuse notation and write
G = 〈V,E, α〉 for a Rabin or Streett condition α.

For the proofs we need also winning conditions defined
by general LTL formulas. In order to define the winning
condition we assume that the game is equipped with a set
of propositions V and a labeling L : V → 2V that labels
every state v with the set of propositions that are true in
it. We extend L to finite and infinite sequences of states
in V and to sets of sequences of states in V in the natural
way. When the winning condition for player 0 is ϕ then

3

W = {p | L(p) ∈ L(V ω)∩L(ϕ)}. For example, in order to
define the Rabin condition α = {〈G1, R1〉, . . . , 〈Gk, Rk〉}
we treat the subsets Gi and Ri as propositions that are true
for the states included in them. The Rabin condition α is
then equivalent to the following LTL condition.

k∨
i=1

(10Ri ∧01Gi)

2.3 µ-calculus over Game Structures

We define µ-calculus [16] over game structures. Con-
sider a game G = 〈V,E, α〉 where V is the disjoint union
of V0 and V1 the states of player 0 and player 1, respectively.
For every proposition p the formula p is an atomic formula.
Let V ar = {X,Y, . . .} be a set of relational variables. The
µ-calculus formulas are constructed as follows.

ϕ ::= p | ¬p |X | ϕ∨ϕ | ϕ∧ϕ | 4ϕ | 3ϕ | µXϕ | νXϕ

A formula ϕ is interpreted as the set of states in V in which
ϕ is true. We write such set of states as [[ϕ]]eG where G
is the game and e : V ar → 2V is an environment. The
environment assigns to each relational variable a subset of
V . We denote by e[X ← V ′] the environment such that
e[X ← V ′](X) = V ′ and e[X ← V ′](Y) = e(Y) for
Y 6= X . The set [[ϕ]]eG is defined inductively as follows1.
• [[p]]eG = {s ∈ V | s |= p}
• [[¬p]]eG = {s ∈ V | s 6|= p}
• [[X]]eG = e(X)
• [[ϕ ∨ ψ]]eG = [[ϕ]]eG ∪ [[ψ]]eG.
• [[ϕ ∧ ψ]]eG = [[ϕ]]eG ∩ [[ψ]]eG.
• [[4ϕ]]eG =
{v ∈ V0 | ∃v′ s.t. (v, v′) ∈ E and v′ ∈ [[ϕ]]eG} ∪
{v ∈ V1 | ∀v′ s.t. (v, v′) ∈ E we have v′ ∈ [[ϕ]]eG}

A state v is included in [[4ϕ]]eG if player 0 can force
the play to reach a state in [[ϕ]]eG. That is, either v is a
state of player 0 and has some successor in [[ϕ]]eG or v
is a state of player 1 and all its successors are in [[ϕ]]eG.
• [[3ϕ]]eG =
{v ∈ V1 | ∃v′ s.t. (v, v′) ∈ E and v′ ∈ [[ϕ]]eG} ∪
{v ∈ V0 | ∀v′ s.t. (v, v′) ∈ E we have v′ ∈ [[ϕ]]eG}

A state v is included in [[3ϕ]]eG if player 1 can force
the play to reach a state in [[ϕ]]eG. That is, either v is a
state of player 1 and has some successor in [[ϕ]]eG or v
is a state of player 0 and all its successors are in [[ϕ]]eG.
• [[µXϕ]]eG = ∪iSi where S0 = ∅ and Si+1 =

[[ϕ]]e[X←Si]
G .

• [[νXϕ]]eG = ∩iSi where S0 = V and Si+1 =
[[ϕ]]e[X←Si]

G

1Only for games with a finite number of states.

When all the variables in ϕ are bound by either µ or ν the
initial environment is not important and we simply write
[[ϕ]]G. In case that G is clear from the context we simply
write [[ϕ]].

Consider for example a game G = 〈V,E,W 〉 and the
formula ϕ = νX(p ∧4X). A state v ∈ V is in [[νX(p ∧
4X)]] if player 0 can force the game to remain in p states
forever. Indeed player 0 can force the game to another state
in [[νX(p ∧4X)]] and so on ad-infinitum.

The formula ψ = µX(¬p ∨3X) characterizes the set
of states from which player 1 can force a visit to a ¬p state.
Indeed, player 1 can force the game in a finite number of
steps to the set [[¬p]].

We freely use µ-calculus formulas with complex opera-
tors that compute sets of states. In such a case we simply
use the set returned by the operator in the inductive defini-
tion of the µ-calculus. For a full exposition of µ-calculus
we refer the reader to [7]. We often abuse notations and
write a µ-calculus formula ϕ instead of the set [[ϕ]].

3 Rabin and Streett Ranking

In this section we show how to define Rabin and Streett
ranking. We show that our ranking induces a winning strat-
egy for player 0. We show that our ranking is defined on the
winning region. Intuitively, the ranking measure the dis-
tance towards achieving small milestones during a play. By
reducing the distance to these milestones we get to them,
which eventually leads us to winning the game.

3.1 Rabin Ranking

Consider a gameG=〈V,E, α〉 where α={〈G1, R1〉, . . .,
〈Gk, Rk〉} is a Rabin winning condition. Player 0 wins
an infinite play p if there exists 〈Gi, Ri〉 ∈ α such that
inf(p) ∩ Gi 6= ∅ and inf(p) ∩ Ri = ∅. We now define
formally the range of the ranking function and the ranking
function itself.

Let Π(k) denote the set of permutations over [1..k].
Given a permutation π = j1j2 · · · jk ∈ Π(k) we denote
ji by πi. The Rabin domain for α over V is D

R
(α, V) =

{i0j1i1j2 · · · jkik | i0 · · · ik ∈ [0..n]k+1 and j1 · · · jk ∈
Π(k)}∪{∞}. That is, the domain contains the interleaving
of a k + 1 tuple of integers with a permutation over [1..k].
Every integer is bounded by n. For simplicity of notations
we write D

R
and Π instead of D

R
(α, V) and Π(k). Given

d = i0j1 · · · jkik ∈ DR
we denote by π(d) the permutation

j1 · · · jk and by m(d) the tuple i0 · · · ik ∈ [0..n]k. We or-
der D

R
according to the lexicographic ordering with∞ as

maximal element.
A Rabin ranking over V is r : V → D

R
. Intuitively,

the ranking i0j1 · · · jkik fixes an order j1 · · · jk on the Ra-
bin pairs. This is the order of importance between the pairs.

4

It means that it is most important to visit Gj1 while avoid-
ing Rj1 . We are also happy if we avoid Rj1 and Rj2 and
visitGj2 infinitely often and so on. A visit toRjl

is allowed
only by changing the importance order of the pairs that are
less important than jl (and jl itself). We allow the order to
change only to lower orders (according to the lexicographic
ordering on permutations). This means that Rjl

can be vis-
ited only finitely often. The value il in the sequence i0 · · · ik
measures the worst possible number of steps until a visit to
Gjl

(while avoiding Rjl′ forall l′ ≤ l). Whenever we visit
Gjl

we are so happy that we allow to change the order of
the less important pairs and to increase the distance to Gs
for less important pairs. Finally, i0 is intuitively the num-
ber of times that Rj1 may be visited (forcing a change to a
lower permutation). Formally, we have the following.

Given a node v ∈ V and a Rabin ranking r we denote by
best(v) the rank of the minimal successor of v in case that
v ∈ V0 or the rank of the maximal successor of V in case
that v ∈ V1. Formally,

best(v) =
{

min(v,w)∈E(r(w)) v ∈ V0

max (v,w)∈E(r(w)) v ∈ V1

We say that a Rabin ranking is good if for every state v such
that r(v) 6= ∞ we have best(v) is better than r(v). Let
r(v) = i0j1i1 · · · ik and and best(v) = i′0j

′
1i
′
1 · · · i′k. We

say that best(v) is better than r(v) if i0 > i′0 or i0 = i′0 and
best(v) is better1 than r(v). We say that best(v) is betterl

than r(v) if one of the following holds.
• jl > j′l .
• jl = j′l , v |= Rjl

, and il > i′l.
• jl = j′l , v |= Rjl

, and v |= Gjl
.

• jl = j′l , v |= Rjl
, il = i′l, and best(v) is betterl+1 than

r(v).
If one of the first three conditions holds we say that best(v)
is strictly betterl than r(v). It is simple to see that if v ∈ V1

and best(v) is better than r(v) then for every node w such
that (v, w) ∈ E we have r(w) is better than r(v). This
follows from r(w) being at most best(v).

We show that Rabin ranking is sound and complete. We
show soundness by proving that the strategy of choosing the
minimal possible successor is winning for player 0. Con-
sider a play where player 0 uses this strategy. It follows that
the sequence of ranks gets better and better (i.e., the rank of
every state is better than that of its predecessor). The only
way to create an infinite sequence of ranks that get better
is by allowing the suffix of the rank to increase (i.e., leave
the prefix i0 · · · jl fixed and increase iljl+1 · · · jkik). By
the definition of better, the only way to increase the suffix
of the rank is for some l to have that the rank is strictly
betterl. There is some minimal l for which the ranks get
strictly betterl infinitely often. Consider the point in the
play from which the ranks are always betterl and infinitely
often strictly betterl. In order to visit Rjl

the rank has to be

strictly betterl′ for some l′ < l and this is impossible. Thus,
Rjl

is never visited beyond this point. In order to allow in-
finitely many strictly betterl, it has to be the case that Gjl

is
visited infinitely often. Formally, we have the following.

Claim 1 Given a good Rabin ranking r, player 0 wins the
Rabin game from every state v such that r(v) 6=∞.

Proof: Consider the following strategy. From a state v ∈
V1 choose the successor w such that r(w) is minimal. We
show that this strategy is winning.

