
FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Normalization by Evaluation
and the Foundations of Constructive Mathematics

1972 - 2009

Peter Dybjer

Chalmers tekniska högskola, Göteborg, Sweden

Workshop on Normalization by Evaluation
August 15, 2009

University of California at Los Angeles

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

The question

Is normalization by evaluation an intrinsic part of a foundational
framework for constructive mathematics?

in 1972 - 73

progress 1979 - 2009

an open problem

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

The question

Is normalization by evaluation an intrinsic part of a foundational
framework for constructive mathematics?

in 1972 - 73

progress 1979 - 2009

an open problem

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

The question

Is normalization by evaluation an intrinsic part of a foundational
framework for constructive mathematics?

in 1972 - 73

progress 1979 - 2009

an open problem

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

The question

Is normalization by evaluation an intrinsic part of a foundational
framework for constructive mathematics?

in 1972 - 73

progress 1979 - 2009

an open problem

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

It’s 1972. State of the art

Normalization proofs with "computablility" predicates:

Tait 1967 - simply typed lambda calculus

Girard 1971 - system F

Formulas as types:

Howard 1968, intuitionistic predicate logic with equality

de Bruijn 1968, Automath

Scott 1970, Constructive Validity

Intuitionistic type theory with normalization proofs (unpublished):

Martin-Löf 1971, A theory of types. Dependent type theory with
type : type. Girard’s paradox.

Martin-Löf 1972, An intuitionistic theory of types. Predicative
theory with a universe of small types. Published in 1997!

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

It’s 1972. State of the art

Normalization proofs with "computablility" predicates:

Tait 1967 - simply typed lambda calculus

Girard 1971 - system F

Formulas as types:

Howard 1968, intuitionistic predicate logic with equality

de Bruijn 1968, Automath

Scott 1970, Constructive Validity

Intuitionistic type theory with normalization proofs (unpublished):

Martin-Löf 1971, A theory of types. Dependent type theory with
type : type. Girard’s paradox.

Martin-Löf 1972, An intuitionistic theory of types. Predicative
theory with a universe of small types. Published in 1997!

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

It’s 1972. State of the art

Normalization proofs with "computablility" predicates:

Tait 1967 - simply typed lambda calculus

Girard 1971 - system F

Formulas as types:

Howard 1968, intuitionistic predicate logic with equality

de Bruijn 1968, Automath

Scott 1970, Constructive Validity

Intuitionistic type theory with normalization proofs (unpublished):

Martin-Löf 1971, A theory of types. Dependent type theory with
type : type. Girard’s paradox.

Martin-Löf 1972, An intuitionistic theory of types. Predicative
theory with a universe of small types. Published in 1997!

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

It’s 1972. State of the art

Normalization proofs with "computablility" predicates:

Tait 1967 - simply typed lambda calculus

Girard 1971 - system F

Formulas as types:

Howard 1968, intuitionistic predicate logic with equality

de Bruijn 1968, Automath

Scott 1970, Constructive Validity

Intuitionistic type theory with normalization proofs (unpublished):

Martin-Löf 1971, A theory of types. Dependent type theory with
type : type. Girard’s paradox.

Martin-Löf 1972, An intuitionistic theory of types. Predicative
theory with a universe of small types. Published in 1997!

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

It’s 1972. State of the art

Normalization proofs with "computablility" predicates:

Tait 1967 - simply typed lambda calculus

Girard 1971 - system F

Formulas as types:

Howard 1968, intuitionistic predicate logic with equality

de Bruijn 1968, Automath

Scott 1970, Constructive Validity

Intuitionistic type theory with normalization proofs (unpublished):

Martin-Löf 1971, A theory of types. Dependent type theory with
type : type. Girard’s paradox.

Martin-Löf 1972, An intuitionistic theory of types. Predicative
theory with a universe of small types. Published in 1997!

