Combining Verification Methods
in Software Development:
an Overview of a Research Project at Chalmers

Peter Dybjer

Workshop on Automatic and Interactive Verification

Senri, Japan
18 April 2005

CoVer:
Combining Verification Methods
in Software Development

Goal: to build a system for verifying Haskell programs using a
combination of
e interactive theorem proving
e automatic theorem proving
e random testing

Acknowledgement: The Programatica project at Oregon Graduate Institute
in Portland.

Combining Three Research Groups at Chalmers

Programming Logic: Martin-Lof Type Theory. Proof assistant Agda with
window interface Alfa. Automatic proof search using the Agsy tool.

Formal Methods: SAT-solvers and automatic first order logic theorem
provers. Applications especially in hardware verification.

Functional Programming: Lazy functional language Haskell. Random
testing tool QuickCheck.

How to do it?

Combining the languages of three different kinds of tools:

Agda: Proof assistant for constructive type theory: dependent types, total
functions.

FOL: Automatic theorem provers for classical first order logic.

Haskell: Lazy functional language with Hindley-Milner types, partial
recursive functions. A “real” language, but we use Haskell core.

And QuickCheck has its own “property language” ...

Three subgroups

Haskell - FOL: To translate a Haskell program into a first order theory of
combinators. Call external automatic first order prover (Gandalf, Otter,
...) to prove properties of the Haskell program.

Haskell - Agda: To translate a Haskell program into Agda and use Agda
to interactively prove properties of it.

Agda - FOL: To translate suitable Agda types to first order formulas. Call
external automatic first order prover (Gandalf, Otter, ...) to prove these

formulas. Talk by Thierry Coquand about Agdalight with FOL-plugin
and QuickCheck plugin.

Haskell - FOL

A Haskell program generates a first order theory of combinators. We
have one binary function symbol for application and one constant for each
Haskell function.

The translation is done in two steps:

The Glasgow Haskell Compiler translates Haskell program into a core
language program (“the ghc external core™).

The CoverTranslator translates a core program into a list of equations
between combinator terms.

Work in progress on the representation of types in first order logic, and on
proof by induction.

Haskell - Agda

Haskell and Agda has an important common subset (modulo polymorphic
programs). Moreover, several ideas how to treat Haskell programs outside
this subset:

e Represent systematically general recursive Haskell program f :: A — B
by domain predicate D :: A — Set and total function
fle(x:A)—-Dx— B

e Use Agda as a logical framework for a first order theory of combinators

e Monadic translation of Haskell programs into Agda. Instantiate to
Maybe-monad or to Identity-monad (or potentially other monads which
can deal with general recursion)

Haskell - QuickCheck

A simple example of a property definition is

prop_RevRev xs = reverse (reverse xs) == XS
where types = xs::[Int]

To check the property, we load this definition in to hugs and then invoke

Main> quickCheck prop_RevRev
0K, passed 100 tests.

Haskell - QuickCheck (2)

Another QuickCheck property

prop_Insert x xs = ordered xs ==> ordered (insert x xs)
where types = (x::Int, xs::[Int])

and another

prop_Insert2 x = forAll orderedList $ \xs -> ordered (insert x xs)
where types = x::Int

Haskell - QuickCheck (3)

To QuickCheck conditional formulas

p ==>q
where types = (xl::tl1,...,xn::tn)

. randomly generate (x1::tl,...,xn::tn)
. check whether p is true, if not generate new (x1::t,...,xn::tn)

. check whether q is true, if not we have a counterexample, otherwise we
have a successful test

10

QuickCheck - FOL

QuickCheck properties correspond to formulas in a first order theory of
combinators generated by a Haskell program. For example,

forAll orderedlList $ \xs -> ordered (insert x xs)
where types = x::Int

corresponds to the first order formula

Vz.Int(x) = Vrs.OrderedList(xs) = ordered@((insert@Qz)Qzxs) = True

11

QuickCheck - Agda

QuickCheck-style properties can also be defined in Agda, using the
dependent type system and the Curry-Howard isomorphism. For example,

forAll orderedlList $ \xs -> ordered (insert x xs)
where types = x::Int

corresponds to the type
(x :: Int) -> (xs :: OrderedlList) -> ordered (insert x xs) = True

in Agda. But note the following ...

