
Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

The Biequivalence
of Locally Cartesian Closed Categories

and Martin-Löf Type Theory with Π,Σ and
Extensional Identity Types

Pierre Clairambault, Paris 7
and

Peter Dybjer, Chalmers

Uppsala, 25 August 2010

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Categorical logic: key correspondences

Cartesian closed categories and simply typed lambda
calculus
Hyperdoctrines and first order logic
Toposes and higher order logic (”intuitionistic type theory”)
? and Martin-Löf type theory

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Beginning of Seely 1984

”It is well known that for much of the mathematics of topos
theory, it is in fact sufficient to use a category C whose slice
categories C/A are cartesian closed. In such a category, the
notion of a ‘generalized set’, for example an ’A -indexed set’, is
represented by a morphism B → A of C, i. e. by an object of
C/A . The point about such a category C is that C is a
C-indexed category, and more, is a hyperdoctrine, so that it has
a full first order logic associated with it. This logic has some
peculiar aspects. For instance, the types are the objects of C
and terms are the morphisms of C. For a given type A , the
predicates with a free variable of type A are morphisms into A ,
and ’proofs’ are morphisms over A . We see here a certain
’ambiguity’ between the notions of type, predicate, and term, of
object and proof: a term of type A is a morphism into A , which
is a predicate over A ; a morphism 1→ A can be viewed either
as an object of type A or as a proof of the proposition A .”

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Display maps

The morphism B → A is called a display map when it
represents an A -indexed set. Terminology introduced by Taylor
1985.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Beginning of Seely 1984, continued

”For a long time now, it has been conjectured that the logic of
such categories is given by the type theory of Martin-Löf [5],
since one of the features of Martin-Löf’s type theory is that it
formalizes ’ambiguities’ of this sort. However, to the best of my
knowledge, no one has ever worked out the details of this
relationship, and when the question again arose in the McGill
Categorical Logic Seminar in 1981-82, it was felt that making
this precise was long overdue.”

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Seely’s conjecture

R. Seely (1984), Locally cartesian closed categories and type
theory:

6.3. THEOREM. The categories ML and LCC are
equivalent.

ML is the category of ”Martin-Löf theories” with types∏
x∈A B[x],

∑
x∈A B[x], and I(a,b). Note it is extensional

intuitionistic type theory of Martin-Löf (1979, 1984).
LCC is the category of locally cartesian closed categories.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Locally cartesian closed categories

A category C is locally cartesian closed (lccc) iff either of the
following equivalent conditions hold:

all slice categories C/A are cartesian closed.
C has pullbacks and the functor f ∗ : C/B → C/A has a right
adjoint Πf for f : A → B. (The left adjoint Σf always exists.)

Seely’s LCC is the category of lcccs and lccc-structure
preserving functors.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Martin-Löf theories and their associated categories

A Martin-Löf theory M is a dependent type theory with I-
(extensional identity types), Σ- and Π-types and given by a
set of typed type-valued function constants and a set of
typed term-valued constants.
The category C(M) associated with M has types as
objects and arrows with source A and target B are terms
of type A → B.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

C(M) is an lccc

Similar to showing that the category of sets is an lccc.
For example, pullbacks

A ×C B //

��

B
g

��
A f

// C

can be defined by

A ×C B = (Σx : A)(Σy : B)IC(f(x),g(y))

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Martin-Löf theory and lccc - correspondences

Contexts are objects of C.
Types in context Γ are objects of the slice category C/Γ
Terms of type A are sections of A .
Type substitution is pullback:

//

f ∗A
��

A
��

∆
f

// Γ

I-types are equalizers
Σ-types are (special cases of) left adjoints Σf

Π-types are (special cases of) right adjoints Πf

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Curien

P.-L. Curien (1993), Substitution up to isomorphism:

... to solve a difficulty arising from a mismatch
between syntax and semantics: in locally cartesian
closed categories, substitution is modelled by
pullbacks (more generally pseudo-functors), that is,
only up to isomorphism, unless split fibrational
hypotheses are imposed. ... but not all semantics do
satify them, and in particular not the general
description of the interpretation in an arbitrary locally
cartesian closed category.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Curien, continued

In the general case, we have to show that the
isomorphisms between types arising from substitution
are coherent in a sense familiar to category theorists.
Due to this coherence problem at the level of types,
we are led to:

switch to a syntax where substitutions are
explicitly present (in traditional presentations
substitution is a meta-operation, defined by
induction);
include type equality judgements in this modified
syntax: we consider here only equalities
describing the stepwise performance as
substitution.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Curien, continued