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

It’s 1972. State of the art

Normalization proofs with "computablility" predicates:

Tait 1967 - simply typed lambda calculus

Girard 1971 - system F

Formulas as types:

Howard 1968, intuitionistic predicate logic with equality

de Bruijn 1968, Automath

Scott 1970, Constructive Validity

Intuitionistic type theory with normalization proofs (unpublished):

Martin-Löf 1971, A theory of types. Dependent type theory with
type : type. Girard’s paradox.

Martin-Löf 1972, An intuitionistic theory of types. Predicative
theory with a universe of small types. Published in 1997!

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

About models for intuitionistic type theories ... (p82)

In the study of models of intuitionistic theories, one has
the choice between classical and intuitionistic abstractions
on the metalevel. ... An obstacle to the formulation of a
general intuitionistic notion of model has been the lack of a
sufficiently welldeveloped intuitionistic notion of set.

Using the type-theoretic abstractions described in [17], I
intend in the following to formulate an intuitionistic notion of
model.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

... and the notion of definitional equality (p82-83)

The transistion to intuitionistic abstractions on the
metalevel is both essential and nontrivial. Essential,
because in what seems to me to be the most fruitful notion of
model, the interpretation of the convertibility relation conv is
standard, that is, it is interpreted as definitional equality =def
in the model, and definitional equality is a notion which is
unmentionable within the classical set theoretic framework.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Term model of the positive implicational calculus (p 87)

(a) Typ =def the type of pairs (A,φ), where A is a type
symbol and φ a species of closed terms with type
symbol A.

(b) Obj((A,φ)) =def (Σa ∈ Term(A))φ(a).

(c) F((A,φ),(B,ψ)) =def (A→ B, the species of all closed
terms b with type symbol A→ B such that

(∀x ∈Obj((A,φ)))(∃y ∈Obj((B,ψ)))(b(p(x)) redp(y))

(d) Ap(b,a) =def p(q(b,a))

(e) ... K =def (K ,(λx)((K (p(x)),(λy)(x ,
the proof that K (p(x),p(y)) redp(x)),
the proof that K (p(x)) redK (p(x)))))

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

You have just witnessed the birth of nbe!

... in the term model, we achieve that if a conv b, then
the normal forms of a and b as well as the proofs which
show that they are computable (hereditarily normalizable)
are definitionally equal.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Local formalizability, p 99

The proof of normalization for my intuitionistic type theory
(see [17]) becomes locally formalizable in itself. When the
dubious rule of lambda conversion was allowed, I could not
carry out the proof of normalization for every specific term in
the theory itself, contrary to what one would expect from
one’s experience with other full scale formal theories. I was
only able to prove CA and CB to be extensionally equal,
whereas one would like to have CA =def CB. Here CA and
CB are the computability predicates associated with the type
symbols A and B, respectively.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

An Intuitionistic Theory of Types: Predicative Part

Logic Colloquium 1973 in Bristol.

First published version of Martin-Löf’s intuitionistic type theory.
(Super) combinator version, no bound variables.

Normalization "nbe-style". Not only proved that normal forms
exist, but they were explicitly given ("computed").

Several meta-theoretic results proved as corollaries of nbe

3.7 Church-Rosser (Hancock)
3.8 Decidability of convertibility

3.13 Decidability of the ∈-relation (type-checking
algorithm)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

An Intuitionistic Theory of Types: Predicative Part

Logic Colloquium 1973 in Bristol.

First published version of Martin-Löf’s intuitionistic type theory.
(Super) combinator version, no bound variables.

Normalization "nbe-style". Not only proved that normal forms
exist, but they were explicitly given ("computed").

Several meta-theoretic results proved as corollaries of nbe

3.7 Church-Rosser (Hancock)
3.8 Decidability of convertibility

3.13 Decidability of the ∈-relation (type-checking
algorithm)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

An Intuitionistic Theory of Types: Predicative Part

Logic Colloquium 1973 in Bristol.

First published version of Martin-Löf’s intuitionistic type theory.
(Super) combinator version, no bound variables.

Normalization "nbe-style". Not only proved that normal forms
exist, but they were explicitly given ("computed").