Consider an infinite play v0v1 · · · that conforms to this
strategy. Let r0r1 · · · denote the sequence of ranks such
that rm = r(vm) and rm = im0 j

m
1 i

m
1 · · · jm

k i
m
k . From the

definition of good ranking it follows that it is always the
case that rm+1 is better than rm. Let l be the minimal value
such that there exist infinitely many m such that rm+1 is
strictly betterl than rm. There exists m′ such that forall
m > m′ and forall l′ < l we have rm+1 is not strictly
betterl′ from rm. So for all l′ < l and forall m > m′ we
have jm

l′ = jm+1
l′ , vm |= Rjm

l′
, and iml′ = im+1

l′ . Similarly,
there exists u ∈ [1..k] and m′′ > m′ such that forall m >
m′ we have jm

l = u. Consider the pair 〈Gu, Ru〉 and the
suffix of the play starting from m′′. For every m > m′′ we
have rm+1 is better than rm, hence vm |= Ru. Furthermore,
whenever rm+1 is strictly betteru than rm then either imu >
im+1
u or vm |= Gu. We conclude that the play is winning

according to the pair 〈Gu, Ru〉.

We show that the algorithm in Fig. 5 induces a good Ra-
bin ranking. Thus, proving completeness of the Rabin rank-
ing method.

Claim 2 For every Rabin game there exists a good Rabin
ranking such that for every state v winning for player 0 ac-
cording to the Rabin winning condition we have r(v) 6=∞.

Proof: Denote by W the set of states returned by the al-
gorithm in Fig. 5. We show how to define a good Rabin
ranking on the states in W . In order to define the ranking
we analyze the way the computation advances. The analy-
sis is similar to the analysis of the fixpoint computation in
[28]. Formally, we have the following.

In every stage of the computation we record the status of
the call stack. According to the contents of the call stack
we define sets of states whose union includes all the states
in W . We then use these sets to give ranks to the states in
W . First, let us add a counter to the least fixpoints. We
assume that with the minimal fixpoint there is a counter i.
This counter is initialized to zero in the first visit to line 1
in the function main Rabin and increased by one in every
subsequent visit. Similarly, the counter is initialized to 0 in
the first visit to line 6 in the function Rabin and increased
by one in every subsequent visit.

5

Consider the state of the call stack when the computa-
tion reaches line 1 in function main Rabin. We use the
counter i to set Zj to the value of Z in the iteration where i
is incremented to j. It follows that in the first iteration when
i is initialized to 0 we have Z = ∅ and we set Z0 = ∅. Fur-
thermore, Zi+1 = Rabin(Set,true,cpred(Zi)).

We monitor the call stack if every copy of Rabin on
the call stack is found in the last iteration of the maximal
fixpoint. That is, the value of Y (in each copy) is already
the value computed by the next iteration. In what follows,
every configuration of the call stack is assumed to be in such
a state. Consider a configuration of the call stack where the
active copy of Rabin is in line 6. Let us denote the number
of copies of the function Rabin on the call stack by l. Let
j1 · · · jl be the pairs of the Rabin condition handled by these
copies of Rabin and let i0 · · · il be the values of the counter
i (where i0 is the counter in the function main Rabin).
We set Xi0···il

j1···jl
to be the value of X in the active copy of

Rabin in this state of the call stack. Again, whenever il is
0 we have Xi0···il

j1···jl
is the empty set.

Consider a tuple i0 · · · il and a prefix of a permutation
j1 · · · jl. From the structure of the fixpoint it follows that
X

i0···(il+1)
j1···jl

is exactly the union of Xi0···ili
j1···jlj

for every value
of j /∈ {j1, . . . , jl} and i.

For every state v ∈ W there exists d ∈ D
R

such that
v ∈ Xm(d)

π(d) and d is minimal according to the ordering on
D

R
. We set r(v) to be this minimal value d. For all states

v /∈ W we set r(v) = ∞. We show that the resulting
ranking is a good Rabin ranking.

Consider a state v ∈ W . Let r(v) = i0j1i1 · · · jkik.
Consider the call stack of the computation at the point
where Xi0···ik

j1···jk
is computed. Let Yj1j2···jl

denote the value
of Y in the lth copy of Rabin on the call stack (counting
from the bottom of the stack). Notice, that we do not have
to annotate Y by i0i1 · · · il−1 as we are considering only
the specific rank r(v). From the structure of the fixpoint it
follows that Yj1···jl

is exactly the union of Xi0···ili
j1···jlj

for all
possible values of i and j /∈ {j1 · · · jl}.

By flattening the function calls of the recursive algorithm
we get that Xio···ik

j1···jk
is equivalent to the expression in Fig. 1.

Consider some v ∈ Xi0···ik
j1···jk

. If v is in the first disjunct
4Zi0−1 then best(v) is better than r(v) (without checking
better1).

If v is in the a+ 1th disjunct((∧a
l=1Rjl

)
∧4X

i0···(ia−1)
j1···ja

)
∨((∧a

l=1Rjl

)
∧4Yj1···ja

)
and v is not in all the disjuncts below it then best(v)
is bettera′ from r(v) for all a′ < a (but not strictly
bettera′). This follows from i0 · · · i′a being equivalent and
from R1 ∧ · · · ∧ Ra holding in v. It is also the case that
best(v) is strictly bettera than r(v). If v ∈ (

∧a
l=1Rjl

) ∧

4Xi0···ia
j1···ja

the ath coordinate of the ranking decreases. If
v ∈ (

∧a
l=1Rjl

) ∧Gjl
4Yj1···ja

then v is a Gjl
state.

We conclude that from v player 0 can control the game
so that the successor of v is better than v.

Theorem 3 Player 0 wins the Rabin game from v iff there
exists a good Rabin ranking such that r(v) 6=∞.

3.2 Streett Ranking

Consider a gameG=〈V,E, α〉 where α={〈G1, R1〉, . . .,
〈Gk, Rk〉} is a Streett winning condition. Player 0 wins an
infinite play p if forall i we have inf(p) ∩ Gi 6= ∅ implies
inf(p) ∩ Ri 6= ∅. We now define formally the range of the
ranking function and the ranking function itself.

The Streett domain for α over V is [0..n]k ∪ {∞}, de-
noted by D

S
(α, V). We order D

S
(α, V) according to the

lexicographic order with ∞ as maximal element. Given
m ∈ D

S
(α, V) we denote by ml the lth entry in m. Con-

sider the set Π(k). Let π = j1 · · · jk ∈ Π(k) be some
permutation. We define what does it mean to increase the
lth entry in π. We increase the lth entry by leaving the first
l − 1 entries unchanged. For the lth entry we choose the
next available value among the rest of the entries. If the lth
entry is already the maximal among these entries then we
go back to the minimal. The rest are ordered in increasing
order. Let π = j1 · · · jk. We set incl(π) to be the permu-
tation j1 · · · jl−1j

′
l · · · j′k such that if jl = max (jl, . . . jk)

then j′l = min(jl, · · · , jk) and if jl < max (jl, . . . , jk) then
j′l is set to the minimal value in jl, . . . , jk such that j′l > jl.
Then, we order {jl, . . . , jk} − {j′l} in increasing order and
this completes the permutation. For example, inck(π) is
π, inc1(123) is 213, and inc2(123) is 132. For simplicity
of notations, we write D

S
and Π instead of D

S
(α, V) and

Π(k).
A Streett ranking over V is r : V × Π → D

S
. That is,

with every state v ∈ V and every permutation π ∈ Π we
associate a rank in D

S
. Intuitively, the ranking r(v, π) =

i1 · · · ik is a rank according to the order π on the pairs.
As before, it is most important to visit Rj1 . We are also
happy if we avoid Gj1 and visit Rj2 and so on. Intuitively,
il counts how many visits to Gjl

are possible until a visit to
Rjl

. In particular, eitherGjl
is visited finitely often, or after

every visit to Gjl
there is a visit to Rjl

. Whenever we visit
Rjl

we switch to pursue a visit to Rjl′ for one of the next
‘less important’ pairs. We do this by replacing the permu-
tation π by a permutation π′ that agrees with π on the l − 1
first entries. Thus, we continue to avoid Gjl′′ for l′′ < l and
visit (infinitely often) Rjl′ for l′ ≥ l. Formally, we have the
following.

For every state v and permutation π, we denote by
best(v, π) the rank of the minimal successor of v in case
that v ∈ V0 or the rank of the maximal successor of V in

6

Xi0···ik
j1···jk

=
4Zi0−1 ∨(
Rj1 ∧4X

i0(i1−1)
j1

)
∨

(
Rj−1 ∧Gj−1 ∧4Yj1

)
∨(

Rj1 ∧Rj2 ∧4X
i0i1(i2−1)
j1j2

)
∨

(
Rj1 ∧Rj2 ∧Gj2 ∧4Yj1j2

)
∨

...

...

...((∧k−1
l=1 Rjl

)
∧4X

i0···(ik−1−1)
j1···jk−1

)
∨

((∧k−1
l=1 Rjl

)
∧Gjk−1 ∧4Yj1···jk−1

)
∨((∧k

l=1Rjl

)
∧4X

i0···(ik−1)
j1···jk

)
∨

((∧k
l=1Rjl

)
∧Gjk

∧4Yj1···jk

)
Figure 1. Unwinding of Recursive Algorithm.

case that v ∈ V1. Let π = j1 · · · jk, if v ∈ Rjl
for some l

then we consider the rank of the successors according to the
permutation incl(π). Formally,

best(v, π) =
min(v,w)∈E(r(w, incl(π))) v ∈ V0 and v ∈ Rjl

min(v,w)∈E(r(w, π)) v ∈ V0 and ∀l. v /∈ Rjl

max (v,w)∈E(r(w, incl(π))) v ∈ V1 and v ∈ Rjl

max (v,w)∈E(r(w, π)) v ∈ V1 and ∀l. v /∈ Rjl

We say that a Streett ranking is good if for every state v and
π ∈ Π such that r(v, π) 6= ∞ we have best(v, π) is better
than r(v, π). Let π = j1 · · · jk, r(v, π) = i1 · · · ik, and
best(v, π) = i′1 · · · i′k. We say that best(v, π) is better than
r(v, π) if it is better1 than r(v, π). We say that best(v, π) is
betterl than r(v, π) if one of the following holds.
• il > i′l.
• v |= Rjl

and best(v, incl(π)) 6=∞.
• il = i′l, v |= ¬Gjl

, and best(v, π) is betterl+1 than
r(v, π).

