Martin-Lof Type Theory
and
the Logic of Functional Programs

Peter Dybjer

Amagasaki
11 May 2004

The Cover project —
Combining Verification Methods
in Software Development

e integrate a variety of verification methods
e smooth progression from hacking code to formal proofs of correctness

e hope to handle systems on a much larger scale than hitherto

This project builds on research at Chalmers in interactive theorem provers,
formal methods, program analysis and transformation, and automatic test-
ing. The functional language Haskell is used both as an implementation
tool and a test-bed.

Existing tools

QuickCheck — a random testing tool for Haskell programs (Claessen,
Hughes)
Automatic theorem provers for first order predicate logic

e translating Haskell programs to first order axioms (Claessen, Hamon)

Agda/Alfa — a proof assistant for Martin-Lof type theory with

e QuickCheck-like testing tool (Qiao)
e Agsy - automatic proof search tool (Lindblad)

The Cover dilemma

External logic (automatic subgroup) First order predicate logic with ax-
ioms for functional programs — we have automatic theorem provers!

e Logic of general recursive, lazy functional programs (LTC = Logical
Theory of Constructions = first order theory of combinators)

Integrated logic (interactive subgroup) Martin-Lof type theory — we
have a proof assistant!

e Logic of primitive recursive programs (higher type, structural recursion
on arbitrary inductive type)

e Generalizing primitive recursion? Encoding general recursion, encoding
lazy data structures?

Some questions

How can we use an automatic theorem prover for predicate logic to prove
theorems in Martin-Lof type theory?

What axioms for functional programs do we need?
How can we view Martin-Lof type theory as a subsystem of LTC?
How can we view LTC as a subsystem of Martin-Lof type theory?

Foundations: Martin-Lof type theory vs LTC.

How can we use an automatic theorem prover for
predicate logic to prove theorems in Martin-Lof type
theory?

Interpretation of Heyting arithmetic in Martin-Lof type theory

(PD>Q)" = P*"—=Q°
(PAQ)" = P*"xQ°
(PVQ)* = P*+Q"
T =1
1 =0
(Vz.P)* = IIz:N.P*
(Jz.P)* = Xx:N.P”

(a=0)" = E(a"b")

Interpret 0, Succ, +, * as the obvious operations on N.

Quantification over other types ...

An Agda goal:
? € Ilzs : ListN. Sorted(sort zs)

We would like to translate this into typed predicate logic formula
Vs : ListN. Sorted(sort xs)
which can be simulated by the untyped predicate logic formula

Vas. ListN(zs) D Sorted(sort xs)

so that we can call the first order theorem prover.

Three ways to interpret a : A in predicate logic

e as a formula A* using Curry-Howard, provided we are only interested in
the truth of A, and not the proof object a. Restrictions?

e as A*[a*], that is, types are interpreted as unary predicates, qua formulas
with one free variable. Terms are interpreted as first order terms. (Aczel
1974, etc, see next page)

e as a* € A*, that is, € is a binary predicate symbol, and terms and types
are interpreted as first order terms. (Tammet and Smith 1996).

What axioms for functional programs do we need?
First order theory of combinators.
Towards a first order theory of Haskell programs.
How can we view Martin-Lof type theory as a
subsystem?

10

Interpretations of Martin-Lof type theory
in predicate logic

o Aczel 1974 (first order theory of combinators), 1980 (Frege structures),
1990 (logical theory of constructions)

e Smith 1978, 1984 (type-free theory of propositions)

e Martin-Lof, various unpublished notes 1983-85 (basic logical theory)

Also realizability interpretation of Beeson 1982.

11

Combining logic and lambda calculus — variations

Scott, Milner et al LCF, PP.

Feferman (explicit mathematics), Hayashi (PX), Sato, Tatsuta, Fourman,
Beeson (lambda logic)...

