
Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

The Evolution of
Inductive Definitions in Type Theory

(a Retrospective)
to Christine

on the occasion of her honorary doctorate
at Gothenburg University

Peter Dybjer

Workshop on Proofs and Programs
22 October, 2011



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Some papers on inductive definitions by Christine

”Extraction de Programmes dans le Calcul des Constructions”
(PhD thesis 1989)

”Inductively Defined Types in the Calculus of Constructions”
(MFPS 1989) with Frank Pfenning

”Inductive Types” (COLOG-88) with Thierry Coquand

”Inductive Definitions in the system Coq - Rules and
Properties” (TLCA 1993)



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Intuitionistic type theory - before 1984

1971 Intuitionistic type theory with type : type -
impredicative and inconsistent

1972 Intuitionistic type theory - predicative, intensional
and consistent

1979 Intuitionistic type theory - predicative, extensional
and with meaning explanations
”Constructive Mathematics and Computer
Programming”. Application to computer science
started shortly afterwards in Gothenburg and at
Cornell.

1982-83 ca First proof assistants for intuitionistic type theory
(GTT and NuPRL)



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

What is a mathematical object, constructively?

Martin-Löf type theory is not just a full-scale logical system for
constructive mathematics – it comes with a ”meaning theory”.

What kind of thing is a computable function?

What kind of things are the inputs and outputs of computable
functions? Numbers? Unary or binary?
Instead inputs and outputs of computable functions are
structured objects: numbers, functions, pairs, lists, trees, ...



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

What is a mathematical object, constructively?

Martin-Löf type theory is not just a full-scale logical system for
constructive mathematics – it comes with a ”meaning theory”.

What kind of thing is a computable function?

What kind of things are the inputs and outputs of computable
functions? Numbers? Unary or binary?
Instead inputs and outputs of computable functions are
structured objects: numbers, functions, pairs, lists, trees, ...



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

What is a mathematical object, constructively?

Martin-Löf type theory is not just a full-scale logical system for
constructive mathematics – it comes with a ”meaning theory”.

What kind of thing is a computable function?

What kind of things are the inputs and outputs of computable
functions? Numbers? Unary or binary?

Instead inputs and outputs of computable functions are
structured objects: numbers, functions, pairs, lists, trees, ...



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

What is a mathematical object, constructively?

Martin-Löf type theory is not just a full-scale logical system for
constructive mathematics – it comes with a ”meaning theory”.

What kind of thing is a computable function?

What kind of things are the inputs and outputs of computable
functions? Numbers? Unary or binary?
Instead inputs and outputs of computable functions are
structured objects: numbers, functions, pairs, lists, trees, ...



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Types of mathematical objects in intuitionistic type theory

1972 (97): (Πx : A)B(x), (Σx : A)B(x),A + B,N,Nn,U
1973 (75): add I(A, a, b),Un

1979 (82): add (Wx : A)B(x)

1980 (84): add O,List(A), (universes a la Tarski)



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

An open system

New types can be added whenever there is a need for them,
provided meaning explanations can be provided for them, see for
example, Nordström ”Multilevel Functions in Martin-Löf’s Type
Theory” 1985.
The general principle is that mathematical objects are ”inductively
generated”. But what does this mean?

Or that mathematical objects are ”well-founded trees”. But what
does this mean?
Can one say something more precise about when it is correct to
add a new type of objects to intuitionistic type theory?
Then there was 1984.



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

An open system

New types can be added whenever there is a need for them,
provided meaning explanations can be provided for them, see for
example, Nordström ”Multilevel Functions in Martin-Löf’s Type
Theory” 1985.
The general principle is that mathematical objects are ”inductively
generated”. But what does this mean?
Or that mathematical objects are ”well-founded trees”. But what
does this mean?

Can one say something more precise about when it is correct to
add a new type of objects to intuitionistic type theory?
Then there was 1984.