Finally, best(v, π) is betterk+1 than r(v, π) if best(v, π) 6=
∞. It is simple to see that if v ∈ V1 and best(v, π) is better
than r(v, π) then for every node w such that (v, w) ∈ E we
have r(w, π) is better than r(v, π).

We show that Streett ranking is sound and complete. We
show soundness by proving that the rank induces a win-
ning strategy. Player 0 uses a permutation in Πk as memory
value. As long as the memory value is π, player 0 uses the
ranking r(·, π) to determine her next move. While play-
ing with memory π = j1 · · · jk, player 0 tries to minimize
the rank r(·, π). Whenever the set Rjl

is visited, player 0
chooses the least j′ in jl+1, . . . , jk that is greater than jl
(if no such value exists then the minimal in jl+1, . . . , jk)
and changes her memory value to j1 · · · jl−1j

′, j′l+1 · · · j′k
where j′l+1 · · · j′k are the remaining pairs in increasing or-
der. Consider a play where player 0 uses this strategy. It
follows that as long as the memory does not change all parts

G of pairs are not visited. One option is to eventually re-
main with constant memory, which implies that Gl′ forall
l′ are visited finitely often. Otherwise, the memory changes
infinitely often. There is a point l for which the memory
changes around point l infinitely often. It follows that all
Gl′ for l′ < l are visited finitely often and all Rl′′ for l′′ ≥ l
are visited infinitely often. Formally, we have the following.

Claim 4 Given a good Streett ranking r, player 0 wins the
Streett game from every state v such that for some permuta-
tion π ∈ Π we have r(v, π) 6=∞.

Proof: We construct a strategy that uses as memory a per-
mutation from Π. The initial value of this memory is a per-
mutation π such that r(v, π) 6=∞. We define the strategy.

From a state v ∈ V0 with memory π ∈ Π apply policy1.
Let π = j1 · · · jk, r(v, π) = i1 · · · ik, and best(v, π) =
i′1 · · · i′k. In order to apply policyl we do the first possible
option of the following.
• If i′l < il then choose w for which r(w, π) =

best(v, π).
• If v |= Rjl

, update the memory to π′ = incl(π).
Choose some successor w such that r(w, incl(π)) =
best(v, π).

• If i′l = il and v |= Rjl
then apply policyl+1.

In order to apply policy k + 1 we simply choose some suc-
cessor w for which r(w, π) = best(v, π). It is simple to
see that if the Streett ranking is good then from a state v
and permutation π such that r(v, π) is finite it is possible
to apply this strategy. We have to show that this strategy is
winning.

Consider an infinite play v0v1 · · · that conforms to this
strategy and let π0π1 · · · be the sequence of memory values
that is used in the application of the strategy. Let πm =
jm
1 · · · jm

k . Let r0r1 · · · denote the sequence of ranks such
that rm = r(vm, πm) and let rm = im1 · · · imk . We have to
show that v0v1 · · · is winning for player 0.

7

Let l be the minimal value such that there are infinitely
many locations such that policyl is applied while policyl+1

is not applied (that is, one of the first two options in policyl

is chosen). There exists m′ such that forall m > m′ it is
always the case that policyl is applied (sometimes by calling
policyl+1). It follows that there exist values j1 · · · jl−1 such
that forallm > m′ we have jm

1 · · · jm
l−1 = j1 · · · jl−1. From

the definition of good ranking and the strategy it follows
that forallm > m′, forall u < l we have vm /∈ Gju

. Hence,
all the pairs 〈Gju

, Rju
〉 for u < l are satisfied. Consider

the values jl · · · jk. As policyl is applied infinitely often it
follows that for every u ≥ l we haveRju is visited infinitely
often. It follows that also the pairs 〈Gu, Ru〉 for u ≥ l are
satisfied and the play is winning for player 0.

We show that the algorithm in Fig. 6 induces a good
Streett ranking. Thus, proving completeness of the Streett
ranking method.

Claim 5 For every Streett game there exists a good Streett
ranking such that for every state v winning for player 1 ac-
cording to the Streett winning condition there exists a per-
mutation π such that r(v, π) 6=∞.

Proof: Denote by W the set of states returned by the al-
gorithm in Fig. 6. We show how to define a good Streett
ranking on the states in W . In order to define the ranking
we analyze the way the computation advances. The analy-
sis is similar to the analysis of the fixpoint computation in
[28]. Formally, we have the following.

In every stage of the computation we record the status of
the call stack. According to the contents of the call stack
we define sets of states that include all the states in W . We
then use these sets to give ranks to the states in W . First,
let us add a counter to the least fixpoints. We assume that
with the minimal fixpoint there is a counter i. This counter
is initialized to zero in the first visit to line 5 in the function
Streett and increased by one in every subsequent visit.

We monitor the call stack if every copy of Streett on
the call stack is found in the last iteration of the maximal
fixpoint. That is, the value of Z (in each copy) is already
the value computed by the next iteration. In what follows,
every configuration of the call stack is assumed to be in such
a state. Consider a configuration of the call stack where
the active copy of Streett is in line 5. Let us denote the
number of copies of the function Streett on the call stack
by l. Let j1 · · · jl be the pairs of the acceptance condition
handled by these copies of Streett and let i1 · · · il be the
values of the counter i. We set Y i1···il

j1···jl
to be the value of Y

in the active copy of Streett in this state of the call stack.
It follows that whenever il is 0 we have Y i1···il

j1···jl
is the empty

set.
Consider a tuple i0 · · · il and a prefix of a permutation

j1 · · · jl. From the structure of the fixpoint it follows that for

every value j /∈ {j1, . . . , jl} we have Y i0···(il+1)
j1···jl

is exactly
the union of Y i0···ili

j1···jlj
for every possible value i.

For every state v ∈ W and every permutation π ∈ Π
such that there exists d ∈ D

S
such that v ∈ Y d

π , we set
r(v, π) to be the minimal such value d. From the definition
of the fixpoint for every value v ∈ W there exists at least
one such permutation π ∈ Π. For all states v /∈ W and
forall permutations π ∈ Π we set r(v, π) = ∞. We show
that the resulting ranking is a good Streett ranking.

Consider a state v ∈ W and some permutation π such
that r(v, π) <∞. Let π = j1 · · · jk and r(v, π) = i1 · · · ik.
Consider the call stack of the computation at the point
where Y r(v,π)

π is computed. Let Zj1···jl
denote the value of

Z in the l+ 1th copy of Streett on the call stack (count-
ing from the bottom of the stack). Notice that we do not
have to annotate Zj1···jl

by i1 · · · il as we are considering
only the specific rank r(v, π). Notice as well that according
to this notation Z is the winning set computed by the algo-
rithm. Let Xj1···jk

denote the value of X returned by the
function m Streett. From the structure of the fixpoint
it follows that for every j /∈ {j1 · · · jl} we have Zj1···jl

is
exactly the union of Y i1···ili

j1···jlj
for all possible values of i.

By flattening the function calls of the recursive algorithm
we get that Y i1···ik

j1···jk
is equivalent to the expression in Fig. 2.

Consider some v ∈ Y i1···ik
j1···jk

. Let π = j1 · · · jk. If v is in
the first disjunct (qj1 ∧4Z) ∨4Y i1−1

j1
then best(v, π)

is better1 than r(v, π). If v ∈ (qj1 ∧4Zj1) then v is a
qj1 state and as for every j we have Z is equal to

⋃
i Y

i
j it

follows that best(v, inc1(π)) 6=∞.
If v is in the a+ 1th disjunct(

(
∧a

l=1 pjl
) ∧ qja+1 ∧4Zj1···ja

)
∨(

(
∧a

l=1 pjl
) ∧4Y

i1···(ia+1−1)
j1···ja+1

)
and v is not in all the disjuncts above it then best(v, π) is
bettera′ from r(v, π) for all a′ < a + 1. This follows from
the i0 · · · i′a being equivalent and from p1 ∧ · · · ∧ pa′ hold-
ing in v. It is also the case that best(v, π) is bettera+1 then
r(v, π). If v ∈ (

∧a
l=1 pjl

) ∧ qja+1 ∧4Zj1···ja
then v is a

qja+1 state. As for every j /∈ {j1 · · · ja} we have Zj1···ja

is
⋃

i Y
i1···iai
j1···jaj it follows that best(v, inca+1(π)) 6= ∞ and

best(v, π) is bettera+1 than r(v, π). If v ∈ (
∧a

l=1 pjl
) ∧

4Y
i1···(ia−1)
j1···ja

then the a+1th coordinate of best(v, π) de-
creases. Finally, if v is in the k + 1th disjunct (

∧k
l=1 pj1) ∧

4Xj1···jk
then best(v, π) is betterk+1 than r(v, π).

We conclude that from v player 1 can control the game
so that the successor of v is better than v.

Theorem 6 Player 1 wins the Streett game from v iff there
exists a good Streett ranking and permutation π such that
r(v, π) 6=∞.

