
PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Interactive and Automatic Theorem Proving in the
First Order Theory of Combinators

Ana Bove1, Peter Dybjer1, Andrés Sicard-Ramírez2

1 Chalmers tekniska högskola, Göteborg, Sweden

2 EAFIT Medellin, Colombia

Göteborg, 30 November, 2011

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Combining three strands of research

Foundational frameworks based on partial functions and a
separation of propositions and types (Feferman’s “Explicit
Mathematics” and Aczel’s “Frege structures”) and their use as
logics of functional programs
Proving correctness of functional programs using automatic
theorem provers for first order logic
Connecting automatic theorem provers for first order logic to
type theory systems

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Timeline

1974 First order formal combinatory arithmetic (Aczel)
1985 Logical theory of constructions as a logic for general

recursive functional programs (Dybjer)
1989 Interactive proof using Isabelle (Dybjer-Sander)
1996 Gandalf: An automatic theorem prover for ALF

(Tammet-Smith)
2003 Proving correctness of Haskell programs using

automatic first order theorem provers
(Claessen-Hamon)

2005 Connecting AgdaLight to a First-Order Logic Prover
(Abel-Coquand-Norell)

current Agda as a Logical Framework for combining the above

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

First order logic with equality

Terms and formulae:

t ::= x | f (t, . . . , t)

Φ ::= ⊥ |> |Φ ∧ Φ |Φ ∨ Φ |Φ ⊃ Φ | ¬Φ | ∀x .Φ | ∃x .Φ |
t = t |P(t, . . . , t)

A first order theory is given by
a list of function symbols f (with arities),
a list of predicate symbols P (with arities),
a set of proper axioms.

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Agda as a logical framework for first order logic

Logical frameworks based on dependent types (Martin-Löf’s
LF 1986, Edinburgh LF 1987, Twelf, etc): postulating the
logical constants and the axioms using Curry-Howard.
Gardner 1992 studied the adequacy problem for
LF-representation of first order logic (and other logics), that is,
whether the theorems provable in the LF-representation are
the intended ones.

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Example: syntax and axioms for disjunction

postulate _∨_ : Set → Set → Set
inl : {A B : Set} → A → A ∨ B
inr : {A B : Set} → B → A ∨ B
case : {A B C : Set} → (A → C) → (B → C) → A ∨ B → C

Axiom schemata in first order logic.

Proof of commutativity of disjunction
commOr : {A B : Set} → A ∨ B → B ∨ A
commOr c = case inr inl c

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Encoding classical logic

postulate lem : {A : Set} → A ∨ ¬ A

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Interacting with Automatic Theorem Provers

Interactive proof:

commOr : {A B : Set} → A ∨ B → B ∨ A
commOr c = case inr inl c

Automatic proof:

postulate commOr : {A B : Set} → A ∨ B → B ∨ A
{-# ATP prove commOr #-}

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Combining Agda with Automatic Theorem Provers

1 Type-check and generate interface file with axioms, definitions,
conjectures (using ATP-pragmas)

2 Run agda2atp which
1 translates axioms, definitions and conjectures in the interface

file into the TPTP language and
2 automatically tries to prove the conjectures using E, Equinox,

SPASS, Metis, and Vampire.

In the terminal:
Proving the conjecture in /tmp/Examples.commOr_7.tptp ...
Vampire 0.6 (...) proved the conjecture in /tmp/Examples.commOr_7.tptp

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Using data instead of postulates

To make use of Agda’s pattern matching we define

data _∨_ (A B : Set) : Set where
inl : A → A ∨ B
inr : B → A ∨ B

Commutativity of disjunction with pattern matching

commOr : {A B : Set} → A ∨ B → B ∨ A
commOr (inl a) = inr a
commOr (inr b) = inl b

New adequacy problem. Only using pattern matching which can be
compiled into elimination rules. Convenience vs rigour.