Several meta-theoretic results proved as corollaries of nbe

3.7 Church-Rosser (Hancock)
3.8 Decidability of convertibility

3.13 Decidability of the ∈-relation (type-checking
algorithm)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

An Intuitionistic Theory of Types: Predicative Part

Logic Colloquium 1973 in Bristol.

First published version of Martin-Löf’s intuitionistic type theory.
(Super) combinator version, no bound variables.

Normalization "nbe-style". Not only proved that normal forms
exist, but they were explicitly given ("computed").

Several meta-theoretic results proved as corollaries of nbe

3.7 Church-Rosser (Hancock)
3.8 Decidability of convertibility

3.13 Decidability of the ∈-relation (type-checking
algorithm)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

The model of closed normal terms, the normalization
theorem (for closed terms) and its consequences

In the present theory, however, the definiton of the notion
of convertibility and the proof that an arbitrary term is
convertible can no longer be separated, because the type
symbols and the terms are generated simultaneously.
Instead we shall show by induction on the length of a closed
derivation, if it ends with a ∈ A, how to define a′ and a′′,
where

a′ is a closed normal term with type symbol A′, called
the normal form of a, such that a red a′, and
a′′ is a proof of A′′(a′), which it is sometimes more
natural to think of as an object of type A′′(a′),

and if it ends with aconvb, that

a′ =def b′ and a′′ =def b′′

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Why did not the story end in 1973?

(Super) combinator version of intuitionistic type theory was
considered too weak to be useful.

Local formalizability of nbe-proof (and its corollaries) is claimed
but not shown.

No consistency proof relative to set theory.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

1979 revolution - Constructive Mathematics and Computer
Programming

Meaning explanations! Lazy evaluation of closed terms to
constructor form.

Extensional type theory - a stronger theory

Normalization of open expressions not part of meaning theory.
Normalization and decidability of judgement do not hold.

Nbe forgotten (implementations like NuPRL and GTT did not
employ normalization).

Against metatheory!

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

1984 impredicative uprising - normalization is back!

Coquand and Huet 1984. A calculus of constructions.
Intuitionistic type theory: impredicative part.

Normalization property and decidable judgements, used for
type-checking in the implementation.

No discussion of intuitionistic model theory and nbe. Set-theoretic
abstractions on the meta level.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

1986 counter revolution

Martin-Löf 1986. Intuitionistic type theory based on a
(predicative) logical framework.

Intensional type theory. Decidable judgements considered
philosophically important. Normalization part of type-checking in
the ALF implementation of 1990.

Combined legacy of 1973 (decidability) and 1979 (meaning
explanations) but metatheory not written down by Martin-Löf. No
revised version of 1973 paper.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

NBE (re)discovered, programs written

1991 Berger and Schwichtenberg. Nbe for betaeta. Scheme
program and set-theoretic proof.
1993 Coquand and Dybjer. 1972-style nbe in dependently typed
metalanguage.

Extracted an nbe-algorithm for positive implicational calculus
(typed combinatory logic).
Added data types, including Brouwer ordinals
Implemented algorithm + correctness proof in ALF. Both
integrated and external version.

Also tried to formalize 1973 version of intuitionistic type theory,
but could not do it for dependent types, only for the simply typed
part. Tried to do the "local formalizability" but got stuck.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Barras, Coq in Coq, MSc 1994

Local formalizability of Calculus of Constructions!

In particular, we prove strong normalization and
decidability of type inference. From the latter proof, we
extract a certified Caml Light program, which performs type
inference (or type-checking) for an arbitrary typing
judgement in CC. Integrating this program in a larger
system, including a parser and pretty-printer, we obtain a
stand-alone proof-checker, called CoC, for the Calculus of
Constructions. As an example, the formal proof of
Newman’s lemma, build with Coq, can be re-verified by CoC
with reasonable performance.

Definition of the theory as a reduction system. CoC not ITT.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Local formalizability - requirements

Local formalizability of the main meta-theorems (in particular
decidability of type-checking) for a fragment Martin-Löf
type theory in a suitable larger fragment.