8

Y i1···ik
j1···jk

=

(qj1 ∧4Z) ∨
(
4Y

(i1−1)
j1

)
∨

(pj1 ∧ qj2 ∧4Zj1) ∨
(
pj1 ∧4Y

i1···(i2−1)
j1j2

)
∨

...((∧k−2
l=1 pjl

)
∧ qjk−1 ∧4Zj1···jk−2

)
∨

((∧k−2
l=1 pjl

)
∧4Y

i1···(ik−1−1)
j1···jk−1

)
∨((∧k−1

l=1 pjl

)
∧ qjk

∧4Zj1···jk−1

)
∨

((∧k−1
l=1 pjl

)
∧4Y

i1···(ik−1)
j1···jk

)
∨((∧k

l=1 pjl

)
∧4Xj1···jk

)
Figure 2. Unwinding of Recursive Algorithm.

4 Computing Ranks Explicitly

So far we have established the existence of good rank-
ing systems for Rabin and Streett games. We do not know
yet how to compute such rankings. In this section we gen-
eralize Jurdziński’s explicit ranking computation of parity
games to Rabin and Streett ranking [14]. As in the case
of parity, the minimal good ranking is a least fixpoint of a
monotone operator on a complete lattice. By Knaster-Tarski
theorem there exists a least good ranking and there exists a
simple lifting algorithm that computes it. From previous
section it follows that the least good ranking is defined on
the winning region. Etessami et al. show exactly how to en-
code Jurdziński’s algorithm to get the stated time and space
bounds [11]. We extend their efficient implementation to
the more general case of Rabin and Streett rankings.

Consider the set of possible Rabin rankings r : V →
D

R
. We say that r1 v r2 if for every v ∈ V we have

r1(v) ≤ r2(v). The resulting structure is a complete lattice.
We use r1 < r2 to denote r1 v r2 and r1 6= r2. We now
define the lifting operator. Given a ranking r : V → D

R

and a state v ∈ V we set prog(r, v) to be the least value d ∈
D

R
such that best(v) is better than d. We define lift(r, v)

to be the following function.

lift(r, v)(u) =
{
r(u) u 6= v
max{r(u), prog(r, u)} u = v

The operator lift is monotone according tov. Furthermore,
every good Rabin ranking r is a pre-fixpoint with respect
to lift(r, v) for all states v ∈ V and every pre-fixpoint with
respect to lift(r, v) for all states v ∈ V is a good Rabin
ranking.

Similarly, consider the set of possible Streett rankings r :
V × Π→ D

S
. We say that r1 v r2 if for every v ∈ V and

every π ∈ Π we have r1(v, π) ≤ r2(v, π). The resulting
structure is a complete lattice. We use r1 < r2 to denote
r1 v r2 and r1 6= r2. The Streett lifting operator is defined
analogously to the above. Given a ranking r : V ×Π→ D

S
,

a state v ∈ V , and a permutation π ∈ Π we set prog(r, v, π)

to be the least value d ∈ D
S

such that best(v, π) is better
than d. The ranking lift(r, v, π) is the following ranking.

lift(r, v, π)(u) ={
r(u, π′) u 6= v or π 6= π′

max{r(u, π), prog(r, u, π)} u = v and π = π′

Again, the operator lift is monotone according to v. Ev-
ery good Streett ranking r is a pre-fixpoint with respect to
lift(r, v, π) for all states v ∈ V and permutations π ∈ Π and
every pre-fixpoint with respect to lift(r, v, π) for all v ∈ V
and π ∈ Π is a good Streett ranking.

By the Knaster-Tarski theorem the least pre-fixpoint (ei-
ther for Streett or Rabin) exists and it can be computed by
the algorithm in Fig. 3. Let r0 denote the following rank-
ing. In the case of Rabin r0 is the ranking such that for every
v ∈ V we have π(r(v)) = 12 · · · k and m(r(v)) = 0 · · · 0.
In the case of Streett r0 is the ranking such that for every
v ∈ V and π ∈ Π we have r(v, π) = 0 · · · 0. We use the
notations lift(r, v, π) for both Rabin and Streett. In the case
of Rabin we mean lift(r, v).

RankingLifting
Let r := r0;
While (∃v, π s.t. r < lift(r, v, π))
Let r := lift(r, v, π);

End -- While(...)
End -- RankingLifting

Figure 3. The lifting algorithm.

The procedure in Fig. 3 misses most of the implementa-
tion details. A naı̈ve approach to choosing the next v ∈ V
and π ∈ Π for performing lifting can take O(nk!) for one
lift. Etessami et al. supplied the necessary details for the
case of parity games with 3 winning conditions [11]. In
Fig. 4 we generalize their implementation to the case of Ra-
bin and Streett ranks. As before, we handle both Rabin and
Streett together. In order to handle Rabin one has to ig-
nore the permutation π component when appropriate. Here

9

C(v, π) denotes the number of successors w of v such that
r(w, π) = best(v, π) and B(v, π) denotes best(v, π).

1 foreach v ∈ V and π ∈ Π do
2 B(v, π) := 0; C(v, π) := |{w : (v, w) ∈ δ}| ;
3 r(v, π) := 0;
4 L := {v ∈ V | q /∈ L(v) and p ∈ L(v)};
5 while L 6= ∅ do
6 let v ∈ L;L := L \ {v};
7 t := r(v);
8 B(v) := best(v); C(v) := cnt(v);
9 r(v) := incrv(best(v));
10 P := {w ∈ V | (w, v) ∈ ρ};
11 foreach w ∈ P such that w /∈ L do
12 if (w ∈ V0 and t = B(w) and C(w) > 1)
13 C(w) := C(w)−1;
14 if (w ∈ V0 and t = B(w) and C(w) = 1)
15 L := L ∪ {w};
16 if (w ∈ V1 and t = B(w))
17 C(w) := C(w)+1;
18 if (w ∈ V1 and t > B(w))
19 L := L ∪ {w};
20 endforeach
21 endwhile

Figure 4. Efficient computation of ranks.

Theorem 7 Rabin and Streett games can be solved in
time O(mnk+1kk!) and space O(nk) for Rabin and time
O(mnkkk!) and space O(nkk!) for Streett where n is the
number of states, m is the number of edges, and k is the
number of pairs.

Intuitively, the space required to hold the ranking for
each state is proportional to k, which leads to the space
bound of O(nk) for Rabin and O(nkk!) for Streett. A lift
with respect to v is performed in time proportional to the
number of successors of v and each comparison checks the
O(k) entries of the rank of a successor. Every state can
be lifted at most the number of values in the respective do-
main. The sum of above figures leads to the stated bound.
Formally, we have the following.

Proof: We start with Rabin. The space required is O(nk)
as we have to store the ranking for each state v ∈ V and
an entry d ∈ D

R
requires O(k) space. The lifting operator

can work in time O(k · out−deg(v)), where out−deg(v) is
the out-degree of v. Every state can be lifted at most |D

R
|

times. The total run time is bounded by

O

(
Σ

v∈V
k · out−deg(v) · |D

R
|
)

= O(km|D
R
|)

As |D
R
| = nk+1k! the bound follows.

For the case of Streett, the space required is O(nkk!)
as we have to store a value d ∈ D

S
for each state v ∈ V

and every permutation π ∈ Π. An entry d ∈ D
S

requires
O(k) space. The lifting operator can work in time O(k ·
out−deg(v)). Every state and permutation can be lifted at
most |D

S
| times. The total run time is bounded by

O

(
Σ

v∈V
Σ

π∈Π
k · out−deg(v) · |D

S
|
)

= O(kmk!|D
S
|)

As |D
S
| = nk the bound follows.

As in Jurdziński’s original algorithm this algorithm can-
not be applied symbolically (see Section 7).

5 Recursive Algorithm

In this section we present recursive fixpoint algorithms
for computing the winning sets in Rabin and Streett games.
These algorithms form part of the proof of completeness
of our ranking systems. There are other algorithms based
on similar ideas that solve Rabin and Street games with
the same complexity [17, 13]. However, we find our al-
gorithms significantly different in one major aspect: Our
algorithms are in fact a recipe for a very clean symbolic
computation of the winning regions. This advantage of
our algorithms led us to two results. First, our algorithms
provide proofs for the completeness of the ranking system
presented above. Second, the cleanliness of our algorithms
enables us to use optimization techniques that were devel-
oped for symbolic fixpoint computations. The applicabil-
ity of these symbolic fixpoint computation optimizations
was overlooked/impossible in other solutions to Rabin and
Streett games.

We comment that, as Rabin and Streett conditions are
duals, the algorithms are dual. This suggests that in order to
prove their correctness we could prove that both algorithms
are sound and that they are dual. In order to prove that the
two algorithms are dual, one would have to flatten the recur-
sive function calls. We find it simpler to prove soundness
and completeness separately.

5.1 Rabin Games

We give a recursive algorithm that solves Rabin games.
Let G=〈V,E, α〉 where α={〈G1, R1〉, . . ., 〈Gk, Rk〉} is a
Rabin winning condition. An infinite play p is winning ac-
cording to α if there exists some i such that inf(p)∩Gi 6= ∅
and inf(p) ∩ Ri = ∅. Intuitively, the algorithm chooses a
first pair 〈G,R〉 from α, it collects recursively all the states
that win according to the rest of the pairs while avoiding R.
We now add states that can visit G infinitely often or get to
the previously computed states. We repeat the process for

10

the choice of other pairs as first pair. Here cpred denotes
the control predecessor4. The loop GreatestFix(Z)
starts by setting Z to the set of all states and terminates once
two consecutive rounds compute the same set of states. The
loop LeastFix(Z) starts by setting Z to the empty set
of states and terminates once two consecutive rounds com-
pute the same set of states. Given a pair 〈g, r〉 we denote by
g the set of states in g and by r the set of states in V−R.
We freely confuse between set notation and Boolean alge-
bra notation. Thus, given sets a and b the set a&b is the
intersection of a and b and a|b is the disjunction of a and
b. Similarly, true and false denote the sets V and ∅
respectively.

