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Abstract
We show that a version of Martin-Löf type theory with extensional identity, a unit type N1,Σ,Π,
and a base type is a free category with families (supporting these type formers) both in a 1-
and a 2-categorical sense. It follows that the underlying category of contexts is a free locally
cartesian closed category in a 2-categorical sense because of a previously proved biequivalence.
We then show that equality in this category is undecidable by reducing it to the undecidability
of convertibility in combinatory logic.
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1 Introduction

In previous work [4, 5] we showed the biequivalence of locally cartesian closed categories
(lcccs) and the I,Σ,Π-fragment of extensional Martin-Löf type theory. More precisely, we
showed the biequivalence of the following two 2-categories.

The first has as objects lcccs, as arrows functors which preserve the lccc-structure (up to
isomorphism), and as 2-cells natural transformations.
The second has as objects categories with families (cwfs) [7] which support extensional
identity types (I-types), Σ-types, Π-types, and are democratic, as arrows pseudo cwf-
morphisms (preserving cwf-structure up to isomorphism), and as 2-cells pseudo cwf-
transformations. A cwf is democratic iff there is an equivalence between its category of
contexts and its category of closed types.

This result is a corrected version of a result by Seely [12] concerning the equivalence of
the category of lcccs and the category of Martin-Löf type theories. Seely’s paper did not
address the coherence problem caused by the interpretation of substitution as pullbacks [6].
As Hofmann showed [8], this coherence problem can be solved by extending a construction
of Bénabou [2]. Our biequivalence is based on this construction.

Cwfs are models of the most basic rules of dependent type theory; those dealing with
substitution, assumption, and context formation, the rules which come before any rules for
specific type formers. The distinguishing feature of cwfs, compared to other categorical
notions of model of dependent types, is that they are formulated in a way which makes the
connection with the ordinary syntactic formulation of dependent type theory transparent.
They can be defined purely equationally [7] as a generalised algebraic theory (gat) [3], where
each sort symbol corresponds to a judgment form, and each operator symbol corresponds to
an inference rule in a variable free formulation of Martin-Löf’s explicit substitution calculus
for dependent type theory [10, 14].

Cwfs are not only models of dependent type theory, but also suggest an answer to the
question what dependent type theory is as a mathematical object. Perhaps surprisingly,
this is a non-trivial question, and Voevodsky has remarked that "a type system is not a
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2 Undecidability of Equality in the Free Locally Cartesian Closed Category

mathematical notion". There are numerous variations of Martin-Löf type theory in the
literature, even of the formulation of the most basic rules for dependent types. There are
systems with explicit and implicit substitutions, variations in assumption, context formation,
and substitution rules. There are formulations with de Bruijn indices and with ordinary
named variables, etc. In fact, there are so many rules that most papers do not try to
provide a complete list; and if you do try to list all of them how can you be sure that
you haven’t forgotten any? Nevertheless, there is a tacit assumption that most variations
are equivalent and that a complete list of rules could be given if needed. However, from a
mathematical point of view this is neither clear nor elegant.

To remedy this situation we suggest to define Martin-Löf type theory (and other depend-
ent type theories) abstractly as the initial cwf (with extra structure). The category of cwfs
and morphisms which preserve cwf-structure on the nose was defined by Dybjer [7]. We
suggest that the correctness of a definition or an implementation of dependent type theory
means that it gives rise to an initial object in this category of cwfs (with extra structure).
Here we shall construct the initial object in this category explicitly in the simplest possible
way following closely the definition of the generalised algebraic theory of cwfs. Note however
that the notion of a generalised algebraic theory is itself based on dependent type theory,
that is, on cwf-structure. So just defining the initial cwf as the generalised algebraic theory
of cwfs would be circular. Instead we construct the initial cwf explicitly by giving gram-
mar and inference rules which follow closely the operators of the gat of cwfs. However, we
must also make equality reasoning explicit. To decrease the number of rules, we present a
"per-style" system rather than an ordinary one. We will mutually define four partial equi-
valence relations (pers): for the judgments of context equality Γ = Γ′, substitution equality
∆ ` γ = γ′ : Γ, type equality Γ ` A = A′, and term equality Γ ` a = a′ : A. The ordinary
judgments will be defined as the reflexive instances, for example, Γ ` a : A will be defined
as Γ ` a = a : A.

Our only optimisation is the elimination of some redundant arguments of operators. For
example, the composition operator in the gat of cwfs has five arguments: three objects and
two arrows. However, the three object arguments can be recovered from the arrows, and
can hence be omitted. This method is also used in D-systems, the essentially algebraic
formulation of cwfs by Voevodsky.

The goal of the present paper is to prove the undecidability of equality in the free lccc.
To this end we extend our formal system for cwfs with rules for extensional I-types, N1,Σ,Π,
and a base type. Now we want to show that this yields a free lccc on one object, by appealing
to our biequivalence theorem. (Since the empty context corresponds to the unit type N1
and context extension to Σ, it follows that our free cwf is democratic.) However, it does
not suffice to show that we get a free cwf in the 1-category of cwfs and strict cwf-morphism,
but we must show that it is also free ("bifree") in the 2-category of cwfs and pseudo cwf-
morphisms. Although informally straightforward, this proof is technically more involved
because of the complexity of the notion of pseudo cwf-morphism.

Once we have constructed the free lccc (as a cwf-formulation of Martin-Löf type theory
with extensional I-types, N1,Σ,Π, and one base type) we will be able to prove undecidability.
It is a well-known folklore result that extensional Martin-Löf type theory with one universe
has undecidable equality, and we only need to show that a similar construction can be
made without a universe, provided we have a base type. We do this by encoding untyped
combinatory logic as a context, and use the undecidability of equality in this theory.

Related work. Palmgren and Vickers [11] show how to construct free models of essen-
tially algebraic theories in general. We could use this result to build a free cwf, but this
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only shows freeness in the 1-categorical sense. We also think that the explicit construction
of the free (and bifree) cwf is interesting in its own right.

Plan. In Section 2 we prove a few undecidability theorems, including the undecidability
of equality in Martin-Löf type theory with extensional I-types, N1,Σ,Π, and one base type.
In Section 3 we construct a free cwf on one base type. We show that it is free both in a
1-categorical sense (where arrows preserve cwf-structure on the nose) and in a 2-categorical
sense (where arrows preserve cwf-structure up to isomorphism). In Section 4 we construct
a free cwf with extensional identity types, N1,Σ,Π, and one base type. We then use the
biequivalence result to conclude that this yields a free lccc in a 2-categorical sense.

2 Undecidability in Martin-Löf type theory

Like any other single-sorted first order equational theory, combinatory logic can be encoded
as a context in Martin-Löf type theory with I-types, Π-types, and a base type o. The context
ΓCL for combinatory logic is the following:

k : o, axk : Πxy : o.I(o, k.x.y, x),
s : o, axs : Πxyz : o.I(o, s.x.y.z, x.z.(y.z))
. : o→ o→ o,

Here we have used the left-associative binary infix symbol “.” for application. Note that
k, s, ., axk, axs are all variables.

I Theorem 1. Type-inhabitation in Martin-Löf type theory with (intensional or extensional)
identity-types, Π-types and a base type is undecidable.

This follows from the undecidability of convertibility in combinatory logic, because the type

ΓCL ` I(o,M,M ′)

is inhabited iff the closed combinatory terms M and M ′ are convertible. Clearly, if the
combinatory terms are convertible, it can be formalized in this fragment of type theory. For
the other direction we build a model of the context ΓCL where o is interpreted as the set of
combinatory terms modulo convertibility.

I Theorem 2. Judgmental equality in Martin-Löf type theory with extensional identity-types,
Π-types and a base type is undecidable.

With extensional identity types [9] the above identity type is inhabited iff the corresponding
equality judgment is valid:

ΓCL `M = M ′ : o

This theorem also holds if we add N1 and Σ-types to the theory. The remainder of the
paper will show that the category of contexts for the resulting fragment of Martin-Löf type
theory is free ("bifree") in the 2-category of lcccs (Theorem 20). Our main result follows:

I Theorem 3. Equality of arrows in the bifree lccc on one object is undecidable.

