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CoVer:Combining Veri�
ation Methodsin Software Development

Goal: to build a system for verifying Haskell programs using a
ombination of� intera
tive theorem proving� automati
 theorem proving� random testingA
knowledgement: The Programati
a proje
t at Oregon Graduate Institutein Portland. 2



Combining Three Resear
h Groups at Chalmers

Programming Logi
: Martin-L�of Type Theory. Proof assistant Agda withwindow interfa
e Alfa. Automati
 proof sear
h using the Agsy tool.Formal Methods: SAT-solvers and automati
 �rst order logi
 theoremprovers. Appli
ations espe
ially in hardware veri�
ation.Fun
tional Programming: Lazy fun
tional language Haskell. Randomtesting tool Qui
kChe
k.
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How to do it?

Combining the languages of three di�erent kinds of tools:Agda: Proof assistant for 
onstru
tive type theory: dependent types, totalfun
tions.FOL: Automati
 theorem provers for 
lassi
al �rst order logi
.Haskell: Lazy fun
tional language with Hindley-Milner types, partialre
ursive fun
tions. A \real" language, but we use Haskell 
ore.And Qui
kChe
k has its own \property language" ...
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Three subgroups

Haskell - FOL: To translate a Haskell program into a �rst order theory of
ombinators. Call external automati
 �rst order prover (Gandalf, Otter,...) to prove properties of the Haskell program.Haskell - Agda: To translate a Haskell program into Agda and use Agdato intera
tively prove properties of it.Agda - FOL: To translate suitable Agda types to �rst order formulas. Callexternal automati
 �rst order prover (Gandalf, Otter, ...) to prove theseformulas. Talk by Thierry Coquand about AgdaLight with FOL-pluginand Qui
kChe
k plugin.
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Haskell - FOL

A Haskell program generates a �rst order theory of 
ombinators. Wehave one binary fun
tion symbol for appli
ation and one 
onstant for ea
hHaskell fun
tion.The translation is done in two steps:The Glasgow Haskell Compiler translates Haskell program into a 
orelanguage program (\the gh
 external 
ore").The CoverTranslator translates a 
ore program into a list of equationsbetween 
ombinator terms.Work in progress on the representation of types in �rst order logi
, and onproof by indu
tion. 6



Haskell - Agda

Haskell and Agda has an important 
ommon subset (modulo polymorphi
programs). Moreover, several ideas how to treat Haskell programs outsidethis subset:� Represent systemati
ally general re
ursive Haskell program f :: A ! Bby domain predi
ate D :: A! Set and total fun
tionf 0 :: (x :: A)! D x! B� Use Agda as a logi
al framework for a �rst order theory of 
ombinators� Monadi
 translation of Haskell programs into Agda. Instantiate toMaybe-monad or to Identity-monad (or potentially other monads whi
h
an deal with general re
ursion) 7



Haskell - Qui
kChe
k

A simple example of a property de�nition isprop_RevRev xs = reverse (reverse xs) == xswhere types = xs::[Int℄To 
he
k the property, we load this de�nition in to hugs and then invokeMain> qui
kChe
k prop_RevRevOK, passed 100 tests.
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Haskell - Qui
kChe
k (2)

Another Qui
kChe
k propertyprop_Insert x xs = ordered xs ==> ordered (insert x xs)where types = (x::Int, xs::[Int℄)and anotherprop_Insert2 x = forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Int
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Haskell - Qui
kChe
k (3)

To Qui
kChe
k 
onditional formulasp ==> qwhere types = (x1::t1,...,xn::tn)1. randomly generate (x1::t1,...,xn::tn)2. 
he
k whether p is true, if not generate new (x1::t,...,xn::tn)3. 
he
k whether q is true, if not we have a 
ounterexample, otherwise wehave a su

essful test
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Qui
kChe
k - FOL

Qui
kChe
k properties 
orrespond to formulas in a �rst order theory of
ombinators generated by a Haskell program. For example,forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Int
orresponds to the �rst order formula8x:Int(x)) 8xs:OrderedList(xs)) ordered�((insert�x)�xs) = True
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Qui
kChe
k - Agda

Qui
kChe
k-style properties 
an also be de�ned in Agda, using thedependent type system and the Curry-Howard isomorphism. For example,forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Int
orresponds to the type(x :: Int) -> (xs :: OrderedList) -> ordered (insert x xs) = Truein Agda. But note the following ...
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Qui
kChe
k - Agda (2)