Func main_Rabin(Set);
1 LeastFix(Z)
2 My p1 := cpred(Z);
3 Z := Rabin(Set,true,p1);
4 End -- LeastFix(Z)
5 Return Z;
End -- Func main_Rabin(Set)

Func Rabin(Set,seqnr,right);
1 My U := 0;
2 Foreach (<g,r> in Set)
3 My nSet := Set-<g,r>;
4 GreatestFix(Y)
5 My p2 := right |
seqnr & r & g & cpred(Y);

6 LeastFix(X)
7 My p3 := p2 |

seqnr & r & cpred(X);
8 If (|nSet|=0)
9 X := p3;

10 Else
11 X := Rabin(nSet,

seqnr & r,p3);
12 End -- If (|nset|=0)
13 End -- LeastFix(X)
14 Let Y := X;
15 End -- GreatestFix(Y)
16 Let U := U | Y;
17 End -- Foreach (<g,r>
18 Return U;
End -- Func Rabin

Figure 5. Recursive Algorithm for Rabin.

Theorem 8 The algorithm in Fig. 5 computes the winning
set of player 0 according to the Rabin winning condition.

Proof: We characterize the set of states returned by the
function Rabin(S,ϕ,W). We show that this is the win-

ning set in a game with a ‘simpler’ winning condition. We
then show how the function main Rabin wraps things up.

Given a set of pairs S = {〈G1, R1〉, . . . , 〈Gk, Rk〉} we
denote by ltl rabin(S) the formula

∨
〈G,R〉∈S(10R ∧

01G).

Claim 9 The function Rabin(S,ϕ,W) computes the set
of states winning for player 0 in the game whose winning
condition is

win(S, ϕ,W) =∨
〈G,R〉∈S

 (ϕ ∧R)UW ∨
0(ϕ ∧R ∧1G) ∨
ltl rabin(S−〈G,R〉) ∧0(ϕ ∧R)

Proof: We prove the claim by induction on the number of
pairs in S. Suppose S = {〈G,R〉}, then Rabin(S, ϕ,W)
returns the following fixpoint.

νY µX(W ∨ ϕ ∧R ∧G ∧4Y ∨ ϕ ∧R ∧4X)

Let Ŷ denote the set computed by this fixpoint. Let X0 = ∅
and let

Xi+1 = W ∨ (ϕ ∧R ∧G ∧4 Ŷ) ∨ (ϕ ∧R ∧4Xi)

It follows that Ŷ =
⋃∞

i=1Xi. We associate every v ∈ Ŷ a
rank that is the minimal i such that v ∈ Xi.

If v ∈ X1 then either v ∈ W or V |= ϕ ∧ R ∧ G and
player 0 can force the play in the next move to some state
in Ŷ . If v ∈ Xi for i > 1 then V |= ϕ∧R and player 0 can
force the play to some state in Xi−1. It follows that player
0 has a strategy to win [(ϕ∧R)UW]∨0(R∧ϕ∧1G).
So in the case that |S| = 1 the claim is sound.

We show that in the case that |S| = 1 the claim is com-
plete. Let W0 denote the winning set for player 0 according
to the winning conditionwin(S, ϕ,W). Let Ŷ denote some
set such thatW0 ⊆ Ŷ . We show that every state from which
player 0 wins a game with a simpler winning condition is
maintained in the computation of the greatest fixpoint. As
the winning condition win(S, ϕ,W) implies this simpler
winning condition it follows that the greatest fixpoint does
not loose winning states according to win. Consider the
following winning condition.

ψ = [(ϕ ∧R)UW] ∨ [(ϕ ∧R)U (ϕ ∧R ∧G ∧4 Ŷ)]

We show that every state winning according to ψ is main-
tained in the next iteration of the greatest fixpoint. Let Xi

for i ≥ 0 be the sets defined above. For a state v from
which player 0 wins according to ψ let i denote the maxi-
mal number of steps that are taken until a state in W or in
(ϕ∧ p∧ q∧4 Ŷ) is reached. If i = 0 then clearly v ∈ X0.
If i > 0 then if v is a state of player 0 there exists a succes-
sor of v whose distance from W ∨ (ϕ ∧ p ∧ q ∧4 Ŷ) is

11

at most i − 1. This successor is in Xi−1 by induction and
v ∈ Xi. If v is a state of player 1 then all successors of v
are in Xi−1. This completes the proof of the base case of
the induction.

Suppose that the claim is true for sets S of size i. We
prove the claim for sets of size i+1. We concentrate on one
pair 〈G,R〉 ∈ S and denote S′ = S − 〈G,R〉. The largest
fixpoint in Rabin(S,ϕ,W) computes the following set.

νY µX

Rabin
S′, ϕ ∧R,

W ∨
(ϕ ∧R ∧G ∧4Y)∨
(ϕ ∧R ∧4X)

As before let Ŷ denote the result of this fixpoint, let X0 be
the empty set and let

Xi+1 =

Rabin

S′, ϕ ∧R,
 W ∨

(ϕ ∧R ∧G ∧4 Ŷ) ∨
(ϕ ∧R ∧4Xi)

from the induction assumption

xi+1 =

win

S′, ϕ ∧R,
 W ∨

(ϕ ∧R ∧G ∧4 Ŷ) ∨
(ϕ ∧R ∧4Xi)

Suppose that v ∈ X1. By induction, from v player 0

wins with the winning condition

∨
〈G′,R′〉∈S′

((ϕ ∧R ∧R′)U (W∨(ϕ ∧R ∧G ∧4 Ŷ)))∨
0(ϕ ∧R ∧R′ ∧1G′) ∨
(ltl rabin(S′−〈G′, R′〉) ∧0(ϕ ∧R ∧R′))

which is equivalent to

∨
〈G′,R′〉∈S′

((ϕ ∧R ∧R′)U (ϕ ∧R ∧G ∧4 Ŷ)) ∨
((ϕ ∧R ∧R′)UW) ∨
0(ϕ ∧R ∧R′ ∧1G′) ∨
(ltl rabin(S′ − 〈G′, R′〉) ∧0(ϕ ∧R ∧R′))

So player 0 can either (a) force the game to a state in W
while maintaining ϕ ∧ R, (b) force the game to a state that
satisfies ϕ∧R∧G while maintaining ϕ∧R and then force
the game in the next move to Ŷ or (c) win according to the
rest of the condition.

Suppose that v ∈ Xi for i > 1. By induction, from v
player 0 wins with the winning condition

∨
〈G′,R′〉∈S′

ϕ∧
R∧
R
′

U
W ∨

(ϕ ∧R ∧G ∧4 Ŷ) ∨
(ϕ ∧R ∧4Xi−1)

 ∨

0(ϕ ∧R ∧R′ ∧1G′) ∨
(ltl rabin(S′−〈G′, R′〉) ∧0(ϕ ∧R ∧R′))

which is equivalent to

∨
〈G′,R′〉∈S′

((ϕ ∧R ∧R′)U (ϕ ∧R ∧4Xi−1)) ∨
((ϕ ∧R ∧R′)U (ϕ ∧R ∧G ∧4 Ŷ)) ∨
((ϕ ∧R ∧R′)UW) ∨
0(ϕ ∧R ∧R′ ∧1G′) ∨
(ltl rabin(S′−〈G′, R′〉) ∧0(ϕ ∧R ∧R′))

So player 0 has a strategy that either (a) forces the game to
a state in W while maintaining ϕ ∧ R, (b) forces the game
to a state in ϕ ∧ R ∧ G ∧4 Ŷ while maintaining ϕ ∧ R,
(c) forces the game toXi−1 while maintaining ϕ∧R, or (d)
wins according to

ψ :=∨
〈G′,R′〉∈S′

 0(ϕ ∧R wedgeR
′ ∧1G′) ∨(

ltl rabin(S − 〈G′, R′〉) ∧
0(ϕ ∧R ∧R′)

)
We combine these strategies as follows. Consider a state

v ∈ Ŷ . Let i be the minimal such that v ∈ Xi. Player
0 applies the ith strategy. Either the play remains in Xi

indefinitely or it reaches Xi−1 and player 0 switches to the
i−1th strategy. If while playing according to some strategy
the play reaches ϕ ∧ R ∧ G then player 0 chooses some
successor in Ŷ and continues with the appropriate strategy.
Consider an infinite play according to the combination of
the strategies as explained above. Either for some i the play
stays indefinitely inXi and wins according to ψ or infinitely
often the play reachesX1 and wins according to0(ϕ∧R∧
1G).

Every play is won according to one of the following.
• The play starts with a finite prefix of ϕ ∧ R and stays

eventually always within some Xi and wins according
to ψ.
• The play visits X1 infinitely often and satisfies0(ϕ∧
R ∧1G).
• The play gets to W along a ϕ ∧R path.

This means that the Rabin player wins according to the fol-
lowing condition.

∨
〈G′,R′〉∈S′

0(R ∧ ϕ ∧1G) ∨
(ϕ ∧R)UW ∨
(10R

′ ∧01G′) ∧0(R ∧ ϕ) ∨
(ltl rabin(S′ − 〈G′, R′〉) ∧0(ϕ ∧R))

or equivalently

0(R ∧ ϕ ∧1G) ∨
(ϕ ∧R)UW ∨
(ltl rabin(S′) ∧0(ϕ ∧R))

We note that the greatest fixpoint in Rabin is nested in a
loop going over all pairs in S. We conclude that the winning
condition is of the wanted form.