We would like to remark that the following folklore theorem can be proved in the same way.

I Theorem 4. Judgmental equality in Martin-Löf type theory with extensional identity-types,
Π-types and a universe U is undecidable.

TLCA’15



4 Undecidability of Equality in the Free Locally Cartesian Closed Category

If we have a universe we can instead work in the context

X : U . : X → X → X,

k : X, axk : Πxy : X.I(X, k.x.y, x),
s : X, axs : Πxyz : X.I(X, s.x.y.z, x.z.(y.z))

and prove undecidability for this theory (without a base type) in the same way as above.
Note that we don’t need any closure properties at all for U – only the ability to quantify

over small types. Hence we prove a slightly stronger theorem than the folklore theorem
which assumes that U is closed under function types, and then uses the context

X : U, x : I(U, X,X → X)

so that X is a model of the untyped lambda calculus.

3 A free category with families

In this section we define a free cwf syntactically, as a term model consisting of derivable
contexts, substitutions, types and terms modulo derivable equality. To this end we give a
syntax and inference rules for a cwf-calculus, that is, a variable free explicit substitution
calculus for dependent type theory.

We first prove that this calculus yields a free cwf in the category where morphisms
preserve cwf-structure on the nose. The free cwf on one object is a rather degenerate
structure, since there are no non-trivial dependent types. However, we have nevertheless
chosen to present this part of the construction separately. Cwfs model the common core
of dependent type theory, including all generalised algebraic theories, pure type systems
[1], and fragments of Martin-Löf type theory. The construction of a free pure cwf is thus
the common basis for constructing free and initial cwfs with appropriate extra structure for
modelling specific dependent type theories.

In Section 4 we prove that our free cwf is also bifree. We then extend this result to cwfs
supporting N1,Σ, and Π-types. By our biequivalence result [4, 5] it also yields a bifree lccc.

3.1 The 2-category of categories with families
The 1-category of cwfs and morphisms which preserve cwf-structure on the nose was defined
in [7]. The 2-category of cwfs and pseudo-morphisms which preserve cwf-structure up to
isomorphism was defined in [4, 5]. Here we only give an outline.

I Definition 5 (Category with families). A cwf C is a pair (C, T ) of a category C and a functor
T : Cop → Fam where Fam is the category of families of sets. We write CtxC = |C| and
SubC(∆,Γ) = HomC(∆,Γ) = ∆ → C. For Γ ∈ CtxC we write TΓ = (TmC(Γ, A))A∈TyCΓ.
The functorial action of T on a type A is written A_ or A[_] (depending on which is more
readable): if γ : SubC(Γ,∆) and A ∈ TyC(∆), A[γ] ∈ TyC(Γ). Similarly if a ∈ TmC(∆, A),
we write a[γ] ∈ TmC(Γ, A[γ]) (or aγ) for the functorial action of T on a.

We assume that C has a terminal object 1. Moreover we assume that for each Γ ∈ CtxC
and A ∈ TyC(Γ) there exists Γ.A ∈ CtxC with a map pA : SubC(Γ.A,Γ) and a term qA ∈
TmC(Γ.A,A[pA]), such that for every pair γ : SubC(∆,Γ) and a ∈ TmC(∆, A[γ]) there exists
a unique map 〈γ, a〉 : SubC(∆,Γ.A) such that pA ◦ 〈γ, a〉 = γ and qA[〈γ, a〉] = a.
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Note that with the notation TyC and TmC there is no need to explicitly mention the
functor T when working with the category with families, and we will often omit it. Given
a substitution γ : Γ→ ∆, and A ∈ TyC(∆), we write γ ↑ A or γ+ (when A can be inferred
from the context) for the lifting of γ to A: 〈γ ◦ p, q〉 : Γ.Aγ → ∆.A.

The indexed category. In [4, 5] it is shown that any cwf C induces a functor T :
Cop → Cat assigning to each context Γ the category whose objects are types in TyC(Γ) and
morphisms from A to B are substitutions γ : Γ.A → Γ.B such that p ◦ γ = γ. (They are
in bijection with terms of type Γ · A ` Bp. Any morphism γ in TΓ from a type A to B
induces a function on terms of that type written {γ} : TmC(Γ, A)→ TmC(Γ, B) defined by
{γ}(a) = q[γ ◦ 〈id, a〉]. We will write θ : A ∼=Γ B for an isomorphism in TΓ.

The functorial action is given by T(γ)(ϕ) = 〈p, q[ϕ ◦ γ ↑ A]〉 : Γ.A[γ] → Γ.B[γ], from
which we deduce the action on terms {T(γ)(ϕ)}(a) = q[ϕ ◦ 〈γ, a〉].

I Definition 6 (Pseudo cwf-morphisms). A pseudo-cwf morphism from a cwf (C, T ) to a cwf
(D, T ′) is a pair (F, σ) where F : C → D is a functor and for each Γ ∈ C, σΓ is a Fam-
morphism from TΓ to T ′FΓ preserving the structure up to isomorphism. For example, there
are isomorphisms

ρΓ,A : F (Γ.A) ∼= FΓ.FA
θA,γ : FΓ.FA[Fγ] ∼= FΓ.F (Aγ) for Γ ` γ : ∆.

satisfying some coherence diagrams, see [5] for the complete definition.

As σΓ is a Fam-morphism from (TmC(Γ, A))A∈TyC(Γ) to (TmD(FΓ, B))B∈TyD(FΓ), we
will write FA for the image of A by TyC(Γ) → TyD(FΓ) induced by σΓ and Fa for the
image of Γ ` a : A through TmC(Γ, A)→ TmD(FΓ, FA) induced by σΓ.

A pseudo cwf-morphism is strict whenever θA,γ and ρΓ,A are both identities and F1 = 1.
Cwfs and strict cwf-morphisms form a category CwFs.

I Definition 7 (Pseudo cwf-transformation). A pseudo cwf-transformation between functors
(F, σ) and (G, τ) is a pair (ϕ,ψ) where ϕ : F ⇒ G is a natural transformation, and for each
Γ ∈ C and A ∈ TyC(Γ) ψΓ,A is a type isomorphism FA ∼= GA[ϕΓ] satisfying:

ϕΓ.A = F (Γ.A) ρF−−→ FΓ.FA ψΓ,A−−−→ FΓ.GA[ϕΓ]
ϕ+

Γ−−→ GΓ.GA
ρ−1
G−−→ G(Γ.A)

We will write CwF for the resulting 2-category.

3.2 Syntax and inference rules for the free category with families

3.2.1 Raw terms

In this section we define the syntax and inference rules for a minimal dependent type theory
with one base type o. This theory is closely related to the generalised algebraic theory of
cwfs [7], but here we define it as a usual logical system with a grammar and a collection
of inference rules. The grammar has four syntactic categories: contexts Ctx, substitutions
Sub, types Ty and terms Tm:

Γ ::= 1 | Γ.A A ::= oΓ | Aγ
γ ::= γ ◦ γ | idΓ | 〈〉Γ | pA | 〈γ, a〉A a ::= a γ | qA

TLCA’15



6 Undecidability of Equality in the Free Locally Cartesian Closed Category

These terms have as few annotations as possible, only what is needed to recover the
domain and codomain of a substitution, the context of a type, and the type of a term:

dom(γ ◦ γ′) = dom(γ′) cod(γ ◦ γ′) = cod(γ)
dom(idΓ) = Γ cod(idΓ) = Γ
dom(〈〉Γ) = Γ cod(〈〉Γ) = 1
dom(pA) = ctx-of(A).A cod(pA) = ctx-of(A)

dom(〈γ, a〉A) = dom(γ) cod(〈γ, a〉A) = cod(γ).A

ctx-of(oΓ) = Γ type-of(a γ) = (type-of(a)) γ
ctx-of(Aγ) = cod(γ) type-of(qA) = A pA

These functions will be used in the freeness proof.