Aczel: different approaches to LTC (first order vs higher order, etc.)
e recursion-theoretic (Feferman, ...)

e denotational (Aczel 1974, 1980, Smith 1978, 1984)

e operational (Martin-Lof 1983, Aczel 1983, 1991)

12

First order theory of combinators (Aczel 1974)

Terms (one binary function symbol + two constants)
to=xz|tt| K|S
Propositions (three unary predicate symbols + equality + logical constants)

O =N |PH) | TE) |t =t|Ve.®|Fz.8 |0 > | OAD | SV | T| L

13

First order theory of combinators ...

e s — t means that s and ¢ are convertible:
Kzy = =«

Sryz = xzz(yz)

e N (t) means that ¢ is equal to a Church numeral (A-terms by bracket
abstraction). The rules are

N (Succ x)

D
D (Vz. ®[z] D ®[Succz|) D Vy.N(y) D P[y]

14

Internal propositions and truths

e P(t) means that ¢ is a code for a proposition. Such codes (internal
propositions) are also obtained by Church-style encodings.

e 7(t) means that t is a code for a true proposition.

15

The interpretation of Martin-Lof type theory
in Aczel’s first order theory of combinators

Two examples:

f:N—=N as Vz.N(z) DN(f=x)
c:NxN as dz.dy.N(z)AN(y) Ac=(z,y)

Church pairs: (¢t,t') = Ax.ztt'.

16

Interpretation of hypothetical judgements
in Martin-Lof type theory

r1: Ay, Ty AplT, .. T Falzy, . xn] Alx, .. T
Is interpreted as

Allz], .. ALz, . 1, xn) F AT Ty, T, 0T [T, T

17

Interpretation of types

N*[z] = N(z)
(lIz : A.Blz]])*[2] = Vz.A%z| D Bz, zz]
(Xx : A.Blz]])*|z] = dz.Jy.A%z] ANB¥z,y| Nz = (z,y)
(A+ B)*z] = (Fz.A%z]ANz=1Inlx)V (Jy.B*[ly] A z = Inry)
U*lz] = Vz.P(zx)
T(a)*[z] = T(a*2)

Church-style encodings of pairs and injections. Universes are given a la
Tarski.

18

Integrated vs external logic of functional programs:
pros and cons

Integrated (MLTT): based on Curry-Howard (proofs as programs) Elegant
normalizing type checkers; notations for proofs (modules, etc)

External (LTC): based on predicate logic (a “logical comment”) and
lambda calculus. More flexible, direct (even “canonical”) approach
for reasoning about general recursive programs (Dybjer 1985), can be
extended with greatest fixed point rules (Dybjer and Sander 1989), and
domain logic rules (LCF).

19

Reasoning about general recursive programs

Introduce a fixed point combinator

fix f = f (fix f)

We can now program the Euclidean division algorithm

div i j = if iT < j then O else Succ (div (i - j) j)

div = fix (\f 1 j -> if i < j then O else Succ (f (1 - j) j))

and prove it correct.

20

Specification of division

Vi.Vji.N() DN(j) Dj>0DDIV(ijdiviy)
where

DIV(i,j,q) =Ir.N(r) Dr<jDqgxj+r=i
QuickCheckable specification

DIV (i,5,q) = g*j < i < (Succq) * j

21

How can we view LTC as a subsystem of Martin-Lof
type theory?

22

Interpretation of LTC in Martin-Lof type theory

We here take LTC = first order theory of combinators of Aczel 1974.

Introduce inductively defined set
Term : Set
of combinatory terms with constructors:

K : Term
S . Term

(@) : Term — Term — Term

23

Introduce inductively defined relation

Constructors:

ref
sym
tra
cong

Kax

Sax

(
(
(
(
(
(

(=) : Term — Term — Set

a:Term) > a=a
a,b: Term) >a=b—>b=a

a,b,c: Term) »>a=b—b=c—a=c

c,a,c,a’ : Term) - c=c - a=ad — cQa=c'Qd’

a,b: Term) - K Qa@b=q
a,b,c: Term) — S Qa@bQc = a@cQ(bQc)

24

Introduce inductively defined predicate
N : Term — Set
Constructors:

0ax : N0
Succax : (a:Term) - N a — N (SuccQa)
subst : (a,b:Term) > a<b— Nb— N a

25

Adding inductive and coinductive predicates to LTC

So far only one inductively defined predicate: N (¢) — to be a total, finite
natural number.