Canonical object and meta theory.

Machine-checked proof.

Confluence of theory and practice. The type-checking algorithm
should be (close to) one used in practice.

Make good use of the meta language. Make good use of dependent
types. Mathematically elegant treatment, category
theory?

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

NBE for dependent types with beta and eta

2004 Martin-Löf. Nbe for intuitionistic type theory with betaeta
BS91 + ML73. Paper proof.

2006 Danielsson. Nbe for intuitionistic type theory with betaeta in
Agda using non-strictly positive types.

2007 Abel, Aehlig, Dybjer, 2007 Abel, Coquand, Dybjer. Haskell
algorithm, set theoretic proof.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Relevant progress on several different topics

We have looked at

Improved object theory

Type-checking

Nbe

But the following is also relevant:

Induction-recursion (for metatheory)

Categorical models of dependent type theory (leading up to cwfs)

Intuitionistic model theory (setoids and other E-notions,
E-categories, E-cwfs)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Categorical model for type-checking dependent types

2008 Abel, Coquand, Dybjer. Cwf-style type-checking algorithm
using hereditary substitution. Specification of correctness as
initiality of cwfs.

We shall here show only the core of dependent type theory,
sometimes called "the logical framework" (LF). The methods
generalize to deal with the "data types" of Martin-Löf type theory and
extensions with inductive definitions. We use Russell-style terms (type
symbols are just special terms) defined in Haskell

data Tm = Var Int | App Tm Tm
| Lam Tm | Pi Tm Tm | U

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Normal and neutral raw terms

Normal terms t (including normal types) have no β-redexes. They are
inductively generated together with the auxiliary subclass of neutral
terms s:

t ::= s | λ(t) | Π(t, t) | Set

s ::= i | ap(s, t)

In Haskell:

data No = Ne Ne | Lam No | Pi No No | U
data Ne = Var Int | App Ne No

Note again Russell-style.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

The type-checking functions

For simplicity, we use a single type Tm containing both ordinary terms
and type symbols, both normal and non-normal ones. But the
algorithm is only intended to be applied to normal ones.

type Ty = Tm
type Cxt = [Ty]
type Subst = [Tm]

isCo :: Cxt -> Bool
isSu :: Cxt -> Cxt -> Subst -> Bool
isTy :: Cxt -> Ty -> Bool
isTm :: Cxt -> Ty -> Tm -> Bool

Why Subst and isSu? Because we shall use category theory! More
later.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Checking contexts

isCo :: Cxt -> Bool
isCo [] = True
isCo (a:cxt) = isCo cxt && isTy cxt a

checks whether a list of expressions represents a correct context.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Checking types

isTy :: Cxt -> Ty -> Bool
isTy cxt (Pi a b) = isTy cxt a && isTy (a:cxt) b
isTy cxt U = True
isTy cxt a = isTm cxt U a

checks whether an expression is a correct type with respect to a
context.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Checking terms

isTm :: Cxt -> Ty -> Tm -> Bool
isTm cxt (Pi a b) (Lam t) = isTm (a:cxt) b t
isTm cxt _ (Lam t) = False
isTm cxt U (Pi a b) = isTm cxt U a &&

isTm (a:cxt) U b
isTm cxt _ (Pi a b) = False
isTm cxt _ U = False
isTm cxt a s = case inferTy cxt s of

Just a’ -> a == a’
Nothing -> False

checks whether an expression has a type with respect to a context.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Infering the type of a neutral term

The type-checking algorithm is as usual bi-directional: to check
whether a neutral term has a given type we try to infer the type of the
function and then check whether it matches the type of the argument.

inferTy :: Cxt -> Tm -> Maybe Ty
inferTy cxt (Var i) = Just (shift (cxt !! i) (i+1))
inferTy cxt (App s t) = case inferTy cxt s of