3.2.2 Inference rules

We simultaneously inductively define four families of partial equivalence relations (pers) for
the four forms of equality judgment:

Γ = Γ′ ` Γ ` A = A′ ∆ ` γ = γ′ : Γ Γ ` a = a′ : A

In the inference rules which generate these pers we will use the following abbreviations for
the basic judgment forms: Γ ` abbreviates Γ = Γ `, Γ ` A abbreviates Γ ` A = A, ∆ ` γ : Γ
abbreviates ∆ ` γ = γ : Γ, and Γ ` a : A abbreviates Γ ` a = a : A

Per-rules for the four forms of judgments:

Γ = Γ′ ` Γ′ = Γ′′ `
Γ = Γ′′ `

Γ = Γ′ `
Γ′ = Γ `

∆ ` γ = γ′ : Γ ∆ ` γ′ = γ′′ : Γ
∆ ` γ = γ′′ : Γ

∆ ` γ = γ′ : Γ
∆ ` γ′ = γ : Γ

Γ ` A = A′ Γ ` A′ = A′′

Γ ` A = A′′
Γ ` A = A′

Γ ` A′ = A
Γ ` a = a′ : A Γ ` a′ = a′′ : A

Γ ` a = a′′ : A

Γ ` a = a′ : A
Γ ` a′ = a : A

Preservation rules for judgments:

Γ = Γ′ ` ∆ = ∆′ ` Γ ` γ = γ′ : ∆
Γ′ ` γ = γ′ : ∆′

Γ = Γ′ ` Γ ` A = A′

Γ′ ` A = A′

Γ = Γ′ ` Γ ` A = A′ Γ ` a = a′ : A
Γ′ ` a = a′ : A′
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Congruence rules for operators:

Γ ` δ = δ′ : ∆ ∆ ` γ = γ′ : Θ
Γ ` δ ◦ γ = δ′ ◦ γ′ : Θ

Γ = Γ′ `
Γ ` idΓ = idΓ′ : Γ

Γ ` A = A′ ∆ ` γ = γ′ : Γ
∆′ ` Aγ = A′ γ′

Γ ` a = a′ : A ∆ ` γ = γ′ : Γ
∆′ ` a γ = a′ γ′ : A′ γ′ 1 = 1 `

Γ = Γ′ `
Γ ` 〈〉Γ = 〈〉Γ′ : 1

Γ = Γ′ ` Γ ` A = A′

Γ.A = Γ′.A′ `

Γ ` A = A′

Γ.A ` pA = pA′ : Γ
Γ ` A = A′

Γ.A ` qA = qA′ : A pA

Γ ` A = A′ ∆ ` γ = γ′ : Γ ∆ ` a = a′ : Aγ
∆ ` 〈γ, a〉A = 〈γ′, a′〉A′ : Γ.A

Conversion rules:

(θ ◦ δ) ◦ γ = θ ◦ (δ ◦ γ)
Γ ` γ : ∆

Γ ` γ = id∆ ◦ γ : ∆
Γ ` γ : ∆

Γ ` γ = γ ◦ idΓ : ∆

Γ ` A ∆ ` γ : Γ Θ ` δ : ∆
Θ ` A (δ ◦ γ) = (Aδ) γ

Γ ` A
Γ ` A idΓ = A

Γ ` a : A ∆ ` γ : Γ Γ ` δ : ∆
Θ ` a (δ ◦ γ) = (a δ) γ : (Aδ) γ

Γ ` a : A
Θ ` a idΓ = a : A

Γ ` γ : 1
Γ ` γ = 〈〉Γ : 1

Γ ` A ∆ ` γ : Γ ∆ ` a : Aγ
∆ ` pA ◦ 〈γ, a〉A = γ : Γ

Γ ` A ∆ ` γ : Γ ∆ ` a : Aγ
∆ ` qA 〈γ, a〉A = a : Aγ

∆ ` γ : Γ.A
∆ ` γ = 〈pA ◦ γ, qA γ〉A : Γ.A

Rule for the base type:

1 ` o = o

3.2.3 The syntactic cwf T
We can now define a term model as the syntactic cwf obtained by the well-formed contexts,
etc, modulo judgmental equality:

I Definition 8. The term model T is given by:
CtxT = {Γ | Γ ` }/=c, where Γ =c Γ′ if Γ = Γ′ ` is derivable.
SubT ([Γ], [∆]) = {γ | Γ ` γ : ∆}/=Γ

∆ where γ =Γ
∆ γ′ iff Γ ` γ = γ′ : ∆ is derivable. Note

that this makes sense since it only depends on the equivalence class of Γ and morphisms
and morphism equality are preserved by object equality.
TyT ([Γ]) = {A | Γ ` A}/ =Γ where A =Γ B if Γ ` A = B. Again this is a well-defined
for the same reason.
TmT ([Γ], [A]) = {a | Γ ` a : A}/ =Γ

A where a =Γ
A a
′ if Γ ` a = a′ : A.

The cwf-operations on T can now be defined in a straightforward way. For example, if
∆ ` θ : Θ, Γ ` δ : ∆, we define [θ] ◦T [δ] = [θ ◦ δ], which is well-defined since composition
preserves equality.

3.3 Freeness of T
We shall now show that T is the free cwf on one base type, in the sense that given a cwf
C and a type A ∈ TyC(1), there exists a unique strict cwf morphism J−KC : T → C such

TLCA’15



8 Undecidability of Equality in the Free Locally Cartesian Closed Category

that JoK = A. This can be defined by first defining a partial function for each sort of raw
terms (where Ctx denotes the set of raw contexts, Sub the set of raw substitutions, and so
on defined by the grammar of Section 3.2.1), cf Streicher [13].

J−K : Ctx → CtxC
J−KΓ,∆ : Sub → SubC(JΓK, J∆K)

J−KΓ : Ty → TyC(JΓK)
J−KΓ,A : Tm → TmC(JΓK, JAKΓ)

These functions are defined by mutual induction on the structure of raw terms:

J1K = 1C JΓ.AK = JΓK.CJAK

Jγ′ ◦ γKΓ,Θ = Jγ′K∆,Θ ◦C JγKΓ,∆ JidΓKΓ,Γ = idCJΓK

J〈γ, a〉AKΓ,∆.A = 〈JγKΓ,∆, JaKΓ,A[γ]〉 J〈〉ΓKΓ,1 = 〈〉Γ
JAγKΓ = JAK∆ JγKΓ,∆ Ja γKΓ,A[γ] = JaK∆,A JγKΓ,∆

JpAKΓ.A,Γ = pA JqAKΓ.A,A[p] = q,A
JoK1 = A

Note that ∆ = dom(γ′) = cod(γ) in the equation for ◦, etc.
We then prove by induction on the inference rules that

I Lemma 9. If Γ = Γ′ `, then JΓK = JΓ′K and both are defined.
If Γ ` γ = γ′ : ∆, then JγKΓ,∆ = Jγ′KΓ,∆ and both are defined.
If Γ ` A = A′, then JAKΓ = JA′KΓ and both are defined.
If Γ ` a = a′ : A, then JaKΓ,A = Ja′KΓ,A and both are defined.

Hence the partial interpretation lifts to the quotient of syntax by judgmental equality:

J−K : CtxT → CtxC
J−K[Γ],[∆] : SubT ([Γ], [∆]) → SubC(J[Γ]K, J[∆]K)

J−K[Γ] : TyT ([Γ]) → TyC(J[Γ]K)

J−K[Γ],[A] : TmT ([Γ], [A]) → TmC(J[Γ]K, J[A]K[Γ])

This defines a strict cwf morphism T → C which sends o to A. It is easy to check that it is
the unique such strict cwf-morphism. Hence we have proved

I Theorem 10. T is the free cwf on one object, that is, for every other cwf C and A ∈ TyC(1)
there exists a unique strict cwf morphism T → C sending o1 to A.

3.4 Bifreeness of T
We recall that an object I is bi-initial in a 2-category iff for any object A there exists an
arrow I → A and for any two arrows f, g : I → A there exists a unique 2-cell θ : f→̇g. It
follows that θ is invertible. It also follows that bi-initial objects are equivalent.