... To our knowledge, the work presented here is
the first solution to this problem, which, until very
recently, had not even been clearly identified, mainly
due to an emphasis on interesting mathematical
models rather than on syntactic issues.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Hofmann

M. Hofmann (1994), On the interpretation of type theory in
locally cartesian closed categories:

Seely argues that substitution should be interpreted
as a pullback, so that the interpretation of τ[x := M]
becomes the pullback of τ along M. ...
The subtle flaw of this idea is that the interpretation of
τ[x := M] is already fixed by the clauses of the
interpretation, and there is no reason why it should be
equal to the chosen pullback of τ along M.
...
Unfortunately, however, it seems impossible to endow
an arbitrary lccc with a pullback operation which would
satisfy these coherence requirements.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Hofmann, continued

We show how to construct a model of dependent type
theory (category with attributes) from a locally
cartesian closed category (lccc).
...
The method we use is a very general procedure due
to Bénabou which turns an arbitrary fibration into a
split fibration. Our contribution consists of the
observation that the cwa obtained thus has not merely
a split substitution operation, but is closed under all
type formers the original lccc supported. In particular
the resulting cwa has Π-types, Σ-types, and
(extensional) identity types.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Bénabou’s construction

Types over Γ are not interpreted as arrows into Γ (display
maps), but as functions which map an arrow γ : ∆→ Γ into
an arrow over ∆. Dependent types are not ”display maps”,
but ”families of display maps”, one for each substitution
instance.
This is done functorially. Types are interpreted as functorial
families; they do not only map objects but also arrows of
the slice category C/Γ. Formally, functorial families are
functors

−→
A : C/Γ→ C→ such that cod ◦

−→
A = dom, which

map arrows of C/Γ to pullback squares.
The technique is reminiscent of the use of presheaf
categories for solving coherence problem and in
normalization by evaluation (Gordon, Power, Street’s proof
of MacLane’s coherence theorem; Altenkirch, Hofmann,
Streicher, and Čubrić, Dybjer, Scott’s approach to nbe).

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Are ML and LCC equivalent?

Curien and Hofmann only show how to interpret Martin-Löf
theories in lcccs, not that such interpretations give rise to an
equivalence of categories, as Seely claimed.
Hofmann conjectured:

We have now constructed a cwa over C which can
be shown to be equivalent to C in some suitable
2-categorical sense.

Giving a precise formulation and proof of this conjecture is the
topic of this talk.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Two biequivalences

We shall use cwfs to define an analogue of Seely’s category of
Martin-Löf theories. The theorem becomes

LCC and CwFIextΣΠ
dem (democratic cwfs which support

extensional identity types, Σ- and Π-types) are biequivalent
2-categories

In fact, we can remove Π-types on the type theory side and the
right adjoints on the category side and get the following
theorem

FL and CwFIext Σ
dem are biequivalent.

where FL is the 2-category of categories with finite limits (”left
exact categories”).

We will focus on the latter. It is essentially as difficult to prove
as the first.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

What is biequivalence?

Notions of ”abstractly the same”:
equality of elements (and arrows in a category)
isomorphism of sets (and objects in a category)
equivalence of categories
biequivalence of bicategories
etc

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

What is biequivalence?

We need to define
bicategory (special case of 2-category suffices here)
weak functor between bicategories
strong transformation of weak functors
(invertible) modification of strong transformations

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Weak functors

A weak functor between 2-categories B and B′ is a pair (F , φ),
where F = (F0,F1)

F0 : B0 → B
′

0 is a function on 0-cells.
F1 is a family of functors

F1,A ,B : B(A ,B)→ B′(F0A ,F0B)

where A ,B ∈ B0.
F1 preserves identity and composition up to isomorphism.
This means that there is an isomorphism (a 2-cell)

φA : 1F0A → F11A

in the category B′(F0A ,F0A) for each A , and moreover an
isomorphism

φf ,g : F1g ◦ F1f → F1(g ◦ f)

in the category B′(F0A ,F0C) for each f : B1(A ,B) and
g : B1(B ,C).

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Strong transformation

A strong transformation between weak functors
(F , φ), (G, ψ) : B → B′ is a family of 1-cells

ηA : B1(FA ,GA)

for A ∈ B0, which is weakly natural in the sense that the
naturality square commutes up to a natural isomorphism:

ηf : B′2(Ff ◦ ηA , ηB ◦Gf)

for each f : B1(A ,B), satisfying some further conditions with
respect to 1 and ◦ (not spelled out).