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

An open system

New types can be added whenever there is a need for them,
provided meaning explanations can be provided for them, see for
example, Nordström ”Multilevel Functions in Martin-Löf’s Type
Theory” 1985.
The general principle is that mathematical objects are ”inductively
generated”. But what does this mean?
Or that mathematical objects are ”well-founded trees”. But what
does this mean?
Can one say something more precise about when it is correct to
add a new type of objects to intuitionistic type theory?

Then there was 1984.



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

An open system

New types can be added whenever there is a need for them,
provided meaning explanations can be provided for them, see for
example, Nordström ”Multilevel Functions in Martin-Löf’s Type
Theory” 1985.
The general principle is that mathematical objects are ”inductively
generated”. But what does this mean?
Or that mathematical objects are ”well-founded trees”. But what
does this mean?
Can one say something more precise about when it is correct to
add a new type of objects to intuitionistic type theory?
Then there was 1984.



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

The Calculus of Constructions (1984)

CC has impredicative universe ∗ closed under dependent function
space:

A type x : A ` B : ∗
(x : A)→ B : ∗

Types of Church encodings

N = (X : ∗)→ X → (X → X )→ X : ∗

I A a b = (X : A→ ∗)→ X a→ X b : ∗

Cf predicative universe of Martin-Löf type theory closed under
dependent function space:

A : ∗ x : A ` B : ∗
(x : A)→ B : ∗



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

CC can encode inductive families

In a joint paper with Frank Pfenning (MFPS 1989) Christine
formulated the following type constructor

indtype α : (z1 : Q1)→ · · · → (zm : Qm)→ ∗ with
...

c : (x1 : P1)→ · · · → (xk : Pk)→ αM1 · · ·Mm

...

end

Restrictions:

α may not occur in Qi .

α may only occur positively in Pj .



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

CC can encode inductive families

Associate with each inductively defined type α a type α in the pure
CC by a systematic impredicative encoding.

Theorem (Adequacy of impredicative encodings): Bijection
between equivalence classes of terms in αM1 · · ·Mm and
αM1 · · ·Mm

In CC all mathematical objects are (coded as) lambda terms
(Church numerals, Church truth values, etc)!



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

A problem: nonderivability of Induction in CC

If
n : N = (X : ∗)→ X → (X → X )→ X

Ind n = (C : N → ∗)→ C 0→ ((x : N)→ C x → C (succ x))→ C n

then the induction principle

(n : N)→ Ind n

is not derivable in CC.

Note that
(X : ∗)→ ((X → X )→ X )→ X : ∗

is a well-formed type in CC. What is the induction principle?



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Non-derivability of induction for arbitrary encoding

Geuvers (TLCA 2001): In CC there is no instantiation of the
context

N : ∗, 0 : N, s : N → N, R : (n : N)→ Ind n



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Assuming the induction principle

Instead one assumes the induction principle for N.

New problem: how to prove 0 6= 1? Extend CC with universes.



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Assuming the induction principle

Instead one assumes the induction principle for N.

New problem: how to prove 0 6= 1?

Extend CC with universes.



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Assuming the induction principle

Instead one assumes the induction principle for N.

New problem: how to prove 0 6= 1? Extend CC with universes.



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Extending CC with primitive inductive types - CIC

Extend CC with rules for primitive inductive types.

Coquand and Paulin ”Inductively defined types” (COLOG-88)
(inductive types, implementation had inductive families).

Paulin-Mohring ”Inductive definitions in the system Coq rules
and properties” (TLCA 93) (inductive families)

Set-theoretic model, strong normalization proof



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Rules for inductive types (expressed diagrammatically)

Let Φ : ∗ → ∗ be a strictly positive operator. Then we can form
A = µΦ, intro, and rec such that

ΦA
intro

- A

Φ(Σ A C )

Φ 〈id, rec d〉

?

d
- Σ A C

〈id, rec d〉

?

commutes.

This can be generalized to inductive families.