I Definition 11. A cwf C is bifree on one base type iff it is bi-initial in the 2-category CwFo:
Objects: A pair (C, oC) of a CwF and a chosen oC ∈ TyC(1),
1-cells from (C, oC) to (D, oD): pseudo cwf-morphisms F : C → D such that there exists
ϕF : F (oC) ∼= oD in TyD(1),
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2-cells between from F to G with type (C, oC) → (D, oD) : pseudo cwf-transformations
(ϕ,ψ) from F to G satisfying ψoC = ϕ−1

G ◦ αF : F (oC) ∼= G(oC).

I Theorem 12. T is a bifree cwf on one base type.

We have showed that for every cwf C, A ∈ TyC(1), the interpretation J−K is a strict cwf-
morphism mapping o to A. Hence it is a morphism in CwFo. It remains to show that for any
other morphism F : T → C in CwFo, there is a unique 2-cell (pseudo cwf-transformation)
(ϕ,ψ) : J−K ∼= F , which happens to be an isomorphism. This asymetric version of bi-
initiality is equivalent to that given below because the 2-cell we build is an isomorphism.

Existence of (ϕ,ψ). We construct (ϕ,ψ) by induction on the inference rules and
simultaneously prove their naturality properties:

If Γ = Γ′ `, then there exist ϕΓ = ϕΓ′ : J[Γ]K ∼= F [Γ]1
If Γ ` A = A′, then there exist ψA = ψA′ : J[Γ.A]K ∼=J[Γ]K J[Γ]K.FA[ϕΓ] in TJ[Γ]K.
If Γ ` γ = γ′ : ∆, then Fγ ◦ ϕΓ = ϕ∆ ◦ J[γ]K
If Γ ` a = a′ : A, then {ψA}(J[a]K) = Fa[ϕΓ]

Since it also follows that ϕΓ.A = ρ−1 ◦ ϕ+
Γ ◦ ψA we conclude that (ϕ,ψ) is a pseudo cwf-

transformation. For space reasons we only present the proofs of the first two items and refer
the reader to the long version of the paper [?] for the other two.

Empty context. F preserves terminal objects, thus we let φ1 : J[1]K = 1C ∼= F1.
Context extension. By induction, we have ψA : J[A]K ∼=Γ FA(ϕΓ) 2. We define ϕΓ.A as the

following composition of isomorphisms:

ϕΓ.A = J[Γ.A]K ψA−−→ J[Γ]K.FA(ϕΓ) 〈ϕΓ,q〉−−−−→ FΓ.FA
ρ−1

Γ,A−−−→ F (Γ.A)

Type substitution. Let Γ ` γ : ∆ and ∆ ` A. By induction we get ϕ∆ ◦ J[γ]K = Fγ ◦ ϕΓ
and ψA : J[A]K ∼=∆ FA(ϕ∆). Since T is a functor, Tγ is a functor from T∆ to TΓ thus,

T(J[γ]K)(ψA) : J[Aγ]K ∼=Γ FA[ϕ∆ ◦ γ] = FA[Fγ][ϕΓ]

by induction hypothesis on γ. So we define

ψAγ = T(ϕΓ)(θA,γ) ◦T(J[γ]K)(ψA) : J[Aγ]K ∼=J[Γ]K F (Aγ)[ϕΓ]

Unfolding the definition, this yields the following term: Using the previous case we can
get a simpler equation for ϕΓ.Aγ :

ϕΓ.Aγ = 〈ϕΓ ◦ p, q[ρ ◦ ϕ∆·A ◦ γ ↑ A]〉 : J[Γ.A[γ]]K→ F (Γ.Aγ)

Base type. By definition, F comes equipped with αF : J[o]K ∼= F (o). We define ψo = α−1
F :

J[o]K ∼= F (o) in TyC(1).

Uniqueness of (ϕ,ψ) Let (ϕ′, ψ′) : J[·]K→ F be another pseudo cwf-transformation in
CwFo. We prove the following by induction:

If Γ `, then ϕΓ = ϕ′Γ
If Γ ` A, then ψA = ψ′A

1 PD: we should add equivalence class brackets in many places
2 Reviewer 2: explain notation
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10 Undecidability of Equality in the Free Locally Cartesian Closed Category

Empty context There is a unique morphism between the two terminal objects J[1]K and F1,
thus ϕ1 = ϕ′1.

Context extension Assume by induction ϕΓ = ϕ′Γ and ψA = ψ′A. By the coherence law of
pseudo cwf-transformations, we have ϕ′Γ.A = ρ−1 ◦ ϕ′Γ

+ ◦ ψ′A from which the equality
ϕ′Γ.A = ϕΓ.A follows.

Type substitution Assume we have ∆ ` A and Γ ` γ : ∆, and consider ψAγ and ψ′Aγ .
By definition of pseudo cwf-transformations, one has T(ϕ′Γ)(θ−1

A,γ) ◦ ψ′Aγ = T(Fγ)(ψ′A).
Since we know ϕΓ = ϕ′Γ we know ϕ′Γ is an isomorphism and thus ψ′Aγ depends only on
ϕ′Γ and ψ′A from which it follows that ψ′Aγ = ψ′Aγ .

Base type The definition of 2-cells in CwFo (as J[o]K = oC) entails ψ′o = α−1
F : J[o]K →

F (JoK).

4 A free lccc

4.1 From cwfs to lcccs
We now extend our cwf-calculus with extensional I-types, N1,Σ, and Π and prove that it
yields a free cwf supporting these type formers. In order to show that this yields a free
lccc we apply the biequivalence [5] between lcccs and democratic cwfs supporting these type
formers.

I Definition 13 (Democratic cwfs). A cwf C is democratic when for each context Γ there is a
type Γ̄ ∈ Ty(1) such that Γ ∼= 1.Γ̄. A pseudo cwf morphism F : C → D between democratic
cwf preserves democracy when there is an isomorphism F (Γ̄) ∼= FΓ〈〉Γ satisfying a coherence
diagram stated in [5] (Definition 8).

The free cwf with N1,Σ, and Π-types is democratic since the empty context can be repres-
ented by the unit type N1 and context extension by a Σ-type.

4.2 Cwfs with support for type constructors
A cwf supports a certain type former if it has extra structure and equations corresponding to
the formation, introduction, elimination, and equality rules for the type former in question.
We only spell out what it means for a cwf to support extensional identity types and refer
the reader to [7, 5] for the definitions of what it means for a cwf to support and preserve Σ-
and Π-types. The definition of what it means to support and preserve N1 is analogous.

I Definition 14 (Cwf with identity types). A cwf C is said to support extensional identity
types when for each a, a′ ∈ TmC(Γ, A) there is a type I(A, a, a′) satisfying the following
condition:

I(A, a, a′)[γ] = I(A[γ], a[γ], a′[γ]) for any γ : ∆→ Γ
For a ∈ TmC(Γ, A), there is r(a) ∈ TmC(Γ, I(A, a, a)). Moreover, if c ∈ TmC(Γ, I(A, a, a′))
then a = a′ and c = r(a).

A pseudo cwf morphism F preserves identity types when I(FA,Fa, Fa′) ∼=Γ F (I(A, a, a′)).

We write CwFΣ,Π,I
d for the 2-category of democratic cwfs supporting Σ,Π and identity

types with morphisms preserving them, and CwFΣ,Π,I
s,d for the strict version. Note that by

democracy, any democratic cwf has a unit type representing the empty context.
Σ and Π are functorial and preserve isomorphisms:
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I Lemma 15 (Functoriality of Σ). Let fA : A ∼= A′ over a context Γ ∈ C and fB : B ∼= B′[fA]
over Γ.A, with Γ.A ` B and Γ.A′ ` B′. Then there exists a type isomorphism Σ(A,B) ∼=
Σ(A′, B′) which is functorial meaning that if we have gA : A′ ∼= A′′ and gB : B′ ∼= B′′[gA],
then Σ(gA ◦ fA, gB ◦ f+

A ◦ fB) = Σ(gA, gB) ◦ Σ(fA, fB) : Σ(A,B)→ Σ(A′′, B′′).