Just (Pi a b) -> if isTm cxt a t
then Just (hsubst b (t:ide))
else Nothing

otherwise -> Nothing

It calls three auxiliary function

hsubst :: Ty -> Subst -> Ty
ide :: Subst
shift :: Ty -> Int -> Ty

where shift a i increases all free variables in a by i.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Hereditary substitution

Substitution which preserves normality:

hsubst :: Tm -> Subst -> Tm
hsubst (Var i) ts = ts !! i
hsubst (App s t) ts = app (hsubst s ts) (hsubst t ts)
hsubst (Lam t) ts = Lam (hsubst t (lift ts))
hsubst (Pi a b) ts = Pi (hsubst a ts) (hsubst b (lift ts))
hsubst U ts = U

which uses more auxiliary functions lift and

app :: Tm -> Tm -> Tm
app (Lam t) s = hsubst t (s:ide)
app r s = App r s

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Abel, Coquand, Pagano 2009: type checking using nbe

Instead of hereditary substitution of Abel, Coquand, Dybjer 2008

hsubst b (t:ide)

Abel, Coquand, Pagano 2009 use explicit substitution and nbe

nbeTy (ESubst b (t:ide))

Correctness of the type-checking algorithm is then proved as a
corollary of the correctness of nbe.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Nbe for intuitionistic type theory

First order terms (subset of normal terms is used)

data Tm = Var Int | App Tm Tm
| Lam Tm | Pi Tm Tm | U

Semantic domain of values are terms in higher order syntax (subset of
normal terms is used)

data D = VarD Int | AppD D D
| LamD (D -> D) | PiD D (D -> D) | UD

Again, neutrals and normals are thrown together in one type here. We
could separate them for pedagogical purpose.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Reification and eta-expansion

Abel, Aehlig, Dybjer 2007:

TM = Int -> Tm

reifyTy :: D -> TM
reify :: D -> D -> TM
reflect :: D -> TM -> D

Abel, Coquand, Pagano 2009 separate eta-expansion and reification:

downTy :: D -> D
down :: D -> D -> D
up :: D -> D -> D

readback :: D -> TM

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Eta-expansion in the model

downTy (PiD a f) = PiD (downTy a) (\d -> downTy (f (up a d)))
downTy UD = UD
downTy d = d

down (PiD a f) d = LamD (\e -> down (f (up a e))
(appD d (up a e)))

down UD d = downTy d
down e d = d

up (PiD a f) e = LamD (\d -> up (f d) (AppD e (down a d)))
up d e = e

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Readback

readback :: D -> TM
readback (VarD i) n = Var (n - i - 1)
readback (AppD d e) n = App (readback d n) (readback e n)
readback (LamD f) n = Lam (readback (f (VarD n)) (n + 1))
readback (PiD a f) n = Pi (readback a n)

(readback (f (VarD n)) (n + 1))
readback UD n = U

n is the maximal number of free variables, i is the de Bruijn level.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Explicit substitution calculus (for cwfs)

We can also define implicit syntax. Let’s do it in Haskell:

data Tm = ESubst Tm Ts | Q | App Tm Tm
| Lam Tm | Pi Tm Tm | U

data Ts = Empty | Ext Ts Tm | P | Comp Ts Ts | Id

We will define the normalization function for this.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Evaluation in cwf of normal forms in hoas

eval :: Tm -> [D] -> D

eval (ESub a as) ds = eval a (evals as ds)
eval Q ds = head ds
eval (Pi a b) ds = PiD (eval a ds) (\d -> eval b (d:ds))
eval (App r s) ds = appD (eval r ds) (eval s ds)
eval (Lam r) ds = LamD (\d -> eval r (d:ds))
eval U ds = UD

evals :: Ts -> [D] -> [D]
...

nbeTy :: Ctx -> Ty -> Ty
nbeTy ctx a = readback (downTy (eval a (idenv n))) n

where n = length ctx

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Inductive-recursive definition of equal well-formed types and
equal well-typed terms

We define by a simultaneous inductive-recursive definition partial
equivalence relations

≈ ⊆ D×D (equal total types)

≈a,a′ ⊆ D×D (equal total terms of equal total types a≈ a′).