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Uniform parametrization and the Paulin identity type

To recover usual rules for type formers we need to introduce the
idea of uniform parameters. For example, A,B : ∗ are parameters
in A + B and A× B.
Martin-Löf’s identity type (in Agda). One parameter, two indices:

data I {A : Set} : A -> A -> Set where
r : (a : A) -> I a a

Paulin’s identity type in Agda (fix one argument a, two
parameters, one index.)

data I {A : Set} (a : A) : A -> Set where
r : I a a



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Identity elimination

Martin-Löf:

J : {A : Set} -- parameter
-> {C : (x y : A) -> I x y -> Set} -- induction formula
-> ((x : A) -> C x x (r x)) -- closure condition
-> (a b : A) -> (c : I a b) -> C a b c -- conclusion

J d .b b (r .b) = d b

Paulin:

J : {A : Set} -> (a : A) -- parameters
-> (C : (y : A) -> I a y -> Set) -- induction formula
-> C a r -- closure condition
-> (b : A) -> (c : I a b) -> C b c -- conclusion

J .b d b r = d



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

The Swedish (predicative) point of view

Intuitionistic type theory is an open system, we can add new
inductive types when there is a need for it

Can we add inductive families?

Is there a general formulation?



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

The Swedish (predicative) point of view

Intuitionistic type theory is an open system, we can add new
inductive types when there is a need for it

Can we add inductive families?

Is there a general formulation?



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

The Swedish (predicative) point of view

Intuitionistic type theory is an open system, we can add new
inductive types when there is a need for it

Can we add inductive families?

Is there a general formulation?



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Martin-Löf 1972 on schema for inductive definitions

Martin-Löf 1972: “The type N is just the prime example of a type
introduced by an ordinary inductive definition. However, it seems
preferable to treat this special case rather than to give a
necessarily much more complicated general formulation which
would include (Σ : A)B(x), A + B, Nn and N as special cases. See
Martin-Löf 1971 for a general formulation of inductive definitions
in the language of ordinary first order predicate logic.”

Martin-Löf 1984: “We can follow the same pattern used to define
natural numbers to introduce other inductively defined sets. We
see here the example of lists”.



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Extending ITT with inductive definitions (ID)

Add ID as µX .Φ. Feferman (predicate logic)
Constable and Mendler 1985 (inductive types)

Schema for ID. Martin-Löf 1971 (predicate logic)
Backhouse 1986 (inductive types)
Dybjer 1989 (inductive families)

Encode ID in W . Dybjer 1987 (inductive types)
Petersson-Synek 1989 (general tree type)

Universe of codes for ID. Dybjer and Setzer 1999
(inductive-recursive types)
Dybjer and Setzer 2002 (inductive-recursive
families)

Does it matter whether we work in a predicative (ITT) or
impredicative (CIC) setting?



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Extending ITT with inductive definitions (ID)

Add ID as µX .Φ. Feferman (predicate logic)
Constable and Mendler 1985 (inductive types)

Schema for ID. Martin-Löf 1971 (predicate logic)
Backhouse 1986 (inductive types)
Dybjer 1989 (inductive families)

Encode ID in W . Dybjer 1987 (inductive types)
Petersson-Synek 1989 (general tree type)

Universe of codes for ID. Dybjer and Setzer 1999
(inductive-recursive types)
Dybjer and Setzer 2002 (inductive-recursive
families)

Does it matter whether we work in a predicative (ITT) or
impredicative (CIC) setting?



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Have we got the right formulation of inductive families?

Predicative (ITT+ID) vs impredicative (CIC) point of view?
Semantic foundation?

Must index sets be small?

Must index sets have decidable equality?



Workshop on Proofs and Programs

Introduction ITT CC CIC ITT+ID Beyond ID

Beyond inductive definitions

higher universes: Palmgren’s super universe and universe
hierarchies, Setzer’s Mahlo universe

inductive-recursive definitions

universe of codes for inductive-recursive definitions (restricts
to new formulation of inductive definitions)

even higher universes: Setzer’s autonomous Mahlo and
Π3-reflecting universes

inductive-inductive definitions

Also pattern matching, termination checking, sized types in Agda
... is there some nice structure?
Coinductive types? Setzer 2011 has meaning explanations (first
explicit attempt, cf Martin-Löf mathematics of infinity)


	Introduction
	ITT
	CC
	CIC
	ITT+ID
	Beyond ID