I Lemma 16 (Functoriality of Π). Let A,A′ ∈ TyC(Γ), B ∈ TyC(Γ.A) and B′ ∈ TyC(Γ.A′).
Assume morever a type isomorphism fA : A ∼= A′ in TΓ and fB : B ∼= B′[fA] in T(Γ.A).
Then there is a type isomorphism Π(fA, fB) : Π(A,B) ∼= Π(A′, B′) in TΓ such that for any
term Γ ` t : Π(A,B):

{Π(fA, fB)}(t) = λ(({fB}ap(t))[f−1
A ])

and functorial in the same sense as for Σ-types.

4.3 The syntactic cwf with extensional I, N1, Σ, and Π.

We extend the grammar and the set of inference rules with rules for I,N1,Σ, and Π-types:

A ::= · · · | I(a, a) | N1 | Σ(A,A) | Π(A,A)
a ::= · · · | r(a) | 01 | fst(A, a)| snd(A,A, a)| pair(A,A, a, a)| ap(A,A, a, a)| λ(A, a)

For each type we define its context:

ctx-of(I(a, a′)) = ctx-of(type-of(a)) ctx-of(Σ(A,B)) = ctx-of(A)
ctx-of(Π(A,B)) = ctx-of(A)

For each term we define its type:

type-of(fst(A, c)) = A type-of(r(a)) = I(a, a)
type-of(snd(A,B, c) = B 〈idctx-of(A), fst(A, c)〉 type-of(λ(A, c)) = Π(A, type-of(c))

type-of(pair(A,B, a, b)) = Σ(A,B) type-of(ap(A,B, c, a)) = B 〈idctx-of(A), a〉

4.3.1 Inference rules.

Rules for I-types:

Γ ` a = a′ : A Γ ` b = b′ : A
Γ ` I(a, b) = I(a′, b′)

Γ ` a = a′ : A
Γ ` r(a) = r(a′) : I(a, a′)

Γ ` c : I(a, a′)
Γ ` a = a′ : type-of(a)

Γ ` c : I(a, a′)
Γ ` c = r(a) : I(a, a′)

Γ ` a : A Γ ` a′ : A ∆ ` γ : Γ
Γ ` I(a, a′) γ = I(a γ, a′ γ)

Rules for N1:

` N1 ` 01 : N1

` a : N1
` a = 01 : N1

Rules for Σ-types:

TLCA’15



12 Undecidability of Equality in the Free Locally Cartesian Closed Category

Γ ` A = A′ Γ.A ` B = B′

Γ ` Σ(A,B) = Σ(A′, B′)
Γ ` A = A′ Γ ` c = c′ : Σ(A,B)

Γ ` fst(A, c) = fst(A′, c′) : A

Γ ` A = A′ Γ.A ` B = B′ Γ ` c = c′ : Σ(A,B)
Γ ` snd(A,B, c) = snd(A′, B′, c′) : B 〈idctx-of(A), fst(A, c)〉

Γ ` A = A′ Γ.A ` B = B′ Γ ` a = a′ : A′ Γ ` b = b′ : B 〈idctx-of(A), fst(A, c)〉
Γ ` pair(A,B, a, b) = pair(A′, B′, a′, b′) : Σ(A,B)

Γ ` A Γ.A ` B Γ ` a : A′ Γ ` b : B 〈idctx-of(A), fst(A, c)〉
Γ : fst(A, pair(A,B, a, b)) = a : A

Γ ` A Γ.A ` B Γ ` a : A′ Γ ` b : B 〈idctx-of(A), fst(A, c)〉
Γ : snd(A,B,pair(A,B, a, b)) = b : A

Γ ` A Γ.A ` B Γ ` a : A Γ ` b : B 〈idctx-of(A), fst(A, c)〉
Γ ` c = pair(A,B, fst(A, c), snd(A,B, c)) : Σ(A,B)

Γ ` A Γ.A ` B ∆ ` γ : Γ
Γ ` Σ(A,B) γ = Σ(Aγ,B γ+)

Γ ` A Γ ` c : Σ(A,B) ∆ ` γ : Γ
Γ ` fst(A, c) γ = fst(Aγ, c γ) : A

Γ ` A Γ.A ` B Γ ` c : Σ(A,B) ∆ ` γ : Γ
Γ ` snd(A,B, c) γ = snd(Aγ,B γ+, c γ) : B〈γ, fst(A, c)γ〉

Γ ` A Γ.A ` B Γ ` a : A Γ ` b : B 〈idctx-of(A), fst(A, c)〉 ∆ ` γ : Γ
Γ ` pair(A,B, a, b) γ = pair(Aγ,B γ+, a γ, b γ) : Σ(A,B)γ

Rules for Π-types.
Γ ` A = A′ Γ.A ` B = B′

Γ ` Π(A,B) = Π(A′, B′)
Γ ` A = A′ Γ.A ` t = t′ : B

Γ ` λ(A, t) = λ(A′, t′) : Π(A,B)

Γ ` A = A′ Γ.A ` B = B′ Γ ` t = t′ : Π(A,B) Γ ` u = u′ : A
Γ ` app(A,B, t, u) = app(A′, B′, t′, u′) : B〈id, u〉

Γ ` t : Π(A,B) Γ ` u : A
Γ ` app(A,B, λ(A, t), u) = t〈id, u〉 : B〈id, u〉

Γ ` t : Π(A,B)
Γ ` λ(app(t[p], q)) = t : Π(A,B)

Γ ` A Γ.A ` B ∆ ` γ : Γ
∆ ` Π(A,B)γ = Π(Aγ,Aγ+)

Γ ` t : Π(A,B) ∆ ` γ : Γ
∆ ` λ(t)γ = λ(tγ+) : Π(A,B)γ

Γ ` t : Π(A,B) Γ ` u : A ∆ ` γ : Γ
∆ ` app(t, u)γ = app(tγ, uγ) : B〈γ, uγ〉

We remark that some of the inference rules can be derived from others.

4.3.2 The syntactic cwf supporting I, N1, Σ, and Π
It is straightforward to extend the definition of the term model T with N1,Σ,Π and identity
types, to form a cwf T I,N1,Σ,Π supporting these type constructors. As we already explained
it is democratic.
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We want to show that T I,N1,Σ,Π is free, not only in the 2-category of cwfs supporting
these type formers, but in the subcategory of the democratic ones. It is straighforward to
extend the interpretation functor and prove its uniqueness. It is also easy to check that it
preserves democracy.

I Theorem 17. T I,N1,Σ,Π is the free democratic cwf supporting I,N1,Σ,Π on one object.

4.4 Bifreeness of T Σ,Π,N1,I

We now prove the key result: that T Σ,Π,N1,I is the bifree cwf on one object in the 2-category
CwFΣ,Π,I

d . This will let us prove that is the category of contexts of the cwf is a free lccc on
one object in the 2-category of lccc.

I Theorem 18. The cwf T Σ,Π,N1,I is bi-initial in the 2-category CwFΣ,Π,I,o
d built similarly

as CwFo (see Definition 11).

The proof goes as for the cwf case, and we only extend the induction.