12

We now prove the completeness of the induction step.
We show that every iteration of the greatest fixpoint main-
tains all the states winning according to a simpler winning
condition ψ. As win(S, ϕ,W) implies ψ it follows that
every state winning according to win remains in the great-
est fixpoint. Consider some pair 〈G,R〉 ∈ S and denote
S′ = S−〈G,R〉. Let W0 denote the winning set for player
0 according to the disjunct of 〈G,R〉 in win(S, ϕ,W). Let
Ŷ denote some set such that W0 ⊆ Ŷ . We show that every
state from which player 0 wins the game whose winning
condition is

ψ =
(ϕ ∧R)U (ϕ ∧R ∧G ∧4 Ŷ) ∨
(ϕ ∧R)UW ∨
(ltl rabin(S′) ∧0(ϕ ∧R))

is maintained by the greatest fixpoint.
Denote the winning region for player 0 according to the

winning condition ψ by T . We analyze the form of T , our
methods remind the methods in [18]. We show that as long
as X̂ is not equal to T the equation rabin(S′, ϕ ∧ R,W ∨
(ϕ ∧R ∧G ∧4 Ŷ) ∨ (ϕ ∧R ∧4 X̂)) increases the size
of X . As T is finite it follows that eventually the minimal
fixpoint equals T .

It is clear that every state in T satisfies ϕ ∧ R. Suppose
that there exists some state v ∈ T−X̂ such that player 0 can
control the play to reach X̂ in one step then v is included
in the next value of the fixpoint. Suppose that no such state
exists. We show that there exists a state from which player
0 wins according to win(S′, ϕ∧R,W ∨(ϕ∧R∧X̂)). That
is, player 0’s strategy on T − X̂ maintains 0(ϕ ∧ R) and
wins according to ltl rabin(S′). We show that there exists
a node v ∈ T − X̂ such that player 0’s winning strategy
maintains 0R

′
for some pair 〈G′, R′〉 ∈ S′. This state is

included in win(S′, ϕ ∧ R,W ∨ (ϕ ∧ R ∧4 X̂)) by the
induction assumption. Suppose that there does not exist a
state v ∈ T − X̂ such that for some 〈G′, R′〉 ∈ S′ player
0’s winning strategy maintains0R

′
on all plays continuing

from v. Let 〈G′, R′〉 be the first pair in S′. By assumption
there does not exist a state from which player 0 maintains
0R

′
. Let v0 ∈ T − X̂ be some state such that v0 |= R′.

We recall that player 0 cannot force an immediate visit to X̂ .
There exists a successor v1 that is either chosen by player
0 (in case that v0 is a state of player 0) or it is some suc-
cessor of v0 in T − X̂ (in case that v0 is a state of player
1). We construct by induction an infinite path in T − X̂
that visits R′ for every 〈G′, R′〉 ∈ S′ infinitely often. This
path cannot be winning according to ψ. We conclude that
there exists a node v from which player 0’s winning strat-
egy maintains 0R

′
for some 〈G′, R′〉 ∈ S′. This state is

winning according to win(S′, ϕ∧R,W ∨ (ϕ∧R∧4 X̂))
and it is included in the next iteration of the fixpoint. This
concludes completeness of the induction step.

We handle the function main Rabin. From the previ-
ous proof it immediately follows that every state returned by
main Rabin is winning for player 0. We have to show that
every state winning for player 0 is included. Similar to the
completeness proof above, we analyze the winning region
for player 0 in the Rabin game. We claim that there exists a
region in the winning region of player 0 that satisfies 0R
for some 〈G,R〉 ∈ S. Such a region satisfies the condition
win(S, true, ∅). It follows that it is returned in a call to
Rabin(S,true,∅). Then the minimal fixpoint collects
all states that can reach these regions in a finite number of
states and collects other such regions. As before, the game
is finite so it is eventually depleted.

Formally, assume that W is the set of states computed
by the minimal fixpoint in main Rabin. Assume further
that W0 is the set of winning states for player 0 in the Rabin
game and thatW0−W 6= ∅. Suppose that there exists some
state v in W0 −W such that player 0 can control the play
to reach W in one step. Then v is included in the next value
of the fixpoint. Suppose that no such state exists. Then we
show that there exists a state from which player 0 wins ac-
cording to win(S, true,W). That is, player 0’s strategy on
W0 −W maintains 0R for some pair 〈G,R〉 ∈ S and in
addition wins according to the Rabin condition. Suppose
that there does not exist a state v ∈ W0 − W such that
for some 〈G,R〉 ∈ S player 0’s winning strategy maintains
0R. Let v0 be some state such that v0 |= R1. We recall
that player 0 cannot force an immediate visit to W . There
exists a successor v1 that is either chosen by player 0 or it
is some successor of v0 in W0 −W . We construct by in-
duction an infinite path in W0 −W that visits R for every
pair 〈G,R〉 ∈ S infinitely often. This path cannot be win-
ning according to the Rabin condition and we conclude that
a state from which player 0’s winning strategy maintains
0R exists. This state is included in the next iteration of
the fixpoint and eventually the minimal fixpoint equals W0.

5.2 Streett Games

We give a recursive algorithm that solves Streett games.
Let G=〈V,E, α〉 where α={〈G1, R1〉, . . ., 〈Gk, Rk〉} is
a Streett winning condition. An infinite play p is winning
according to α if forall i we have inf(p) ∩Gi 6= ∅ implies
inf(p) ∩ Ri 6= ∅. Intuitively, the algorithm chooses a pair
〈G,R〉 in α, it collects all states that eventually avoid G
states while making sure recursively that all other pairs are
satisfied. We then add states that can visit R infinitely often
and do the same for all other pairs.

Theorem 10 The algorithm in Fig. 6 computes the winning
set of player 0 according to the Streett winning condition.

13

Func main_Streett(Set)
1 If (|nSet|=0)
2 Return m_Streett(true,false);
3 Return Streett(Set,true,false);

End -- Func main_Streett(Set)

Func Streett(Set,seqng,right)
1 GreatestFix(Z)
2 Foreach (<g,r> in Set)
3 My nSet := Set-<g,r>;
4 My p1 := right |

seqp & r & cpred(Z);
5 LeastFix(Y)
6 My p2 := p1 |

seqng & cpred(Y);
7 If (|nSet|=0)
8 Y := m_Streett(

seqng & g,p2);
9 Else

10 Y := Streett(nSet,
seqng & g,p2);

11 End -- If (|nSet|=0)
12 End -- LeastFix(Y)
13 Z := Y;
14 End -- Foreach (<g,r>
15 End -- GreatestFix(Z)
16 Return Z;
End -- Streett

Func m_Streett(seqng,right)
1 GreatestFix(X)
2 X := right |

seqng & cpred(X);
3 End -- GreatestFix(X)
4 Return X;
End -- m_Streett

Figure 6. Recursive Algorithm for Streett.

Proof: We characterize the set of states returned by the
function main Streett(S). We show that this is the
winning set in a game with a ‘simpler’ winning condition.

Given a set of pairs S = {〈G1, R1〉, . . . , 〈Gk, Rk〉} we
denote the formula

∧
〈G,R〉∈S(01G → 01R) by

ltl streett(S).

Claim 11 The function m Streett(ϕ,W) computes the
set of states winning for player 0 in the game whose win-
ning condition is ϕWW ∨0 ϕ.

Proof: The function m Streett(ϕ,W) computes the
fixpoint νX(W ∨ ϕ ∧4X). This is exactly the set of

states that satisfy ϕUW ∨0 ϕ.

Claim 12 The function Streett(S,ϕ,W) computes the
set of states winning for player 0 in the game whose winning
condition is

win(S, ϕ,W) = (ϕUW) ∨∧
〈G,R〉∈S

 0(ϕ ∧1R) ∨

ϕU
(
0(ϕ ∧G) ∧
ltl streett(S − 〈G,R〉)

)

Proof: We prove the claim by induction on the number of
pairs in S. Suppose S = {〈G,R〉}, then Streett(S, ϕ,W)
computes the following fixpoint.

νZµY (m Streett(ϕ ∧G,

 W ∨
ϕ ∧R ∧4Z∨
ϕ ∧4Y

))

Let Ẑ denote the set computed by the greatest fixpoint. Let
Y0 = ∅ and let

Yi+1 = m Streett(ϕ ∧G,

 W ∨
ϕ ∧R ∧4 Ẑ∨
ϕ ∧4Yi

)

For every state v ∈ Ẑ let r(v) be the minimal i such that
v ∈ Yi.

Consider a state v such that r(v) = 1. By induction
player 0 wins from v according to

0(ϕ ∧G) ∨ (ϕ ∧G)U
(
W ∨
ϕ ∧R ∧4 Ẑ

)
So there exists a strategy such that player either (a) reaches
W while staying in ϕ states, (b) reaches ϕ∧R∧4 Ẑ while
staying in ϕ states, or (c) the play is infinite and it is always
in ϕ ∧G. Consider a state v such that r(v) = i > 1. Player
0 wins from v according to

0(ϕ ∧G) ∨ (ϕ ∧G)U

 W ∨
ϕ ∧R ∧4 Ẑ∨
ϕ ∧4Yi−1

So there exists a strategy such that player 0 either (a)
reaches W while staying in ϕ∧G states, (b) reaches a state
with lower rank or reaches ϕ ∧R while staying in ϕ states,
or (c) the play is infinite and it is always in ϕ ∧G states.

We now combine these strategies to prove the soundness
of the claim in case that |S| = 1. In states whose rank is i
player 0 player the ith strategy. While playing according to
some strategy and getting to a state in ϕ∧R∧4 Ẑ, player 0
chooses some successor in Ẑ and the rank may increase ar-
bitrarily. Every play either stays within some Yi form some

14

stage onwards and continues indefinitely according to the
ith strategy or infinitely often switches between the strate-
gies. In the first case, the play fulfills ϕU 0(ϕ∧G), which
implies ϕU (ltl streett(S) ∧ 0(ϕ)). In the second case,
the play fulfills 0(ϕ ∧1R). Soundness of the case that
|S| = 1 follows.

