
Constructive Type Theory
and

Interactive Theorem Proving

Peter Dybjer
Chalmers Tekniska Högskola

Göteborg, Sweden

JSSST
Sendai, 15 September 2005

1

Interactive theorem provers - proof assistants

Examples:

Classical set theory, Zermelo 1908: Mizar (1973-)

Classical type theory, Church 1940: HOL (early 1980s), Isabelle-HOL,
(PVS)

Constructive type theory, Scott 1970, Martin-Löf 1972: NuPRL (early
1980s), Coq (1990-), Agda, ...

(Early systems: Automath, LCF, ...)

2

What is constructive type theory? Some roots.

• Constructivism. Brouwer 1908.

• Type theory. Russell, Whitehead 1910. Church 1940

• Intuitionistic logic. BHK. Realizability interpretation, Kleene

• Propositions as types, Curry-Howard 1957, 1969.

• Foundations of constructive analysis. Bishop 1967

• Constructive type theory. Scott 1970, Martin-Löf 1972

Also: primitive recursion, Gödel’s T, Lawvere’s quantifiers as adjoints, ...

3

Constructive mathematics and computer programming

Constructive type theory = Functional programming language with
dependent types where all programs terminate

Constructive mathematics = Computer programming

A quotation from “Constructive Mathematics and Computer Program-
ming” (Martin-Löf 1979).

4

“the whole conceptual apparatus of programming mirrors that of
modern mathematics (set theory, that is, not geometry) and yet is
supposed to be different from it. How come? The reason for this
curious situation is, I think, that mathematical notions have gradually
received an interpretation, the interpretation which we refer to as
classical, which makes them unusable for programming. Fortunately, I
do not need to enter the philosophical debate as to whether the clas-
sical interpretation of the primitive logical and mathematical notions
(proposition, truth, set, element, function etc.) is sufficiently clear,
because this much is at least clear, that if a function is defined as a
binary relation satisfying the usual existence and unicity conditions,
whereby classical reasoning is allowed in the existence proof, or a
set of ordered pairs satisfying the corresponding conditions, then a
function cannot be the same kind of thing as a program. Similarly, if
a set is understood in Zermelo’s way as a member of the cumulative
hierarchy, then a set cannot be the same thing as a data type.”

5

Now it is the contention of the intuitionists (or the constructivists,
I shall use these terms synonymously) that the basic mathematical
notions, above all the notion of function, ought to be interpreted
in such a way that the cleavage between mathematics, classical
mathematics, that is, and programming that we are witnessing at
present disappears.

...
What I have just said about the close connection between con-

structive mathematics and programming explains why the intuitionistic
type theory ..., which I began to develop solely with the philosoph-
ical motive of clarifying the syntax and semantics of intuitionistic
mathematics, may equally well be viewed as a programming language.

6

What is constructive mathematics?

• Functions are computable

• Proofs of implications are computable functions (“methods”)

• A proof of a disjunction is either a proof of left or of right disjunct

• A proof of existence gives a witness

Hence, not excluded middle, not double negation.

7

The Brouwer-Heyting-Kolmogorov interpretation

A proof of A ⊃ B is a method which transforms a proof of A to a proof
of B.

A proof of A ∧B is a pair consisting of a proof of A and a proof of B.

A proof of A ∨B is either a proof of A or a proof of B.

A proof of ∀x : A.B is a method which for an arbitrary element a of A
returns a proof of B[x := a].

A proof of ∃x : A.B is a pair consisting of a element a of A (the
witness) and a proof of B[x := a].

8

Propositions as types - towards constructive type theory

Curry 1957 observed the similarity between the types of the K and
S-combinators

K : A → B → A

S : (A → B → C) → (A → B) → A → C

and two Hilbert-style axioms for implication

A ⊃ B ⊃ A

(A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C

Moreover, the typing rule for application corresponds to the rule of modus
ponens!

9

The Curry-Howard identification

A ⊃ B = A → B

A ∧B = A×B

A ∨B = A + B

∀x : A.B = Πx : A.B

∃x : A.B = Σx : A.B

> = 1

⊥ = 0

¬A = A → 0

10

An example: Hindley-Milner typability and type inference

In a functional language such as Haskell we may write functions

(i) has_type :: Term -> Bool
(ii) type_of :: Term -> Maybe Type

which test (i) whether a term is typable (ii) in case it is returns a type for
it. Here

data Maybe a = Nothing | Just a

11

Typability and type inference in constructive type theory

Let Term be the set of terms of the lambda calculus, Type the set of
types of the lambda calculus, and :: be the typing relation so that M :: σ
means that M has type σ.

Consider the following proposition in typed predicate logic

dec type : ∀M : Term.(Typable M) ∨ ¬ (Typable M)

where
Typable M = ∃σ : Type.M :: σ

Classical proof is trivial! Constructive proof is a decision algorithm, a type
inference algorithm, which computes its own correctness witness!

12

Original Martin-Löf type theory with one universe
(MLTTU)

• Set formers for predicate logic: 0,1,+,×,→,Σ,Π.

• Natural numbers N.

• Universe of small sets U.

All these were introduced in Martin-Löf 1972.

13

Rules for natural numbers

Formation rule:

N : Set

Introduction rules:

0 : N

Succ : N → N

14

Primitive recursion = mathematical induction

Elimination rule = rule for building proofs by mathematical induction
= rule for typing functions from natural numbers where the target is a
dependent type.:

R : (C : N → Set) → C 0 → ((x : N) → C x → C (Succ x)) →
(n : N) → C n

Computation rules:

R C d e 0 = d : C 0

R C d e (Succ n) = e n (R C d e n) : C (Succ n)

15

Primitive recursive schema

If C : N → Set, d : C 0, e : (x : N) → C x → C (Succ x), and

f 0 = d

f (Succ n) = e n (f n)

then we can define

f = R C d e : (n : N) → C n

Observe, that C n can be a function type; we can program the Ackermann
function.