4.4.1 Existence.
We resume our inductive proof from Section 3.4 with the cases for Π, Σ, N1, and identity
types.
Unit type F preserving democracy entails 1.F (N1) = 1.F (1̄) ∼= F1 ∼= 1̄ (F preserves ter-

minal objects).
Identity type Assume Γ ` a, a′ : A. By induction, we have ψA : J[A]K ∼= FA[ϕΓ] in the in-

dexed category over J[Γ]K. We know identity types preserve isomorphisms in the indexed
category (Lemma 10, page 35 of [5]) yielding

ψI(A,a,a′) : J[I(A, a, a′)]K ∼= IC(FA[ϕΓ], {ψA}(J[a]K), {ψA}(J[a′]K)) = IC(FA[ϕΓ], F (a)[ϕΓ], F (a′)[ϕΓ])

.
Σ-types Assume we have Γ ` A and Γ · A ` B. By induction we have the isomorphism

ψA : J[A]K ∼=Γ FA[ϕΓ] and ψB : J[B]K ∼=Γ.A FB[ϕΓ.B ].
We let

ψΣ(A,B) = Γ.Σ(A,B) Σ(ψA,ψB)−−−−−−→ Γ.Σ(FA[ϕΓ], FB[ρ−1◦ϕ−1
Γ

+])
T(ϕΓ)(s−1

A,B
)

−−−−−−−−→ Γ.F (Σ(A,B))[ϕΓ]

ψΣ(A,B) can be related to ϕΓ.A.B :

ψΣ(A,B) = T(ϕΓ)(s−1
A,B) ◦ Σ(ψA, ψB)

= ϕ−1
Γ

+ ◦ s−1
A,B ◦ ϕΓ

+ ◦ χ−1 ◦ ψ+
A ◦ ψB ◦ χA,B

= ϕ−1
Γ

+ ◦ s−1
A,B ◦ χA,B ◦ ϕΓ

++ ◦ ψ+
A ◦ ψB ◦ χA,B

= ϕ−1
Γ

+ ◦ ρ ◦ F (χA,B) ◦ ρ−1 ◦ ρ−1+ ◦ ϕΓ
++ ◦ ψ+

A ◦ ψB ◦ χA,B
= ϕ−1

Γ
+ ◦ ρ ◦ F (χ−1

A,B) ◦ ρ−1 ◦ ϕ+
Γ.A ◦ ψB ◦ χA,B

= ϕ−1
Γ

+ ◦ ρ ◦ F (χ−1
A,B) ◦ ϕΓ.A.B ◦ χA,B

From that calculation, we deduce

ϕΓ.Σ(A,B) = F (χ−1
A,B) ◦ ϕΓ.A.B ◦ χA,B

TLCA’15



14 Undecidability of Equality in the Free Locally Cartesian Closed Category

Π-types Define ψΠ(A,B) as follows

J[Γ.Π(A,B)]K Π(ψA,ψB)−−−−−−→ J[Γ]K.Π(FA[ϕΓ], FB[ρ ◦ ϕΓ↑FA])

= J[Γ]K.Π(FA,FB[ρ])[ϕΓ]
T (ϕΓ)(ξ−1

A,B
)

−−−−−−−−→ J[Γ]K.F (Π(A,B))[ϕΓ]

4.4.2 Uniqueness
We resume the uniqueness proof left at 3.4.

Unit type Follows from the coherence diagram of the preservation of democracy of F .
Identity types We need to show ψ′I(A,a,a′) = ψI(A,a,a′) : Γ.I(A, a, a′) → Γ.F (I(A, a, a′))[ϕΓ].

By post-composing by the coherence isomorphism F (I(A, a, a′)) ∼=FΓ I(FA,Fa, Fa′), we
get a morphism between identity types. In an extensional type theory, identity types
are either empty or singletons, thus there is at most one morphism between two identity
types (which is an isomorphism). This implies that ψI(A,a,a′) = ψ′I(A,a,a′).

Σ-types By induction, we can assume that ϕΓ.A.B = ϕ′Γ.A.B . By naturality of ϕ′, we must
have ϕ′Σ(A,B) = F (χ−1

A,B) ◦ ϕ′Γ.A.B ◦ χA,B = ϕΓ.Σ(A,B) hence ψΣ(A,B) = ψ′Σ(A,B) follows.
Π-types As in the previous section, by induction we can assume ϕΓ.A.B = ϕ′Γ.A.B .

Write ev for the obvious map Γ.A.Π(A,B)[p]→ Γ.A.B given by 〈p, ap(q)[〈id, q[p]〉]〉. We
have this lemma:
I Lemma 19. Assume Γ.A ` B. The only automorphism ω of Π(A,B) (in TΓ) such
that Tp(ω) : Γ.A.Π(A,B)p ∼= Γ.A.Π(A,B)p is such that ev ◦ Tp(ω) = ev is the identity.

Proof. Consequence of Proposition 11 of [5]. J

To conclude from this lemma, we need only show that ψ−1
Π(A,B) ◦ ψ

′
Π(A,B) satisfies the

condition. But we have:

F (ev) ◦ ρ−1 ◦ θΠ(A,B),p ◦ ϕΓ.A ◦ Tp(ψ′Π(A,B)) = F (ev) ◦ ρ−1 ◦ ϕΓ.A ◦ T (ϕΓ.A)(θ) ◦ Tp(ψ′Π(A,B))

= F (ev) ◦ ρ−1 ◦ ϕΓ.A ◦ ψΠ(A,B)[p]

= F (ev) ◦ ϕΓ.A.Π(A,B)p

= ϕ′Γ.A.B ◦ ev

By only using naturality conditions on ϕ′ and ψ′. Write τ : Γ.A.F (Π(A,B))[ϕΓ][p] →
F (Γ.A.B) for the map F (ev) ◦ ρ−1 ◦ θΠ(A,B),p ◦ϕΓ.A. Since ϕ and ψ are natural, we can
do the same reasoning, and have τ ◦ Tp(ψΠ(A,B)) = ϕΓ.A.B ◦ ev. Thus, we get:

ϕ−1
Γ.A.B ◦ τ = ev ◦ Tp(ψ−1

Π(A,B))

Using our induction hypothesis on B (ϕΓ.A.B = ϕ′Γ.A.B) we have

ev ◦ Tp(ψ−1
Π(A,B)) ◦ Tp(ψ

′
Π(A,B)) = ϕ−1

Γ.A.B ◦ τ ◦ Tp(ψ
′
Π(A,B)) = ev

as desired, thus ψΠ(A,B) = ψ′Π(A,B).
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4.5 The free lccc
Let LCC be the 2-category of lcccs. Because of biequivalence [5] we have pseudofunctors:

U : CwFΣ,Π,I
d → LCC H : LCC→ CwFΣ,Π,I

d

such that UH = I and HU ∼= I. In particular there are adjunctions H a U and U a H.

I Theorem 20. UT Σ,Π,N1,I is the bifree lccc on one object, ie. it is bi-initial in LCCo.

Proof. Let C be a LCC with a chosen object oC ∈ C. By democracy, oC can be seen as
a type over the empty context in the cwf HC, thus (HC, o) is in CwFΣ,Π,I,o

d . Thus we
have a pseudo cwf functor J[·]K : T Σ,Π,N1,I → HC satisfying JoK ∼= oC. which through the
adjunction yields F : UT Σ,Π,N1,I → C in LCC.

Assume we have another G : UT Σ,Π,N1,I → C, through the adjunction we get G∗ :
T Σ,Π,N1,I → HC. Thus by bifreeness of T Σ,Π,N1,I we have ϕ : J[·]K ∼= G∗, thus F ∼= G.
Moreover, any other morphism F → G yields a morphism J[·]K→ G∗ and is equal to ϕ. J
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A Remark on the definition of pseudo cwf-morphisms (erratum for
[5])

In [5], pseudo cwf-morphisms (2-cells in the 2-category of cwfs) are defined as follows

IDefinition 21 (Pseudo cwf-transformation). Let F andG be two cwf-morphisms from (C, T )
to (C′, T ′). A pseudo cwf-transformation from F to G is a pair (φ, ψ) where φ : F ⇒ G is
a natural transformation, and for each Γ in C and A ∈ Ty(Γ), a morphism ψΓ,A : FA →
GA[φΓ] in T′(FΓ), natural in A and such that the following diagram commutes:

FA[Fδ]
T′(Fδ)(ψΓ,A) //

θA,δ
��

GA[φΓF (δ)]
T′(φ∆)(θ′A,δ)
��

F (A[δ])
ψ∆,A[δ]

// G(A[δ])[φ∆]

where θ and θ′ are the isomorphisms witnessing preservation of substitution in types in the
definition of pseudo cwf-morphism.