(There is another notion of weak transformation where ηf is not
required to be iso.)

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Modifications

A modification between strong transformations
η, θ : (F , φ)→ (G, ψ) is a family of 2-cells

mA : B2(ηA , θA)

satisfying a condition analogous to naturality for natural
transformations.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Biequivalence

The weak functors (F , φ) : B → B′ and (G, ψ) : B′ → B form a
biequivalence provided 1B ∼ G ◦ F ∈ [B,B] and
F ◦G ∼ 1B′ ∈ [B′,B′] are equivalences inside the 2-categories
[B,B] and [B′,B′] of weak functors, strong transformations, and
modifications.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Proving the biequivalence

We need to provide the following data (and check the
appropriate properties):

FL: the 2-category of left exact (lex) categories, lex
functors, and natural transformations.
CwFIext Σ

dem : the 2-category of cwfs (with Σ-types, extensional
identity types, and democracy), weak cwf-morphisms, and
cwf-transformations.
U : CwFIext Σ

dem → FL is a forgetful 2-functor

H : FL→ CwFIext Σ
dem is a weak functor based on the

Bénabou-Hofmann construction.
η : 1→ HU and ε : HU → 1: strong transformations, which
are inverses wrt invertible modifications φ,ψ. This shows
that H and U give rise to a biequivalence.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

A corrected version of Seely’s conjecture

We can extend the above constructions to the case where we
add Π-types to cwfs and right adjoints Πf to lex categories:

THEOREM. The 2-categories CwFIextΣΠ
dem and LCC are

biequivalent.

Just use Seely’s technique for relating Π-types and right
adjoints in lcccs.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Categories with families (cwfs)

C, a category of contexts. Its objects are called contexts
and its morphisms are called substitutions.
T : Cop

→ Fam, a functor where the
object part maps a context Γ to the family of sets of terms

{a | Γ ` a : A } indexed by the set of types
{A | Γ ` A type} in Γ.

arrow part maps a substitution γ to a pair of functions
which perform substitution of γ in types and
terms respectively. We write A [γ] for
substitution of γ in a type A and a[γ] for
substitution of γ in the term a.

A terminal object [] of C called the empty context. The
unique arrow 〈〉 into [] is the empty substitution.
A context comprehension operation which to an object Γ of
C and a type A in Γ associates four components ...

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Context comprehension

An operation which to an object Γ of C and a type A in Γ
associates four components:
context extension: an object Γ; A of C;
weakening: a morphism pΓ,A : Γ; A → Γ of C - the first

projection
assumption: a term qΓ,A ∈ Γ; A ` A [pΓ,A] - the second

projection
substitution extension: for each object ∆ in C, morphism

γ : ∆→ Γ, and term a ∈ ∆ ` A [γ], there is a
unique morphism θ = 〈γ,a〉 : ∆→ Γ; A , such that
pΓ,A ◦ θ = γ and qΓ,A [θ] = a. This is the universal
property of context comprehension.

Cf Lawvere (1970), Equality in hyperdoctrines and the
comprehension schema.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

The generalized algebraic theory of categories

Sort symbols:
Cxt sort

∆, Γ : Cxt
∆→ Γ sort

Operator symbols:
Θ,∆, Γ : Cxt γ : ∆→ Γ δ : Θ→ ∆

γ ◦ δ : Θ→ Γ

Γ : Cxt
id : Γ→ Γ

Equations:

(γ ◦ δ) ◦ θ = γ ◦ (δ ◦ θ)

id ◦ γ = γ

γ ◦ id = γ

Note that we use implicit arguments, official syntax of gats use
explicit arguments.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Rules for family-valued functors

Sort symbols:
Γ : Cxt

Type(Γ) sort

Γ : Cxt A : Type(Γ)

Γ ` A sort
Operator symbols:

∆, Γ : Cxt A : Type(Γ) γ : ∆→ Γ

A[γ] : Type(∆)

∆, Γ : Cxt A : Type(Γ) a : Γ ` A γ : ∆→ Γ

a[γ] : ∆ ` A[γ]
Equations:

A[(γ ◦ δ)] = A[γ][δ]
A[id] = A

a[(γ ◦ δ)] = a[γ][δ]
a[id] = a

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Rules for the terminal object