We would like to extend LTC with

e inductively defined predicates in general (not only \)
e coinductively defined predicates in general

It is possible to formulate an intuitionistic theory for this, but if we use
classical logic we can employ the u-calculus of Hitchcock and Park 1973
(also de Bakker and Scott ca 1970) together with a first order theory of
combinators (Dybjer and Sander 1989).

26

The Programatica project

The P-logic of the Programatica project (Kieburtz and Harrison 2003) looks
related.

27

What is the pu-calculus of Hitchcock and Park?

Add predicates
uX.P

to the syntax of first order predicate logic, provided X only occurs positively
in P! (Formally, we leave first order logic and introduce a new syntactic
category of n-place predicate terms P, add n-place predicate variables X
and abstracts {z1,...,z, | @}, etc).

The meaning of uX.P is the least fixed point of the monotone function
which maps the meaning of X to the meaning of P.

An example in the p-calculus of combinators

N=puX{z|z=0VIyX(y) Az =Succy} = uX.{0} USucc X

28

Greatest fixed points in the p-calculus

Greatest fixed points can be defined in terms of least fixed points
vX.P=C(uX.C(PICX/X]))
For example, natural numbers with infinity;

N®=vX{zr|z=0VIyX(y) Az =Succy} =vX.{0} USucc X

29

Infinite lists and bisimilarity

Infinite lists of finite total natural numbers

ListN>* = vX.{zs |[dz,ys. X(ys) A xs = Consz ys}
vX.ConsN X

Bisimilarity of infinite lists
~ = vX.Cons(=n)X

where =y is equality of finite total natural numbers, and Cons is an
operation on binary relations here.

30

Reasoning about infinite lists — an example

Program. Alternating bit protocol written as a stream processing Miranda
program using the idea of Kahn dataflow network. Non-determinism of
transmission channels modelled by oracle streams.

Specification. If the input is an infinite stream of data values, and the
oracle streams are fair (in a certain sense), then the output stream is
bisimilar to the input stream.

Proof. Implementation of the p-calculus in Isabelle. Proof uses induction,
coinduction and conversion.

For details, see P. Dybjer and H. Sander, Formal Aspects of Computing
(1989) 1: 303-319: A functional programming approach to the specification
and verification of concurrent systems.

31

First order theorem proving for the p-calculus

The p-calculus is not a first order theory. However, we can nevertheless use
a first order logic prover as follows. Replace each occurrence of 4 X.® with

a new predicate symbol, and the axiom schemas for least fixed points by
their instances.

32

Conclusion

What are the relevant first order axioms for Haskell? The p-calculus of
combinators? Yes, this gives a good logic for a pure functional program-
ming language with recursive datatypes, including rules for induction and
coinduction. But ...

e We may want to add new axioms, eg from domain theory. In general
add principles which are true in the standard domain theoretic model.

e Many issues concerning “syntactic sugar” (pattern matching, Haskell’s
class system, ...). Some of these are addressed by P-logic. What is the
semantics of Haskell?

33

LTC vs Martin-Lof type theory as foundation

34

The Brouwer-Heyting-Kolmogorov interpretation of the
intuitionistic connectives

A proof of A D B is a method which transforms a proof of type A to a
proof of type B.

A proof of A A B is a pair consisting of a proof of A and a proof of B.

A proof of AV B is either a proof of A or a proof of B.

35

Martin-Lof’s meaning explanations for the connectives

c:ADBiffc=sAx.band b[z :=a]: B forall a: A.
c: ANBiff c=5 (a,b) anda: A and b: B.

c: AV B iff either c =g Inlaand a : A, or c=g Inrband b: B.

36

Brouwer-Heyting-Kolmogorov interpretation of the
intuitionistic quantifiers

A proof of Vx : A. B is a method which for an arbitrary element a of A
returns a proof of Blz := al.

A proof of dz : A. B is a pair consisting of a element a of A (the witness)
and a proof of B[z := a].

37

Martin-Lof’s meaning explanations for the quantifiers

c:Vr: A . Biffc=5 A x.band b|x :=a] : Bz := a for all a : A.
c:3dx: A.Biffc=p (a,b) and a: A and b: Blx := a.

The correctness of all rules of intuitionistic typed predicate logic can be
justified by Martin-Lof's meaning explanations.

38