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Encoding quantifiers

The domain of individuals of first order logic

postulate D : Set

Universal quantifier

∀ x → P = (x : D) → P

Existential quantifier

data ∃ (P : D → Set) : Set where
, : (x : D) → P x → ∃ P

syntax ∃ (λ x → P) = ∃[x] P

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

A First Order Theory of Combinators

Aczel, 1974: "The strength of Martin-Löf’s intuitionistic type
theory with one universe".

t ::= x | t t |K| S
Φ ::= ⊥ |> |Φ ∧ Φ |Φ ∨ Φ | ¬Φ | ∀x .Φ | ∃x .Φ | t = t |

N (t) | P(t) | T (t)

Proper axioms:
Conversion rules: K t t ′ = t and S t t ′ t ′′ = t t ′′ (t ′ t ′′).
Axioms for N ,P, T .

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

A Logic for PCF with totality predicates

t ::= x | t t |λx .t | true | false | if | 0 | succ | pred | iszero | fix
Φ ::= ⊥ |> |Φ ∧ Φ |Φ ∨ Φ | ¬Φ | ∀x .Φ | ∃x .Φ | t = t |

Bool(t) | N (t)

Proper axioms:
Conversion rules: if true t t ′ = t, etc.
Discrimination rules: ¬ true = false. etc.
Axioms for N ,Bool .

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

A first order theory of combinators (FOTC) for PCF

t ::= x | t t | true | false | if | 0 | succ | pred | iszero | f
Φ ::= ⊥ |> |Φ ∧ Φ |Φ ∨ Φ | ¬Φ | ∀x .Φ | ∃x .Φ | t = t |

Bool(t) | N (t)

where x is a variable, and f a new combinator defined by a
(recursive) equation

f x1 · · · xn = e[f , x1 · · · xn]

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Encoding in Agda: function symbols

postulate if_then_else_ : D → D → D → D
· : D → D → D
succ pred isZero : D → D
zero true false : D

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Conversion rules

postulate if-true : ∀ d1 {d2} → if true then d1 else d2 ≡ d1
if-false : ∀ {d1} d2 → if false then d1 else d2 ≡ d2
pred-S : ∀ d → pred (succ d) ≡ d
isZero-0 : isZero zero ≡ true
isZero-S : ∀ d → isZero (succ d) ≡ false

{-# ATP axiom if-true if-false pred-S isZero-0 isZero-S #-}

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Axioms for natural numbers

data N : D → Set where
zN : N zero
sN : ∀ {n} → N n → N (succ n)

{-# ATP axiom zN sN #-}

indN : (P : D → Set) → P zero →
(∀ {n} → P n → P (succ n)) → ∀ {n} → N n → P n

indN P P0 h zN = P0
indN P P0 h (sN Nn) = h (indN P P0 h Nn)

Induction is an axiom schema! TPTP only understands axioms.

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Totality of addition - version 1

postulate _+_ : D → D → D
+-0x : ∀ d → zero + e ≡ e
+-Sx : ∀ d e → succ d + e ≡ succ (d + e)

{-# ATP axiom +-0x +-Sx #-}

indN-instance : ∀ x → N (zero + x) →
(∀ {n} → N (n + x) → N (succ n + x)) →
∀ {n} → N (n + x)

indN-instance x = indN (λ i → N (i + x))

postulate +-N1 : ∀ {m n} → N m → N n → N (m + n)
{-# ATP prove +-N1 indN-instance #-}

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Totality of addition - version 2

+-N : ∀ {m n} → N m → N n → N (m + n)
+-N {n = n} zN Nn = prf

where postulate prf : N (zero + n)
{-# ATP prove prf #-}

+-N {n = n} (sN {m} Nm) Nn = prf (+-N Nm Nn)
where postulate prf : N (m + n) → N (succ m + n)

{-# ATP prove prf #-}

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

An inductive predicate

We can add inductive predicates other than totality predicates:

data Even : D → Set where
zeroeven : Even zero
nexteven : ∀ {d} → Even d → Even (succ (succ d))