Operator symbols:
[] : Cxt

Γ : Cxt
〈〉 : Γ→ []

Equations

〈〉 ◦ γ = 〈〉

id = 〈〉

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Rules for context comprehension

Operator symbols:
Γ : Cxt A : Type(Γ)

Γ; A : Cxt

∆, Γ : Cxt A : Type(Γ) γ : ∆→ Γ a : ∆ ` A[γ]
〈γ,a〉 : ∆→ Γ; A

Γ : Cxt A : Type(Γ)

p : Γ; A → Γ

Γ : Cxt A : Type(Γ)

q : Γ; A ` A[p]
Equations:

p ◦ 〈γ,a〉 = γ

q[〈γ,a〉] = a
〈δ,a〉 ◦ γ = 〈δ ◦ γ,a[γ]〉

id = 〈p,q〉

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Cwf with Σ-types (including surjective pairing)

Formation. For A ∈ Type(Γ) and B ∈ Type(Γ·A) there is a
type Σ(A ,B) ∈ Type(Γ),
Introduction. For a : Γ ` A and b : Γ ` B[〈id,a〉] there is a
term pair(a,b) : Γ ` Σ(A ,B),
Elimination. For each a : Γ ` Σ(A ,B) there are two terms
π1(a) : Γ ` A and π2(a) : Γ ` B[〈id, π1(a)〉]

such that

Σ(A ,B)[δ] = Σ(A [δ],B[〈δ ◦ p,q〉])
pair(a,b)[δ] = pair(a[δ],b[δ])

π1(c)[δ] = π1(c[δ])

π2(c)[δ] = π2(c[δ])

π1(pair(a,b)) = a
π2(pair(a,b)) = b

pair(π1(c), π2(c)) = c

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Extensional identity types

A cwf (C,T) supports extensional identity types if and only if:
Formation. For A ∈ Type(Γ) and a,a′ : Γ ` A , there is a
type IA (a,a′).
Introduction. For a : Γ ` A , there is a term
reflA ,a : Γ ` IA (a,a).
Equality reflection. p : Γ ` IA (a,a′) implies

a = a′ : Γ ` A
p = reflA ,a : Γ ` IA (a,a′).

Further equations:

IA (a,a′)[δ] = IA [δ](a[δ],a′[δ])

reflA ,a [δ] = reflA [δ],a[δ]

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Rules for Π

Formation. For A ∈ Type(Γ) and B ∈ Type(Γ·A) there is a
type Π(A ,B) ∈ Type(Γ).
Introduction. For b : Γ; A ` B there is a term
λ(b) : Γ ` Π(A ,B).
Elimination. For c : Γ ` Π(A ,B) and a : Γ ` A there is a
term ap(c,a) : Γ ` B[〈id,a〉].

Equations:

Π(A ,B)[γ] = Π(A[γ],B[〈γ ◦ p,q〉])
λ(b)[γ] = λ(b[〈γ ◦ p,q〉])

ap(c,a)[γ] = ap(c[γ],a[γ])
ap(λ(b),a) = b[〈id,a〉]

λ(ap(c[p],q)) = c

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Democracy

A cwf (C,T) is democratic iff for each object Γ of C there is
Γ ∈ Type([]) and an isomorphism Γ �γΓ []·Γ.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Cwf-morphisms preserving structure on the nose

A notion of strict cwf-morphism was defined in Dybjer 1996. It
requires that all data of a cwf is preserved on the nose. If (C,T)
and (C′,T ′) are two cwfs, then a ”strict” cwf-morphism is a pair
(F , σ), where

F : C→ C′ is a functor and
σ : T → T ′F is a natural transformation between
family-valued functors which preserves terminal object and
context comprehension on the nose.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Weak cwf-morphism

Here we need a weak version where the data of a cwf is only
preserved up to isomorphism. The strong transformations η
and ε will be families of cwf-morphisms but they do not
preserve cwf-structure on the nose.
It is not immediate what it means that ”types are preserved up
to isomorphism” in a cwf since Type(Γ) is only a set, not a
category.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

The indexed category of types in context

Let (C,T) be a cwf with Type(Γ) the set of types over Γ. We
construct the functor Type : Cop

→ Cat as follows:
The objects of Type(Γ) are types in Type(Γ). If
A ,B ∈ Type(Γ), then a morphism in Type(Γ)(A ,B) is a
term in Γ·A ` B[p].
If γ ∈ C(∆, Γ), then Type(γ) : Type(Γ)→ Type(∆) maps an
object (type) A ∈ Type(Γ) to A [γ] and a morphism (term)
b : Γ·A ` B[p] to b[〈γ ◦ p,q〉] : ∆·A [γ] ` B[γ][p].