We prove completeness in the case that |S| = 1.
Let W0 denote the winning set of player 0 according to
win(S, ϕ,W). Let Ẑ denote some set such that W0 ⊆ Ẑ.
We show that every state from which player 0 wins the game
according to

ψ = ϕU (W ∨ (ϕ ∧R ∧4 Ẑ)) ∨
0(ϕ ∧G)

is maintained by the fixpoint. Clearly, a state winning ac-
cording to win(S, ϕ,W) is winning according to ψ.

Denote the winning region for player 0 according to ψ
by T . We analyze the form of T . We show that as long as
Ŷ is not equal to T the function call m Streett(ϕ ∧G,W ∨
(ϕ ∧ R ∧ Ẑ ∨ ϕ ∧4 Ŷ)) increases the size of Y . As T is
finite it follows that eventually the minimal fixpoint equals
T .

It is clear that every state in T satisfies ϕ. Suppose that
there exists some state v ∈ T such that player 0 can control
the play to reach Ŷ in one step, then v is included in the
next value of the fixpoint. Suppose that no such state exists.
We show that there exists a state from which player 0 wins
according to0(ϕ ∧G).

Suppose that such a state does not exist. That is, there
does not exist a state for which player 0’s winning strategy
maintains ϕ ∧ G. Let v0 be some state such that v |= G.
We recall that player 0 cannot force an immediate visit to
Ŷ . There exists a successor v2i+1 of v2i that is either cho-
sen by player 0 (in case that v2i is a state of player 0) or is
some successor of v2i in T−Ŷ (in case that v2i is a state of
player 1). By assumption player 0 does not maintain 0G
and there exists a node v2i+2 that is reachable from v2i+1

using player 0’s winning strategy such that v2i+2 |= G. By
induction we construct an infinite path in T−Ŷ that respects
player 0’s winning strategy and visits G infinitely often.
This path cannot be winning according to ψ. We conclude
that there exists a node v from which player 0’s winning
strategy maintains 0G. This state is in addition winning
according to ψ. We conclude that this state is winning ac-
cording to 0(ϕ ∧ G) and that it is included in the next it-
eration of the fixpoint. This concludes completeness of the
claim in case that |S| = 1.

The induction step is similar to the proof of the induction
base. Suppose that the claim is true for sets S of size i. We
prove the claim for sets of size i + 1. Let Ẑ denote the set
computed by the greatest fixpoint. It follows that for every

〈G,R〉 ∈ S we have

Ẑ =

µY

Streett
S−〈G,R〉, ϕ ∧G,

W ∨
(ϕ ∧R ∧4 Ẑ)∨
(ϕ ∧4Y)

We concentrate on some 〈G,R〉 ∈ S and denote S′ =
S−〈G,R〉. Let Y0 = ∅ and let

Yi+1 = Streett(S′, ϕ∧G,W∨(ϕ∧R∧4 Ẑ)∨(ϕ∧4Yi))

For every state v ∈ Ẑ let r(v) be the minimal i such that
v ∈ Yi.

Consider a state v such that r(v) = 1. By induction
player 0 wins from v according to

ϕU (W ∨ (ϕ ∧R ∧4 Ẑ)) ∨∧
〈G′,R′〉∈S′

0(ϕ ∧G ∧1R′) ∨

(ϕ ∧G)U
(
0(ϕ ∧G) ∧
ltl streett(S′−〈G′, R′〉)

)
or equivalently

ϕU (ϕ ∧R ∧4 Ẑ) ∨
ϕUW ∨∧
〈G′,R′〉∈S′

0(ϕ ∧G ∧1R′) ∨

(ϕ ∧G)U
(
0(ϕ ∧G) ∧
ltl streett(S′−〈G′, R′〉)

)
So there exists a strategy such that player 0 either (a)
reaches W while staying in ϕ states, (b) reaches ϕ ∧ R ∧
4 Ẑ while staying in ϕ states, or (c) the play is infinite and
it is always in ϕ ∧ G states while satisfying the rest of the
Streett pairs.

Consider a state v such that r(v) = i > 1. By induction
player 0 wins from v according to

ϕU (ϕ ∧4Yi−1) ∨
ϕU (ϕ ∧R ∧4 Ẑ) ∨
ϕUW ∨∧
〈G′,R′〉∈S′

0(ϕ ∧G ∧1R′) ∨

(ϕ ∧G)U
(
0(ϕ ∧G) ∧
ltl streett(S′−〈G′, R′〉)

)
So there exists a strategy such that player 0 either (a)
reachesW while staying in ϕ states, (b) reaches a state with
lower rank or reaches ϕ∧R while staying in ϕ states, or (c)
the play is infinite and it is always in ϕ ∧ G states while
satisfying the rest of the Streett pairs.

We now combine these strategies to prove the soundness
of the induction step. In states whose rank is i player 0 plays
the ith strategy. When playing according to some strategy
and getting to a state in ϕ ∧ R ∧4 Ẑ, player 0 chooses
some successor and the rank may increase arbitrarily. Every

15

play either stays within some Yi from some stage onwards
and continues indefinitely according to the ith strategy or
infinitely often switches between the strategies. In the first
case, the play fulfills

ϕU
∧

〈G′,R′〉∈S′

0(ϕ ∧G ∧1R′) ∨

(ϕ ∧G)U
(
0(ϕ ∧G) ∧
ltl streett(S′−〈G′, R′〉)

)
which implies ϕU (ltl streett(S′)∧0(ϕ)). In the second
case, the play fulfills0(ϕ ∧1R). Soundness follows.

We now prove the completeness of the induction step.
Let W0 denote the winning set of player 0 according to
win(S, ϕ,W). Let Ẑ denote some set such that W0 ⊆ Ẑ.
We concentrate on some pair 〈G,R〉 ∈ S and denote
S′ = S − 〈G,R〉. We show that every state from which
player 0 wins the game according to

ψ =
ϕU (W ∨ (ϕ ∧R ∧4 Ẑ)) ∨

ϕU
[
0(ϕ ∧G) ∧
ltl streett(S − 〈G,R〉)

]
is maintained by the fixpoint. Clearly, a state winning ac-
cording to win(S, ϕ,W) is winning according to ψ.

Denote the winning region for player 0 according to ψ
by T . We analyze the form of T . We show that as long as Ŷ
is not equal to T the equation streett(S′, ϕ∧G,W ∨ (ϕ∧
4 Ŷ)) increases the size of Y . As T is finite it follows that
eventually the minimal fixpoint equals T .

It is clear that every state in T satisfies ϕ. Suppose that
there exists some state v ∈ T such that player 0 can control
the play to reach Ŷ in one step, then v is included in the
next value of the fixpoint. Suppose that no such state exists.
We show that there exists a state from which player 0 wins
according to win(S′, ϕ ∧G,W ∨ (ϕ ∧4 Ŷ)).

As before it is sufficient to prove that there exists a state
v such that player 0’s winning strategy for ψ maintains
0(ϕ∧G). Combining0(ϕ∧G) with ψ gives us a region
winning with respect to win(S′, ϕ ∧G,W ∨ (ϕ ∧4 Ŷ)).
Suppose that there does not exists a state v such that player
0’s winning strategy maintains 0G. Let v0 be some state
such that v0 |= G. We recall that player 0 cannot force an
immediate visit to Ŷ . There exists a successor v2i+1 of v2i

that is either chosen by player 0 (in case that v2i is a state of
player 0) or is some successor of v2i in T−Ŷ (in case that
v2i is a state of player 1). By assumption player 0 does not
maintain 0G and there exists a node v2i+2 that is reach-
able from v2i+1 using player 0’s winning strategy such that
v2i+2 |= G. By induction we construct an infinite path in
T − Ŷ that respects player 0’s winning strategy and visitsG
infinitely often. This path cannot be winning according to
ψ. We conclude that there exists a node v from which player
0’s winning strategy maintains 0G. This state is in addi-
tion winning according to ψ. We conclude that this state is

winning according to win(S′, ϕ∧G,W ∨ (ϕ∧4 Ŷ)) and
that it is included in the next iteration of the fixpoint. This
concludes completeness of the induction step.

From Theorems 8 and 10 it is easy to derive the follow-
ing bounds. A greatest or least fixpoint collects at least one
state in every iteration and hence cannot be repeated more
than n times. The inner most fixpoint can be computed in
time proportional to m where m is the number of transi-
tions.

Corollary 13 Rabin and Streett games can be solved sym-
bolically in time O(mn2kk!) where n is the number of
states, m is the number of transitions, and k is the number
of pairs of the winning condition.

We stress that these algorithms are not important by
themselves. Indeed, the same complexity is achieved by
other similar algorithms [17, 13]. They are used to estab-
lish the completeness of the ranks presented in Section 3.
Efficient computation of these ranks leads to algorithms
with improved complexity.

6 Fast Symbolic Computation

In this section we generalize the method of Long et al.
for accelerating the evaluation of fixpoints [19]. Long et
al. show that by maintaining the intermediate values of
the fixpoint, they can use these values to start the compu-
tation of future fixpoints not from minimal or maximal val-
ues but rather from better approximations. They show that
with these approximations the worst time complexity of the
fixpoint computation is reduced to the square root of the
original. Unfortunately, the memory consumption amounts
to the other square root.