Induction principle:

indEven : (P : D → Set) →
P zero →
(∀ {d} → P d → P (succ (succ d))) →
∀ {d} → Even d → P d

indEven P P0 h zeroeven = P0
indEven P P0 h (nexteven Ed) = h (indEven P P0 h Ed)

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Trees and forests

Constructors:

postulate [] : D
:: node : D → D → D

Totality predicates:

mutual
data Forest : D → Set where

nilF : Forest []
consF : ∀ {t ts} → Tree t → Forest ts → Forest (t :: ts)

data Tree : D → Set where
treeT : ∀ d {ts} → Forest ts → Tree (node d ts)

{-# ATP axiom nilF consF treeT #-}

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Map and mirror

postulate map : D → D → D
map-[] : ∀ f → map f [] ≡ []
map-:: : ∀ f d ds → map f (d :: ds) ≡ f · d :: map f ds

{-# ATP axiom map-[] map-:: #-}

postulate mirror : D
mirror-eq : ∀ d ts → mirror · (node d ts) ≡

node d (reverse (map mirror ts))

{-# ATP axiom mirror-eq #-}

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

A property of mirror

mirror2 : ∀ {t} → Tree t → mirror · (mirror · t) ≡ t

The proof is by induction on the mutually defined totality
predicates for trees and forests:

mirror2 (treeT d nilF) = prf
where postulate prf : mirror · (mirror · node d []) ≡ node d []

{-# ATP prove prf #-}
mirror2 (treeT d (consF {t} {ts} Tt Fts)) = prf
where postulate prf : mirror · (mirror · node d (t :: ts)) ≡

node d (t :: ts)
{-# ATP prove prf helper #-}

where the proof helper of a lemma is given as a hint.

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

The lemma

helper : ∀ {ts} → Forest ts →
reverse (map mirror (reverse (map mirror ts))) ≡ ts

is proved by induction on forest and trees where the cases are
proved automatically.

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

The alternating bit protocol as a Kahn network

os0 // corrupt bs ++WWWWWWW

input is // abpsend
as 44iiiiii

abpack, abpout
js //

csssggggggg
output

corruptds
jjUUUUUU

os1
oo

ax-1 : corrupt · (1 :: os) · (x :: xs) ≡ ok x :: corrupt · os · xs
ax-O : corrupt · (O :: os) · (x :: xs) ≡ error :: corrupt · os · xs

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Specification of the protocol

The protocol should implement the identity stream transformers if
the unreliable channel is "fair". The output should be bisimilar to
the input under this condition:

spec : Bit b → Stream is → Fair os0 → Fair os1 →
is ≈ abptransfer b os0 os1 is

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Totality of streams

To be a total possibly infinite stream is defined coinductively, as a
greatest fixed point. The axioms state that Stream is a postfixed
point

Stream-gfp1 : ∀ {xs} → Stream xs →
∃[x’] → ∃[xs’]→ Stream xs’ ∧ xs ≡ x’ :: xs’

and the greatest postfixed point

Stream-gfp2 : (P : D → Set) →
(∀ {xs} → P xs → ∃ [x’] → ∃[xs’] →

P xs’ ∧ xs ≡ x’ :: xs’) →
∀ {xs} → P xs → Stream xs

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Bisimilarity

Bisimilarity is also a postfixed point

≈-gfp1 : ∀ {xs ys} → xs ≈ ys →
∃[x’]→ ∃[xs’] → ∃[ys’] →
xs’ ≈ ys’ ∧ xs ≡ x’ :: xs’ ∧ ys ≡ x’ :: ys’

and the greatest postfixed point

≈-gfp2 : (_R_ : D → D → Set) → (∀ {xs ys} → xs R ys →
∃[x’] → ∃[xs’] → ∃[ys’] →
xs’ R ys’ ∧ xs ≡ x’ :: xs’ ∧ ys ≡ x’ :: ys’) →
∀ {xs ys} → xs R ys → xs ≈ ys