In the process of developping the present contribution, we discovered a glitch with this
definition: the component ψ is not constrained enough by φ. This causes a mismatch
with the 2-cells in LCC (where only the φ remains), and in consequence the family of
cwf-transformations ε used in the biequivalence (see [5]) fails a condition of pseudonatural
transformations.

Missing from this definition is the following coherence diagram:

F (Γ.A) φΓ.A //

ρFΓ,A

��

G(Γ.A)

ρGΓ,A

��
FΓ.FA

ψΓ,A// FΓ.FA[φΓ]
〈φΓp,q〉 // GΓ.GA

This means that ψ becomes redundant, and can be defined from φ – one could get rid
of ψ and adopt natural transformations φ : F ⇒ G as 2-cells from F to G. We refrain from
doing that because pseudo cwf-morphisms is most naturally presented with the ψ, reflecting
the second components of cwfs and cwf-morphisms. Moreover in our proof of bifreeness, the
construction of the unique cwf-transformation between the interpretation and an arbitrary
pseudo cwf-functor naturally build φ in mutual induction with ψ.

Finally, we finish this erratum with two remarks:
(1) The pseudofunctor H of [5] yields cwf-transformations satisfying this diagram: in fact

they are defined in this way.
(2) The coherence diagram in the original definition above follows from this, as is established

in a straightforward adaptation of Lemma 5 in [5] (the proof uses the fact thatG preserves
finite limits which might not be the case in general, but as a pseudo cwf-morphism it
always preserves the substitution pullback used in the proof).

B Proof of the bi-initiality of CwFs

In this section we complete the proof given in Section 3.4. To simplify notation, we will
identity a syntactic term with its interpretation in C through J[·]K.
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Projection Assume we have p : Γ.A → Γ. Then we need to check that ϕΓ.A;Fp = p;ϕΓ.
This is a simple calculation:

ϕΓ.A;Fp = ψA; 〈ϕΓ, q〉; ρ−1
Γ,A;Fp def. of ϕΓ.A

= ψA; 〈(p;ϕΓ), q〉; p properties of ρΓ,A

= ψA; p;ϕΓ = p;ϕΓ because ψA is a map in TΓ

Extension Assume we have a Γ ` f : ∆ and a Γ ` t : A[f ] so that 〈f, t〉 is a morphism from
Γ to ∆ ·A.

F 〈f, t〉 ◦ ϕΓ = ρ−1 ◦ 〈Ff, {θ−1
A }(Ft)〉 ◦ ϕΓ

= ρ−1 ◦ 〈Ff ◦ ϕΓ,TϕΓ{θ−1
A }(Ft[ϕΓ])〉 property of T wrt substitution

= ρ−1 ◦ 〈ϕ∆ ◦ f, {TϕΓ(θ−1
A )}(ψAf (t))〉 induction hypothesis on f and t

= ρ−1 ◦ 〈ϕ∆ ◦ f,T(f)(ψA)(t)〉 def. of ψAf
= ρ−1 ◦ 〈ϕ∆ ◦ f, q[ψA ◦ 〈f, t〉]〉 def. of T
= ρ−1 ◦ 〈ϕ∆ ◦ p, q〉 ◦ ψA ◦ 〈f, t〉
= ρ−1 ◦ ϕ∆ ↑ ◦ψA ◦ 〈f, t〉 = ϕ∆.A ◦ 〈f, t〉

Term substitution Assume we have Γ ` f : ∆ and ∆ ` t : A. First, we have

{T(J[f ]K)(ψA)}(J[tf ]K) = q[ψA ◦ (J[f ]K ↑ J[A]K) ◦ 〈id, J[tf ]K〉]

= q[ψA ◦ 〈id, J[t]K〉 ◦ f ]

= q[ψA ◦ 〈id, J[t]K〉][J[f ]K]

= {ψA}(J[t]K)[J[f ]K]

= Ft[ϕ∆][J[f ]K] induction hypothesis on t
= Ft[Ff ][ϕΓ] induction hypothesis on f

Thus:
{ψAf}(J[tf ]K) = {T(ϕΓ)(θA,f )(Ft[Ff ][ϕΓ])

= θA,f (Ft[Ff ])[ϕΓ] = F (t[f ])[ϕΓ]

Variable Assume we have Γ ·A ` q : A[p]. Using the formula for ψAp yields:

{ψAf}(q) = q[θA,p ◦ 〈ϕΓ, q[ψA ◦ 〈p, q〉]〉]
= q[θA,p ◦ 〈ϕΓ·A, q[ψA]〉 (because 〈p, q〉 = id’)

Calculating the other term yields:

Fq[ϕΓ·A] = {θA,p}(q[ρ])[ϕΓ.A] because F preserves context comprehension
= q[θA,p ◦ 〈id, q[ρ]〉 ◦ ϕΓ.A]
= q[θA,p ◦ 〈ϕΓ.A, q[ρ ◦ ϕΓ·A]〉]
= q[θA,p ◦ 〈ϕΓ.A, q[〈ϕΓ, q〉 ◦ ψA]〉] def. of ϕΓ.A

= q[θA,p ◦ 〈ϕΓ.A, q[ψA]〉]

Thus the equality holds.
Functoriality of substitution Assume we have Γ ` f : ∆ and ∆ ` g : Θ. We want to show

the equality ψA[g][f ] = ψA[f◦g] and ψA[id] = ψA for Θ ` A. The second equation is easy:

TLCA’15
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by functoriality of T T(J[id]K)(ψA) = ψA and properties of F , θA,id = id. A calculation
gives

ψA[g][f ] = T(f)(T(g)(ψA) ◦ T (ϕ∆)(θA,g)) ◦T(ϕΓ)(θA,f )
= T(f)(T(g)(ψA)) ◦T(f)(T (ϕ∆)(θA,g)) ◦T(ϕΓ)(θA,f functoriality of T(f)
= T(g ◦ f)(ψA) ◦T(ϕΓ)(T(Ff)(θA,g)) ◦T(ϕΓ)(θA,f functoriality of T(f) + ind. hyp. on f
= T(g ◦ f)(ψA) ◦T(ϕΓ)(T(Ff)(θA,g) ◦ (θA,f )) functoriality of T(ϕΓ)
= T(g ◦ f)(ψA) ◦T(ϕΓ)(θA,g◦f ) coherence for θ
= ψA[g◦f ]

C Proof of the bi-initiality of T Σ,Π,I

In this section, we deal with the cases related to terms and equations arising for Σ,Π
and identity types. For the equations dealing with substitutions and type constructor,
we will need lemmas about the isomorphism of preservation of substitution of F , the
type isomorphism θA,f : FA[Ff ] ∼= F (Af) (over T(FΓ)). Those lemmas come from this
characterization of θ:
I Lemma 22. Let f : Γ → ∆. The type morphism θA,f is the only type morphism to
make the following diagram commute:

FΓ.F (Af)
ρ−1

Γ,Af // F (Γ.A[f ])
F 〈f+) // F (∆.A)

ρ∆,A

��
FΓ.FA[Ff ]

θA,f

OO

F (f)+
// F∆.F (A)

Proof. The diagram commutes by virtue of Proposition 4 of [5]. Moreover, by definition
of type substitution the following is pullback:

FΓ.FA[Ff ]

p

��

f+
// F∆.FA

p

��
FΓ

Fδ
// F∆

Because θ and ρ are isomorphism and the diagram above commute, the following is also
a pullback:

FΓ.F (Af)

p

��

ρ◦F (f+)◦ρ−1
// F∆.FA

p

��
FΓ

Ff
// F∆

Thus it follows that there is a unique type morphism F∆.FA[Ff ] → F∆.F (Af) that
makes the diagram of the lemma commute by the universal property of pullbacks. J
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I Lemma 23 (Compatibility of Σ-types with substitution). The following diagram of type
isomorphism over FΓ commutes:

F (Σ(A,B))[Ff ]

T (Ff)(sA,B)

��

θΣ(A,B) // F (Σ(A,B)[f ])

(sAf,B(f↑_))

��
Σ(FA[Ff ], FB[ρ−1])[Ff ]

Σ(θA,T(θ̄−1
A,f

)(θB))
// Σ(F (Af), F (Bf ↑ _))

(It is well-typed because ρ−1 ◦ Ff ↑ _ = F (f ↑ _) ◦ ρ−1 ◦ θ−1
A )

Proof. The diagram amounts to showing that θΣ(A,B),f = sAf,Bf+ ◦Σ(θA, T (θ̄A,f ))(θB)◦
T (Ff)(sA,B). Hence by the previous lemma it is enough to show that the right hand
side makes the corresponding diagram commute – which is an involved calculation. J

I Lemma 24 (Compatibility of Σ with T). Assume we have fA : ∆.A ∼= ∆.A′ and
fB : ∆.A.B ∼= ∆.A.B′[fA], and f : Γ→ ∆. Then

Tf(Σ(fA, fB)) = Σ(Tf(fA),T(f+)(fB)) : Σ(Af,Bf+) ∼= Σ(A′f,B′f+)

in TΓ.