The acceleration works very similarly for Rabin and
Streett games. We explain it here for the case of Rabin.
The case of Streett is identical but for the order of the in-
dices. Consider the algorithm in Fig. 5. We add a counter
to each of the fixpoints. To each of the minimal fixpoints
we add a counter i. It is initialized to 0 in the first visit to
the command LeastFix and incremented by 1 in every
subsequent visit. Similarly, to each of the maximal fixpoint
we add a counter p. It is initialized to 0 in the first visit
to the command GreatestFix and incremented by 1 in
every subsequent visit. Consider an active copy of the func-
tion Rabin with l − 1 copies of Rabin on the store. Sup-
pose that the active copy of Rabin is found in line 4. Let
i0 · · · il−1 be the values of the counters i associated with the
least fixpoints in the copies of Rabin on the stack (where i0
is the counter in the function main Rabin). Let p1 · · · pl

be the values of the counters p associated with the greatest

16

fixpoints in the copies of Rabin on the stack. Let j1 · · · jl
denote the number of pairs handled by the different copies
of Rabin. We set Y (i0, · · · il−1, p1 · · · pl, j1 · · · jl) to be
the value of Y when the counter p is set to pl. When the
active copy of Rabin is found in line 6 Then the sequence
i0 · · · il includes also the value of the counter i in the active
copy of Rabin. We set X(i0 · · · il, p1 · · · pl, j1 · · · jl) to be
the value of X when the counter i is set to il.

Given sequences α = i0 · · · il−1, β = p1 · · · pl, and
γ = j1 · · · jl and α′ = i′0 · · · i′l−1, β′ = p′1 · · · p′l, and
γ′ = j′1 · · · j′l we say that αβγ <ν α

′β′γ′ if α = α′, γ = γ′

and β < β′ according to the lexicographic order. Similarly,
given α = i0 · · · il, β = p1 · · · pl, and γ = j1 · · · jl and
α′ = i′0 · · · i′l, β′ = p′1 · · · p′l, and γ′ = j′1 · · · j′l we say that
αβγ <µ α′β′γ′ if β = β′, γ = γ′ and α < α′ according
to the lexicographic order. For a fixed α = i0 · · · il−1 and
γ = j1 · · · jl, the ordering <ν is a total order on l-tuples.
Similarly, for a fixed β = j1 · · · jl and γ = j1 · · · jl, the
ordering <µ is a total order on l-tuples.

For every α = i0 · · · il−1, β = p0 · · · pl−1, and γ =
j1 · · · jl the maximal value p such that Y (α, βp, γ) is de-
fined is a greatest fixpoint value. Long et al. show that
Y (α, βp, γ) is contained in every set Y (α, β′, γ) such that
β′ < βp. It follows that the computation of Y (α, β0, γ)
(which leads to the computation of Y (α, βp, γ)) can start
from the minimal set Y (α, β′, γ) such that β′ < β0. Con-
sider now the values of the inner-most greatest fixpoint.
That is, the values Y (α, β, γ) where |β| = k. It follows
that for every value of α and γ there are at most n different
values for Y (α, β, γ).

Dually, for every α = i0 · · · il−1, β = p0 · · · pl, and
γ = j1 · · · jl the maximal value i such that X(αi, β, γ)
is defined is a least fixpoint value. Long et al. show
that X(αi, β, γ) contains every set X(α′, β, γ) such that
α′ < αi. It follows that the computation of X(α0, β, γ)
(which leads to the computation of X(αi, β, γ) can start
from the maximal set X(α′, β, γ) such that α′ < α0). Con-
sider now the values of the inner-most least fixpoint. That
is, the values X(α, β, γ) where |α| = k. If follows that for
every value of β and γ there are at most n different values
for X(α, β, γ).

The computation of the inner-most least fixpoint domi-
nates the computation time. It follows that the computation
can be concluded in time O(nk+1k!). However, we have
to store the Y values for every possible value of α and γ.
Notice, that the β values are implicit in every point of the
computation. We just have to store the best value for α and
γ. Similarly, we store the X values for every possible value
of β and γ. Thus, the memory required by the algorithm is
O(nk+1k!). Formally, we have the following.

Theorem 14 Rabin and Streett games can be solved in time
O(nk+1k!) and space O(nk+1k!) where n is the number of

states and k is the number of pairs of the winning condition.

On the one hand, the space complexity of the algorithm
makes it prohibitively expensive. Implementing an efficient
memory system that supports this algorithm makes it less at-
tractive in practice. On the other hand, if we want to use the
intermediate fixpoint values for construction of the winning
strategy then memorizing some of the intermediate values
is necessary anyway.

7 Conclusions

We show how to define Rabin and Streett ranking, which
are a sound and complete way to characterize the winning
regions in the respective games. We show that by comput-
ing the ranking directly we can solve these games faster.
Our algorithms improve the time to solve these kind of
games to approximately the square root of previous bounds.

In order to prove completeness of the ranking method,
we provide recursive fixpoint algorithms for solving Rabin
and Streett games. We then further show that by accelerat-
ing the fixpoint computation we get algorithms that match
the run time of our explicit algorithm at the price of increas-
ing the space complexity.

Both the enumerative and symbolic algorithms are bor-
rowed from algorithms for solving parity games. This raises
the question whether we can adapt the strategy improve-
ment technique [27] as well as other algorithms to solve
parity games [1, 15] to Rabin and Streett games. We con-
jecture that every solution to parity games that works in time
t(m,n, k) can be generalized to solve Rabin and Streett
games in time k!t(m,n, 2k) (recall that a Rabin / Streett
game is converted to a parity game with 2k priorities).

We mentioned that the direct rank computation cannot be
implemented symbolically. This is similar to Jurdziński’s
algorithm [14]. Bustan et al. suggested to use Algebraic
Decision Diagrams (ADDs) to represent Jurdziński’s rank-
ing symbolically [3]. We cannot say whether this would be
applicable in our case as well.

References

[1] H. Björklund, S. Sandberg, and S. Vorobyov. A discrete
subexponential algorithm for parity games. In 20th STACS,
LNCS 2607, pp. 663–674. Springer-Verlag, 2003.

[2] J. Büchi and L. Landweber. Solving sequential conditions by
finite-state strategies. TAMS, 138:295–311, 1969.

[3] D. Bustan, O. Kupferman, and M. Vardi. A measured col-
lapse of the modal µ-calculus alternation hierarchy. In Proc.
21st STACS, LNCS 2996, pp. 522–533. 2004.

[4] A. Church. Logic, arithmetic and automata. In Proc. 1962
Int. Congr. Math., pages 23–25, Upsala, 1963.

17

[5] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How
much memory is needed to win infinite games. In 12th LICS,
pp. 99–110, 1997.

[6] E. Emerson. Automata, tableaux and temporal logics. In
ICLP, LNCS 193, pp 79–88. Springer-Verlag, 1985.

[7] E. Emerson. Model checking and the µ-calculus. In Descrip-
tive Complexity and Finite Models. AMS, 1997.

[8] E. Emerson and C. Jutla. The complexity of tree automata
and logic of programs. In 29th FOCS, pp. 328–337, 1988.

[9] E. Emerson and C. Jutla. Tree automata, µ-calculus and de-
terminacy. In 32nd FOCS, pp. 368–377, 1991.

[10] E. A. Emerson and C. L. Lei. Efficient model-checking
in fragments of the propositional modal µ-calculus. In 1st
LICS, pp. 267–278, 1986.

[11] K. Etessami, T. Wilke, and R. A. Schuller. Fair simulation
relations, parity games, and state space reduction for Büchi
automata. In 28th ICALP, LNCS 2076, pp. 694–707. 2001.

[12] Y. Gurevich and L. Harrington. Automata, trees and games.
In 14th STOC, pp. 60–65, 1982.

[13] F. Horn. Streett games on finite graphs. In 2nd GDV, 2005.
[14] M. Jurdzinski. Small progress measures for solving parity

games. In 17th STACS, LNCS 1770, pp. 290–301. 2000.
[15] M. Jurdziński, M. Paterson, and U. Zwick. A determinis-

tic subexponential algorithm for solving parity games. In
SODA, 2006.

[16] D. Kozen. Results on the propositional µ-calculus. TCS,
27:333–354, 1983.

[17] O. Kupferman and M. Vardi. Weak alternating automata and
tree automata emptiness. In 30th STOC, pp. 224–233, 1998.

[18] O. Kupferman and M. Vardi. Weak alternating automata are
not that weak. TOCL, 2001(2):408–429, July 2001.

[19] D. Long, A. Brown, E. Clarke, S. Jha, and W. Marrero. An
improved algorithm for the evaluation of fixpoint expres-
sions. In 6th CAV, LNCS 818, pp. 338–350, 1994.

[20] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reac-
tive(1) Designs. In 7th VMCAI, LNCS 3855, pp 364–380,
2006.

[21] A. Pnueli and R. Rosner. On the synthesis of a reactive mod-
ule. In 16th POPL, pp. 179–190, 1989.

[22] M. Rabin. Decidability of second order theories and au-
tomata on infinite trees. TAMS, 141:1–35, 1969.

[23] M. Rabin. Automata on Infinite Objects and Churc’s Prob-
lem, volume 13 of Regional Conference Series in Mathemat-
ics. AMS, 1972.

[24] S. Safra. On the complexity of ω-automata. In 29th FOCS,
pp. 319–327, 1988.

[25] R. Streett. Propositional dynamic logic of looping and con-
verse is elementarily decidable. IC, 54:121–141, 1982.

[26] W. Thomas. Automata on infinite objects. In Handbook of
TCS, volume B, chapter 4, pp. 165–191. MIT Press, 1990.

[27] J. Voge and M. Jurdzinski. A discrete strategy improvement
algorithm for solving parity games. In 12th CAV, LNCS
1855, Springer-Verlag, pp. 202–215, 2000.

[28] I. Walukiewicz. Pushdown processes: Games and model-
checking. IC, 164(2):234–263, 2001.

[29] T. Wilke. Alternating tree automata, parity games, and modal
µ-calculus. Bull. Soc. Math. Belg., 8(2), May 2001.

18