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Fairness

Fairness is also a postfixed point

Fair-gfp1 : ∀ {os} → Fair os →
∃[ol] → ∃[os’] →
O*1 ol ∧ Fair os’ ∧ os ≡ ol ++ os’

and the greatest postfixed point

Fair-gfp2 : (P : D → Set) → (∀ {os} → P os →
∃[ol] → ∃[os’] →
O*1 ol ∧ P os’ ∧ os ≡ ol ++ os’) →
∀ {os} → P os → Fair os

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

The sender

ax0 : abpsend · b · (i :: is) · ds ≡ < i , b > :: await b i is ds

ax1 : b ≡ b0 →
await b i is (ok b0 :: ds) ≡ abpsend · (not b) · is · ds

ax2 : ¬ (b ≡ b0) →
await b i is (ok b0 :: ds) ≡ < i , b > :: await b i is ds

ax3 : await b i is (error :: ds) ≡ < i , b > :: await b i is ds

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

The receiver

ax4 : b ≡ b0 →
abpack · b · (ok < i , b0 > :: bs) ≡ b :: abpack · (not b) · bs

ax5 : ¬ (b ≡ b0) →
abpack · b · (ok < i , b0 > :: bs) ≡ not b :: abpack · b · bs

ax6 : abpack · b · (error :: bs) ≡ not b :: abpack · b · bs

ax7 : b ≡ b0 →
abpout · b · (ok < i , b0 > :: bs) ≡ i :: abpout · (not b) · bs

ax8 : ¬ (b ≡ b0) →
abpout · b · (ok < i , b0 > :: bs) ≡ abpout · b · bs

ax9 : ∀ b bs →
abpout · b · (error :: bs) ≡ abpout · b · bs

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

The network transfer function

A higher order function that computes the output from the input
and the stream tranformers associated with the edges of the
network

ax10 : transfer f1 f2 f3 g1 g2 is ≡ f3 · (hbs f1 f2 f3 g1 g2 is)
ax11 : has f1 f2 f3 g1 g2 is ≡ f1 · is · (hds f1 f2 f3 g1 g2 is)
ax12 : hbs f1 f2 f3 g1 g2 is ≡ g1 · (has f1 f2 f3 g1 g2 is)
ax13 : hcs f1 f2 f3 g1 g2 is ≡ f2 · (hbs f1 f2 f3 g1 g2 is)
ax14 : hds f1 f2 f3 g1 g2 is ≡ g2 · (hcs f1 f2 f3 g1 g2 is)

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

The alternating bit protocol as a stream transformer

abptransfer-eq : abptransfer b os0 os1 is ≡
transfer (abpsend · b) (abpack · b) (abpout · b)

(corrupt · os0) (corrupt · os1) is

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Combined automatic and interactive proof of ABP

Proof by coinduction and induction.
The induction and coinduction schemata must be instantiated
manually.
A large part, but far from all, of the induction-coinduction free
part is done automatically by the FOL-provers. The provers
are not good enough at rewriting based proofs.

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

The future of verified functional programming?

Pros of FOTC approach:
Program as usual in Haskell
General recursion
Separate programs and proofs
Automatic theorem proving for classical first order logic

Pros of DTP appraoch:
Normalization and automatic type-checking
Dependent types
Programs as proofs

Note that the "standard" model of MLTT is an interpretation in
Aczel’s FOTC! Everything we do in MLTT can be translated
(without much coding) into FOTC.

PFM

Introduction Agda as LF for FOL FOTC Mirror ABP FOTC vs DTP

Related work

Lots!
LCF, McCarthy’s first order programming logic
Boyer-Moore
NuPRL
MinLog
Function package in Isabelle, Sledgehammer
Sparkle, Plover (Programatica)
Chargueraud (Coq)
Bove-Capretta (MLTT)
Etc

	Introduction
	Agda as LF for FOL
	FOTC
	Mirror
	ABP
	FOTC vs DTP

