
Combining Veri�
ation Methodsin Software Development:an Overview of a Resear
h Proje
t at Chalmers

Peter Dybjer

Workshop on Automati
 and Intera
tive Veri�
ationSenri, Japan18 April 2005

1

CoVer:Combining Veri�
ation Methodsin Software Development

Goal: to build a system for verifying Haskell programs using a
ombination of� intera
tive theorem proving� automati
 theorem proving� random testingA
knowledgement: The Programati
a proje
t at Oregon Graduate Institutein Portland. 2

Combining Three Resear
h Groups at Chalmers

Programming Logi
: Martin-L�of Type Theory. Proof assistant Agda withwindow interfa
e Alfa. Automati
 proof sear
h using the Agsy tool.Formal Methods: SAT-solvers and automati
 �rst order logi
 theoremprovers. Appli
ations espe
ially in hardware veri�
ation.Fun
tional Programming: Lazy fun
tional language Haskell. Randomtesting tool Qui
kChe
k.

3

How to do it?

Combining the languages of three di�erent kinds of tools:Agda: Proof assistant for
onstru
tive type theory: dependent types, totalfun
tions.FOL: Automati
 theorem provers for
lassi
al �rst order logi
.Haskell: Lazy fun
tional language with Hindley-Milner types, partialre
ursive fun
tions. A \real" language, but we use Haskell
ore.And Qui
kChe
k has its own \property language" ...

4

Three subgroups

Haskell - FOL: To translate a Haskell program into a �rst order theory of
ombinators. Call external automati
 �rst order prover (Gandalf, Otter,...) to prove properties of the Haskell program.Haskell - Agda: To translate a Haskell program into Agda and use Agdato intera
tively prove properties of it.Agda - FOL: To translate suitable Agda types to �rst order formulas. Callexternal automati
 �rst order prover (Gandalf, Otter, ...) to prove theseformulas. Talk by Thierry Coquand about AgdaLight with FOL-pluginand Qui
kChe
k plugin.

5

Haskell - FOL

A Haskell program generates a �rst order theory of
ombinators. Wehave one binary fun
tion symbol for appli
ation and one
onstant for ea
hHaskell fun
tion.The translation is done in two steps:The Glasgow Haskell Compiler translates Haskell program into a
orelanguage program (\the gh
 external
ore").The CoverTranslator translates a
ore program into a list of equationsbetween
ombinator terms.Work in progress on the representation of types in �rst order logi
, and onproof by indu
tion. 6

Haskell - Agda

Haskell and Agda has an important
ommon subset (modulo polymorphi
programs). Moreover, several ideas how to treat Haskell programs outsidethis subset:� Represent systemati
ally general re
ursive Haskell program f :: A ! Bby domain predi
ate D :: A! Set and total fun
tionf 0 :: (x :: A)! D x! B� Use Agda as a logi
al framework for a �rst order theory of
ombinators� Monadi
 translation of Haskell programs into Agda. Instantiate toMaybe-monad or to Identity-monad (or potentially other monads whi
h
an deal with general re
ursion) 7

Haskell - Qui
kChe
k

A simple example of a property de�nition isprop_RevRev xs = reverse (reverse xs) == xswhere types = xs::[Int℄To
he
k the property, we load this de�nition in to hugs and then invokeMain> qui
kChe
k prop_RevRevOK, passed 100 tests.

8

Haskell - Qui
kChe
k (2)

Another Qui
kChe
k propertyprop_Insert x xs = ordered xs ==> ordered (insert x xs)where types = (x::Int, xs::[Int℄)and anotherprop_Insert2 x = forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Int

9

Haskell - Qui
kChe
k (3)

To Qui
kChe
k
onditional formulasp ==> qwhere types = (x1::t1,...,xn::tn)1. randomly generate (x1::t1,...,xn::tn)2.
he
k whether p is true, if not generate new (x1::t,...,xn::tn)3.
he
k whether q is true, if not we have a
ounterexample, otherwise wehave a su

essful test

10

Qui
kChe
k - FOL

Qui
kChe
k properties
orrespond to formulas in a �rst order theory of
ombinators generated by a Haskell program. For example,forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Int
orresponds to the �rst order formula8x:Int(x)) 8xs:OrderedList(xs)) ordered�((insert�x)�xs) = True
11

Qui
kChe
k - Agda

Qui
kChe
k-style properties
an also be de�ned in Agda, using thedependent type system and the Curry-Howard isomorphism. For example,forAll orderedList $ \xs -> ordered (insert x xs)where types = x::Int
orresponds to the type(x :: Int) -> (xs :: OrderedList) -> ordered (insert x xs) = Truein Agda. But note the following ...