12

QuickCheck - Agda (2)

(x :: Int) -> (xsp :: OrderedList) -> ordered (insert x xsp) = True
where

insert :: Int -> OrderedList -> 0OrderedList

ordered :: (OrderedList -> Bool

so always

ordered xsp = True
Moreover, xsp contains proof information, it's not just a list.

We have replaced testing by proving! But we can combine them
(Haysahi)!

13

QuickCheck - Agda (3)

PhD thesis of Qiao Haiyan 2003 supervised by M. Takeyama and PD.

e QuickCheck-plugin using Alfa's plugin interface. There is now also
QuickCheck-plugin for AgdaLight (UIf Norell 2004).

e Random generators written in Agda/Alfa

e Experiments with combining testing and proving in Agda/Alfa:

— errors in the program
— errors in the specification
— errors in the random generator

all are roughly equally common!

14

Three definitions of ordered lists

Recursive definition
OrderedList = (xs :: [Int], p :: ordered xs = True)
Inductive definition

Single :: (x :: Int) -> OrderedListHd x
Cons :: (x :: Int) -> OrderedListHd y -> Lte x y ->
OrderedListHd x

Nil :: OrderedList
ConsHd :: (x :: Int) -> OrderedListHd x -> OrderedList

Inductive-recursive definition ...

15

Inductive-recursive definition of ordered lists

Nil :: OrderedList
Cons :: (x :: Int) -> (xsp :: OrderedlList) -> 1b x xsp = True ->
OrderedList

1b :: Int -> OrderedList -> Bool

1b x Nil = True
1b x (Cons y xsp q) = x <=y

16

Test data generation and inductive definitions

Inductive definitions are generators: “inductively generated”. A naive
canonical generator for an inductively defined data type is obtained by
selecting a constructor at random, and then continue and randomly generate
the arguments.

This works for first order datatypes (algebraic datatypes) where
constructors are first order functions.

In constructive type theory we have inductively defined families of types
(“inductive families”). The same basic principle of choosing a constructor
at random works, but we may need to backtrack. Use relationship between
Horn inductive families and logic programs (Hagiya and Sakurai 1984).

17

Generating theorems

Horn clauses corresponding to to the axioms and inference rules of a
system due to Lukasiewicz:

thm((P => Q) => ((Q => R) => (P => R))).
thm((~P => P) => P).

thm(P => (P => Q)).

thm(Q) :- thm(P), thm(P => Q).

Running the query thm(X) on a Prolog implementation, we can obtain
theorems (schemas) as solutions for X; for example

X = (((LA=> _B) => (_.C => _B)) => _D) => ((_LC => A) => _D)

18

Type theory and logic programs

Type theory Logic programming
Family of sets P :: D — Set | Predicate P

an introduction rule a Horn clause

inductive definition of P logic program defining P

We call an inductive family arising from a logic program a Horn inductive
family. This is a subset of the general class of inductive families considered
in type theory.

19

An inductive family of theorems

Formula is an inductively defined set of formulas.

Thm :: Formula -> Set = data
axl (p, q, r :: Formula)
:: Thm ((p => @) => ((@ => 1) => (p => 1)))

| ax2 (p :: Formula)
:: Thm ((—p => p) => p)
| ax3 (p, q :: Formula)
:: Thm (p => (-p => q))
| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q))

:: Thm q

20

Another connection between inductive families
and logic programs

nat (zero).

nat(succ(X)) :- mnat((X).

formula(var(P)) :- nat(P).

formula(~P) :- formula(P).

formula(P => Q) :- formula(P), formula(Q).

thm1 ((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R))

:— formula(P), formula(Q), formula(R).
thml1 ((~P => P) => P, ax2(P)) :- formula(P).
thm1i (P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).
thm1(Q, mp(P,Q,X,Y)) :- thmi(P, X), thmi(P => Q, Y).

21

Concluding remarks

e When a set or a family is (Horn) inductively generated we can also
randomly generate or recursively enumerate its elements.

e This is a generic technique. A generator can be written for the whole
class of Horn inductive families. (Efficiency is not guaranteed, just like
in Prolog.)

e The technique does not only apply to dependent type theory. A variant
can be used in predicate logic with inductively defined predicates.

22