(x :: Int) -> (xsp :: OrderedList) -> ordered (insert x xsp) = Truewhereinsert :: Int -> OrderedList -> OrderedListordered :: OrderedList -> Boolso alwaysordered xsp = TrueMoreover, xsp 
ontains proof information, it's not just a list.We have repla
ed testing by proving! But we 
an 
ombine them(Haysahi)! 13



Qui
kChe
k - Agda (3)

PhD thesis of Qiao Haiyan 2003 supervised by M. Takeyama and PD.� Qui
kChe
k-plugin using Alfa's plugin interfa
e. There is now alsoQui
kChe
k-plugin for AgdaLight (Ulf Norell 2004).� Random generators written in Agda/Alfa� Experiments with 
ombining testing and proving in Agda/Alfa:{ errors in the program{ errors in the spe
i�
ation{ errors in the random generatorall are roughly equally 
ommon! 14



Three de�nitions of ordered lists

Re
ursive de�nitionOrderedList = (xs :: [Int℄, p :: ordered xs = True)Indu
tive de�nitionSingle :: (x :: Int) -> OrderedListHd xCons :: (x :: Int) -> OrderedListHd y -> Lte x y ->OrderedListHd xNil :: OrderedListConsHd :: (x :: Int) -> OrderedListHd x -> OrderedListIndu
tive-re
ursive de�nition ... 15



Indu
tive-re
ursive de�nition of ordered lists

Nil :: OrderedListCons :: (x :: Int) -> (xsp :: OrderedList) -> lb x xsp = True ->OrderedListlb :: Int -> OrderedList -> Boollb x Nil = Truelb x (Cons y xsp q) = x <= y
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Test data generation and indu
tive de�nitions

Indu
tive de�nitions are generators: \indu
tively generated". A naive
anoni
al generator for an indu
tively de�ned data type is obtained bysele
ting a 
onstru
tor at random, and then 
ontinue and randomly generatethe arguments.This works for �rst order datatypes (algebrai
 datatypes) where
onstru
tors are �rst order fun
tions.In 
onstru
tive type theory we have indu
tively de�ned families of types(\indu
tive families"). The same basi
 prin
iple of 
hoosing a 
onstru
torat random works, but we may need to ba
ktra
k. Use relationship betweenHorn indu
tive families and logi
 programs (Hagiya and Sakurai 1984).
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Generating theorems

Horn 
lauses 
orresponding to to the axioms and inferen
e rules of asystem due to Lukasiewi
z:thm((P => Q) => ((Q => R) => (P => R))).thm((~P => P) => P).thm(P => (~P => Q)).thm(Q) :- thm(P), thm(P => Q).Running the query thm(X) on a Prolog implementation, we 
an obtaintheorems (s
hemas) as solutions for X; for exampleX = (((_A => _B) => (_C => _B)) => _D) => ((_C => A) => _D)
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Type theory and logi
 programs

Type theory Logi
 programmingFamily of sets P :: D ! Set Predi
ate Pan introdu
tion rule a Horn 
lauseindu
tive de�nition of P logi
 program de�ning P

We 
all an indu
tive family arising from a logi
 program a Horn indu
tivefamily. This is a subset of the general 
lass of indu
tive families 
onsideredin type theory.
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An indu
tive family of theorems

Formula is an indu
tively de�ned set of formulas.Thm :: Formula -> Set = dataax1 (p, q, r :: Formula):: Thm ((p => q) => ((q => r) => (p => r)))| ax2 (p :: Formula):: Thm ((-p => p) => p)| ax3 (p, q :: Formula):: Thm (p => (-p => q))| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q)):: Thm q
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Another 
onne
tion between indu
tive familiesand logi
 programs

nat(zero).nat(su

(X)) :- nat(X).formula(var(P)) :- nat(P).formula(~P) :- formula(P).formula(P => Q) :- formula(P), formula(Q).thm1((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R)):- formula(P), formula(Q), formula(R).thm1((~P => P) => P, ax2(P)) :- formula(P).thm1(P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).thm1(Q, mp(P,Q,X,Y)) :- thm1(P, X), thm1(P => Q, Y). 21



Con
luding remarks

� When a set or a family is (Horn) indu
tively generated we 
an alsorandomly generate or re
ursively enumerate its elements.� This is a generi
 te
hnique. A generator 
an be written for the whole
lass of Horn indu
tive families. (EÆ
ien
y is not guaranteed, just likein Prolog.)� The te
hnique does not only apply to dependent type theory. A variant
an be used in predi
ate logi
 with indu
tively de�ned predi
ates.
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