12

Qui
kChe
k - Agda (2)

(x :: Int) -> (xsp :: OrderedList) -> ordered (insert x xsp) = Truewhereinsert :: Int -> OrderedList -> OrderedListordered :: OrderedList -> Boolso alwaysordered xsp = TrueMoreover, xsp
ontains proof information, it's not just a list.We have repla
ed testing by proving! But we
an
ombine them(Haysahi)! 13

Qui
kChe
k - Agda (3)

PhD thesis of Qiao Haiyan 2003 supervised by M. Takeyama and PD.� Qui
kChe
k-plugin using Alfa's plugin interfa
e. There is now alsoQui
kChe
k-plugin for AgdaLight (Ulf Norell 2004).� Random generators written in Agda/Alfa� Experiments with
ombining testing and proving in Agda/Alfa:{ errors in the program{ errors in the spe
i�
ation{ errors in the random generatorall are roughly equally
ommon! 14

Three de�nitions of ordered lists

Re
ursive de�nitionOrderedList = (xs :: [Int℄, p :: ordered xs = True)Indu
tive de�nitionSingle :: (x :: Int) -> OrderedListHd xCons :: (x :: Int) -> OrderedListHd y -> Lte x y ->OrderedListHd xNil :: OrderedListConsHd :: (x :: Int) -> OrderedListHd x -> OrderedListIndu
tive-re
ursive de�nition ... 15

Indu
tive-re
ursive de�nition of ordered lists

Nil :: OrderedListCons :: (x :: Int) -> (xsp :: OrderedList) -> lb x xsp = True ->OrderedListlb :: Int -> OrderedList -> Boollb x Nil = Truelb x (Cons y xsp q) = x <= y

16

Test data generation and indu
tive de�nitions

Indu
tive de�nitions are generators: \indu
tively generated". A naive
anoni
al generator for an indu
tively de�ned data type is obtained bysele
ting a
onstru
tor at random, and then
ontinue and randomly generatethe arguments.This works for �rst order datatypes (algebrai
 datatypes) where
onstru
tors are �rst order fun
tions.In
onstru
tive type theory we have indu
tively de�ned families of types(\indu
tive families"). The same basi
 prin
iple of
hoosing a
onstru
torat random works, but we may need to ba
ktra
k. Use relationship betweenHorn indu
tive families and logi
 programs (Hagiya and Sakurai 1984).
17

Generating theorems

Horn
lauses
orresponding to to the axioms and inferen
e rules of asystem due to Lukasiewi
z:thm((P => Q) => ((Q => R) => (P => R))).thm((~P => P) => P).thm(P => (~P => Q)).thm(Q) :- thm(P), thm(P => Q).Running the query thm(X) on a Prolog implementation, we
an obtaintheorems (s
hemas) as solutions for X; for exampleX = (((_A => _B) => (_C => _B)) => _D) => ((_C => A) => _D)
18

Type theory and logi
 programs

Type theory Logi
 programmingFamily of sets P :: D ! Set Predi
ate Pan introdu
tion rule a Horn
lauseindu
tive de�nition of P logi
 program de�ning P

We
all an indu
tive family arising from a logi
 program a Horn indu
tivefamily. This is a subset of the general
lass of indu
tive families
onsideredin type theory.

19

An indu
tive family of theorems

Formula is an indu
tively de�ned set of formulas.Thm :: Formula -> Set = dataax1 (p, q, r :: Formula):: Thm ((p => q) => ((q => r) => (p => r)))| ax2 (p :: Formula):: Thm ((-p => p) => p)| ax3 (p, q :: Formula):: Thm (p => (-p => q))| mp (p, q :: Formula) (x :: Thm p) (y :: Thm (p => q)):: Thm q

20

Another
onne
tion between indu
tive familiesand logi
 programs

nat(zero).nat(su

(X)) :- nat(X).formula(var(P)) :- nat(P).formula(~P) :- formula(P).formula(P => Q) :- formula(P), formula(Q).thm1((P => Q) => ((Q => R) => (P => R)), ax1(P,Q,R)):- formula(P), formula(Q), formula(R).thm1((~P => P) => P, ax2(P)) :- formula(P).thm1(P => (~P => Q), ax3(P,Q)) :- formula(P), formula(Q).thm1(Q, mp(P,Q,X,Y)) :- thm1(P, X), thm1(P => Q, Y). 21

Con
luding remarks

� When a set or a family is (Horn) indu
tively generated we
an alsorandomly generate or re
ursively enumerate its elements.� This is a generi
 te
hnique. A generator
an be written for the whole
lass of Horn indu
tive families. (EÆ
ien
y is not guaranteed, just likein Prolog.)� The te
hnique does not only apply to dependent type theory. A variant
an be used in predi
ate logi
 with indu
tively de�ned predi
ates.
22