Knowing what it means that two types are isomorphic we can
formulate a suitable notion of weak cwf-morphism. (The details
are verbose.) Note that we must also specify that the
type-constructors are preserved up to isomorphism.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Alternative formulation of democracy

The cwf (C,T) is democratic iff the canonical functor from
Type([]) to C is an equivalence of categories.

Cf Seely’s formulation, where ML is the category of categories
Type([]) of closed types, essentially.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

CwFIext Σ
dem has finite limits

The forgetful 2-functor U : CwFIext Σ
dem → FL is defined by

U(C,T) = C

U forgets the types and terms. H rebuilds them from the
contexts and substitutions!

We need to build pullbacks in the base category C of a
democratic cwf which supports extensional identity types
and Σ-types.
We also need to show that weak cwf-morphisms map to
finite limit preserving functors.
And we need to show that cwf-transformations map to
natural transformations of finite limit categories. (Trivial.)

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Bénabou’s construction - definition

The weak functor H : FL→ CwFIext Σ
dem is defined by

H(C) = (C,TC)

where TC rebuilds types and terms from C using Bénabou’s
construction.
It is a weak functor rather than a 2-functor, since it only
preserves identity and composition of 1-cells up to
isomorphism.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Bénabou’s construction - definition

A type over Γ is a functorial family, i.e. a functor
−→
A : C/Γ→ C→

such that:
(i) cod ◦

−→
A = dom

(ii) If Ω

δα
��>

>
α // ∆

δ
����

Γ

is a morphism in C/Γ,
−→
A (α) is a pullback

square, with the naming convention below:

−→
A (δ,α) //

−→
A (δα)

��
−→
A (δ)

��
Ω α

// ∆

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Building a cwf by the Benabou construction

Let C be a category with terminal object. Then we can define
TC:

types and terms
type substitution and term substitution

and show that (C,TC) is a cwf by defining
context comprehension

which supports
I-types
Σ-types

All this was proved by Hofmann (1994) using cwas rather than
cwfs. In addition we get a democratic cwf.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Proving biequivalence

Since UH = 1 it suffices to prove that the following strong
transformations between weak functors:

1
η // HU
ε

oo

are inverse up to invertible modifications. Since
HU(C,T) = (C,TC), this amounts to proving that

(C,T)
η(C,T) //

(C,TC)
ε(C,T)

oo

is an equivalence of cwfs: that is η and ε are weak
cwf-morphisms, which are inverse up to invertible modifications.

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

η: from types to families of display maps

How to get from a type A ∈ Type(Γ) to the corresponding
functorial family

−→
A (display map with its substitution behaviour).

It’s the obvious definition:
−→
A (δ) = pA [δ]

−→
A (δ, γ) = 〈γp,q〉

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

ε: from families of display maps to types

Given a functorial family
−→
A over Γ we do the following steps.

Instantiate to get a display map
−→
A (id) : ∆→ Γ.

Use democracy to get f : []·∆ ` Γ.
Build the corresponding type in Type([]·Γ):

Σy : ∆.I(f(y), x) (x : Γ)

or using cwf-combinators:

Σ(∆[〈〉], I(f [〈〈〉; q〉],q[p]))

Use democracy to build the corresponding type in Type(Γ).

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Conclusion

Seely’s result is ”morally” correct, but
the proof is wrong
the formulation is wrong (equivalence rather than
biequivalence)

Hofmann’s suggestion to consider a ”suitable 2-categorical
sense” works out, but it was considerable work

not only to prove it (many intricate calculations with
cwf-combinators)
but even to formulate it: what is a good notion of
”interpretation of Martin-Löf theories preserving structure
up to isomorphism”?

Seely Curien and Hofmann Biequivalence Cwfs Proving biequivalence Conclusion

Internal languages

In the end we can conclude that (assuming democracy)
Martin-Löf type theory with extensional identity types and
Σ and Π is the ”internal language of lcccs”.
Martin-Löf type theory with extensional identity types and
Σ is the ”internal language of left exact categories”.

	Seely
	Curien and Hofmann
	Biequivalence
	Cwfs
	Proving biequivalence
	Conclusion