Yields completeness proof for nbe. For soundness another
inductive-recursively defined relation between Tm and D is needed.
In our papers on nbe for dependent types the meta language is always
set theory. The challenge is to do the analogous thing in type theory.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Nbe for dependent type theory with Agda as metalanguage

PhD thesis of Danielsson 2007. Nbe with correctness proof.

Object language Very explicit syntax following Curien 1993
"Substitution up to Isomorphism", E-cwf of Dybjer 1996
"Internal Type Theory" :

(::=`) : (Γ : Cxt)→ (τ1,τ2 : Ty Γ)→ Γ` τ1→ τ1 =∗ τ2→ Γ` τ2

Meta language AgdaLight allowing inductive definition of syntactic
domain above and semantic domain which is not a
strictly positive inductive defintion and shouldn’t be
accepted by disciplined meta language (cf Haskell type
D). Informal argument why this is ok, and why it should
be possible to eliminate.

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

A categorical formulation of the type-checking theorem for
intuitionistic type theory

Conjecture: The type-checking cwf (with Π and U-types) is initial
among E-cwfs can be proved if we add suitable indexed
inductive-recursive definitions to the cwf.

object theory Initial E-cwf with U,Π, ..., see "Internal Type Theory"
(Dybjer 1996)

meta theory Intuitionistic type theory with indexed inductive-recursive
definitions (Dybjer 2000, Dybjer and Setzer 2001,2006)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Back to the original question

Is normalization by evaluation an intrinsic part of a foundational
framework for constructive mathematics?

It remains to be seen!

Nbe was an intrinsic part of the foundational framework
presented by Martin-Löf in 1973. nbe is the prefered way to
express normalization in a type-theoretic setting

It ought to be put back. But it has not yet been done.

less clear if we have other style of foundational framework
(Feferman-Aczel style)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Back to the original question

Is normalization by evaluation an intrinsic part of a foundational
framework for constructive mathematics? It remains to be seen!

Nbe was an intrinsic part of the foundational framework
presented by Martin-Löf in 1973. nbe is the prefered way to
express normalization in a type-theoretic setting

It ought to be put back. But it has not yet been done.

less clear if we have other style of foundational framework
(Feferman-Aczel style)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Back to the original question

Is normalization by evaluation an intrinsic part of a foundational
framework for constructive mathematics? It remains to be seen!

Nbe was an intrinsic part of the foundational framework
presented by Martin-Löf in 1973. nbe is the prefered way to
express normalization in a type-theoretic setting

It ought to be put back. But it has not yet been done.

less clear if we have other style of foundational framework
(Feferman-Aczel style)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Back to the original question

Is normalization by evaluation an intrinsic part of a foundational
framework for constructive mathematics? It remains to be seen!

Nbe was an intrinsic part of the foundational framework
presented by Martin-Löf in 1973. nbe is the prefered way to
express normalization in a type-theoretic setting

It ought to be put back. But it has not yet been done.

less clear if we have other style of foundational framework
(Feferman-Aczel style)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Back to the original question

Is normalization by evaluation an intrinsic part of a foundational
framework for constructive mathematics? It remains to be seen!

Nbe was an intrinsic part of the foundational framework
presented by Martin-Löf in 1973. nbe is the prefered way to
express normalization in a type-theoretic setting

It ought to be put back. But it has not yet been done.

less clear if we have other style of foundational framework
(Feferman-Aczel style)

FLOPS 2008

1972 1973 1979 1984 1986 1991 1994 2004 2008 2009

Final thoughts on metamathematical modelling
intuitionistically

What is going on in some primitive "pre-mathematical " sense?
The difference between a language, and a language embedded in
another language. Static vs dynamic aspects of a language.
Intuitionistic logic has real meaning not just an ephemeral one.
Do we need a formal metatheory? Well, it’s a full-scale framework, so
should be able to account for everything "locally".

	1972
	1973
	1979
	1984
	1986
	1991
	1994
	2004
	2008
	2009