Proof. Direct calculation. J

I Lemma 25 (Compatibility of Π-types with substitution). The following diagram of type
isomorphism over FΓ commutes:

F (Π(A,B))[Ff ]

T (Ff)(ξA,B)

��

θΠ(A,B) // F (Π(A,B)[f ])

(ξAf,B(f↑_))

��
Π(FA[Ff ], FB[ρ−1])[Ff ]

Π(θA,T(ρ−1◦θ−1
A

)(θB))
// Π(F (Af), F (Bf ↑ _))

(It is well-typed because ρ−1 ◦ Ff ↑ _ = F (f ↑ _) ◦ ρ−1 ◦ θ−1
A )

Proof. Similar method to prove. J

I Lemma 26 (Compatibility of Σ with T). Assume we have fA : ∆.A ∼= ∆.A′ and
fB : ∆.A.B ∼= ∆.A.B′[fA], and f : Γ→ ∆. Then

Tf(Π(fA, fB)) = Π(Tf(fA),T(f+)(fB)) : Π(Af,Bf+) ∼= Π(A′f,B′f+)

in TΓ.

TLCA’15
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Proof. Direct calculation. J

Reflexivity Assume Γ ` a : A. We need to check that

{ψI(A,a,a)}(J[r(a)]K) = F (r(a))[ϕΓ]

But both are equal to r(J[a]K) by the axiom of extension types.

Naturality of identity types Assume we have ∆ ` a, a′ : A and Γ ` f : ∆. We need to
show ψI(A,a,a′)[f ] = ψI(A[f ],a[f ],a′[f ]). Both are isomorphisms between identity types
but by extensionality there can be at most one isomorphism (mapping r(J[a]K) to
r(Fa)) thus they have to be equal.

First projection Assume we have Γ ` t : Σ(A,B) from which we deduce Γ ` fst(A,B, t) :
A.

We check the diagram:

J[Γ]K

J[t]K &&

ϕΓ

��

fst(J[t]K) // J[Γ.A]K

ϕΓ.A

��

ψA

��

J[Γ.Σ(A,B)]K

ϕΓ.Σ(A,B)

��

χ−1
A,B // J[Γ.A.B]K

p

77

ϕΓ.A.B

��
F (Γ.Σ(A,B))

ρ

��

F (χA,B)−1
// F (Γ.A.B)

Fp

��
FΓ.F (Σ(A,B)) F (Γ.A)

ρ

��
FΓ

Ft

88

F (fst(t))
// FΓ.FA

ϕΓ↑_
// J[Γ]K.FA[ϕΓ]

(we confused a term t and its section 〈id, t〉 : Γ→ Γ.A

Second projection Assume we have Γ ` t : Σ(A,B) from which we deduce Γ ` snd(A,B, t) :
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B[〈id, t〉]. Writing B(t) for B〈id, t〉, we have the following diagram:

J[Γ]K

J[t]K ((

ϕΓ

��

snd(J[t]K) // J[Γ.B(t)]K

ψB(t)

��

〈id,fst(J[t]K)〉↑B

ss

ϕΓ.B(t)

��

J[Γ.Σ(A,B)]K

ψΣ(A,B)
��

χ−1
A,B // J[Γ.A.B]K

ϕΓ.A.B

��
J[Γ]K.F (Σ(A,B))[ϕΓ ↑ _]

ϕΓ↑_

��

F (Γ.A.B)

F (χ−1
A,B

)
��

F (Γ.Σ(A,B))
ρ

uu

F (Γ.B(t))

F (〈id,fstt〉)↑B
gg

FΓ.F (Σ(A,B))

FΓ
Ft

66

F (snd(t))
// FΓ.F (B(t))

ρ

??

ϕΓ↑_
// J[Γ]K.F (B(t))[ϕΓ]

Left square is induction hypothesis on t, top square, bottom hexagon, and top-left
square are basic cwf manipulations. Middle hexagon is the definition of ψΣ(A,B),
bottom right triangle is definition of ϕΓ.B(t).

Naturality of the sigma types Assume we have ∆.A ` B and Γ ` f : ∆. We want to
prove equality of ψΣ(A,B)[f ] and ψΣ(Af,B(f↑A)).

It follows from this diagram, where the top arrow is the unfolding of the definition of
ψΣ(A,B)f .

Γ.Σ(A,B)f

Σ(Tf(ψA),TfψB)

''
ψ(Σ(Af,Bf+))

��

Tf(ψΣ(A,B))// Γ.F (Σ(A,B))[ϕ∆ ◦ f ]

T(ϕΓ)(T (Ff)(σ))

��

T(ϕΓ)(ΘΣ(A,B),f )
// Γ.F (Σ(A,B)f)[ϕΓ]

TϕΓ(σ)

��

Γ.Σ(FA[ϕ∆], FB[ρ−1 ◦ ϕ∆ ↑])f

T(ϕΓ)(Σ(θA,T(θ̄)θB))

))
Γ.F (Σ(A,B)f)[ϕΓ] Γ.Σ(F (Af), F (Bf+)[ρ−1 ◦ ϕΓ ↑])

T (ϕΓ)σ−1
oo

The diagram commutes thanks to Lemmata 24, and 23.

TLCA’15
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λ Assume we have Γ.A ` t : B. Then we have

{Π(ψA, ψB)(λ(t)) = λ({T (ψ−1
A )(ψB)}(app(λ(t[p ↑ _]), q[T(p)(ψ−1

A )])))
= λ({T (ψ−1

A )(ψB)}(t[p ↑ _ ◦ 〈id, q[T(p)(ψ−1
A )]))

= λ({T (ψ−1
A )(ψB)}(t[ψ−1

A ]))
= λ(q[ψB ◦ 〈ψ−1

A , t[ψ−1
A ]〉])

= λ(q[ψB ◦ 〈id, t〉 ◦ ψ−1
A ]

= λ({ψB}(t)[ψ−1
A ])

= λ(Ft[ϕΓ.A ◦ ψ−1
A ]) = λ(Ft[ρ][ϕΓ ↑ _]) = λ(Ft[ρ])[ϕΓ] ind. hypothesis on t

Thus, we get

{ψΠ(A,B)}(t) = {T (ϕΓ)(ξ−1
A,B)}(λ(Ft(ρ))[ϕΓ]

= q[ξ−1
A,B ◦ 〈id, λ(Ft[ρ])〉 ◦ ϕΓ]

= F (λt)[ϕΓ] because F preserves Π-types

ap Assume we have Γ ` t : Π(A,B).

F (ap(t))[ϕΓ.A] = ap({ξ}(Ft))[ϕΓ ↑ _ ◦ ψA]
= ap({ξ}(Ft)[ϕΓ])[ψA]
= ap({T(ϕΓ)(ξ)}({ψΠ(A,B)}(t)))[ψA]
= ap({Π(ψA, ψB)}(t))[ψA]
= {ψB}ap(t)

Naturality of Π-types Thanks to lemmata 26 and 25 we can draw the same diagram as
for the naturality of Σ types but by replacing the structural morphisms of Σ-types by
that of Π-types and the resulting diagram still commutes.
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