16

Arithmetic in MLTTU

pred n = R (λx.N) 0 (λx, y. x) n

m + n = R (λx.N) m (λx, y. Succ y) n

m−̇n = R (λx.N) m (λx, y. pred y) n

m ∗ n = R (λx.N) 0 (λx, y. y + m) n

What about division? It is primitive recursive, but the Euclidean algorithm
can be implemented by using primitive recursion of higher type and a
measure.

17

Equality of natural numbers

Define

eqN : N → N → Bool

by pattern matching on constructors

eqN 0 0 = True

eqN 0 (Succ n) = False

eqN (Succ m) 0 = False

eqN (Succ m) (Succ n) = eqN m n

18

Equality of natural numbers in MLTTU

Use the elimination rule for N and define it by primitive recursion of
higher type (primitive recursive functional) as follows. Define

eqN m : N → Bool

by induction on m : N. The base case is “to be equal to zero” and the step
case is to define “to be equal to m + 1” in terms of “to be equal to m”.

Note that in MLTTU we define Bool = 1 + 1.

19

How to define dependent types

Recursively, define a family of types (a dependent type):

Vect : Set → N → Set

abbreviated An = Vect A n

A0 = 1

ASucc n = A×An

This definition is directly accepted by Agda (using case). Can we define it
in MLTTU? Note that we cannot use R directly. Why?

20

Inductive-recursive definition of the universe à la Tarski

The universe U : Set of small sets is inductively generated at the same
time as its decoding T : U → Set is defined recursively:

N̂ : U T N̂ = N
0̂ : U T 0̂ = 0
1̂ : U T 1̂ = 1

(+̂) : U → U → U T (a+̂b) = T a + T b
(×̂) : U → U → U T (a×̂b) = T a× T b

Σ̂ : (a : U) → (T a → U) → U T (Σ̂ a b) = Σ (T a) (λx.T (bx))
... ...

Note that U is not a small set.

21

The universe at work

Now we can define

An = T (R (λx.U) 1̂ (λx,X.A×̂X) n)

for A : U. (Note that we only define An for small A!)

The universe can also be used to define a family

Fin : N → Set

by

Fin 0 = 0

Fin (Succ n) = 1 + Fin n

22

More set formers

• Identity I (Martin-Löf 1973) - an inductive family/predicate

• Well-orderings W (Martin-Löf 1979) - a generalized inductive definition

• Hierarchy of universes U0,U1,U2,

23

Well-orderings

A generalized inductive definition.

W : (A : Set) → (A → Set) → Set

Sup : (A : Set) →
(B : A → Set) →
(a : A) →
(B a → W A B) →
W A B

24

The set of finitely branching trees

A special case of W:
Vfin = W N Fin

Finite trees will represent hereditarily finite sets. We can for example
represent the finite von Neumann ordinals:

∅ = Sup 0 case0

{∅} = Sup 1 b1 where b1 0 = ∅
{∅, {∅}} = Sup 2 b2 where b2 0 = ∅, b2 1 = {∅}

(using 0 : Fin 1 and 0, 1 : Fin 2)

25

Hereditarily finite iterative sets

The elements of Vfin can represent the hereditarily finite sets, i e, finite
sets all of whose elements are also hereditarily finite sets. However, when
comparing two hereditarily finite sets for equality, order and repetition of
elements do not matter. We define extensional equality as bisimilarity:

Sup n b =ext Sup n′ b′ = ∀i : Fin n. ∃i′ : Fin n′. b i =ext b′ i′ ∧
∀i′ : Fin n′. ∃i : Fin n. b′ i′ =ext b i

(Note: we have omitted the two parameter arguments of Sup.)

Extensional membership is defined by

a ∈ext Sup n b = ∃i : Fin n.a =ext b i

26

Operations on hereditarily finite sets

We can now define computable operations on herediarily finite sets, e g:

• ∩,∪ : Vfin → Vfin → Vfin

•
⋃

.P : Vfin → Vfin

27

Aczel’s constructive cumulative hierarchy V

Vfin only contains hereditarily finite iterative sets. In a similar way we
can define Aczel’s set V of iterative sets by

V = W U T

The branching can now be indexed by an arbitrary (possibly infinite) small
set T a. The definitions of extensional equality and extensional membership
are analogous to those for Vfin, except that their values are in Set rather
than in Bool.

Aczel gives axioms for a constructive version CZF of ZF set theory,
where the axioms hold for V with extensional equality and extensional
membership.

28

Constructive foundations

Predicative constructive systems:

Type theory. Martin-Löf type theory

Lambda calculus (untyped). Aczel’s first order theory of combinators
(logical theory of constructions etc.). Use intuitionistic predicate logic
and inductive predicates on domain of lambda expressions. Cf Feferman’s
explicit mathematics.

Set theory. Myhill-Aczel’s Constructive ZF - use axioms for V

Category theory. Moerdijk - Palmgren’s predicative topos - axioms for the
category of setoids in Martin-Löf type theory

29

Part II: Interactive theorem provers based on
constructive type theory

NuPRL. Cornell, from early 1980s. Extensional Martin-Löf type theory

Alf, Agda, Alfa. Chalmers, from early 1980s (Alf 1990, Agda 1996). Col-
laboration with AIST from 2004. Intensional Martin-Löf type theory.

Coq. INRIA, from 1984 (Coq 1990). The Calculus of Inductive Construc-
tions (intensional impredicative type theory).

Cf Japanese tradition - program extraction from constructive proofs (Goto,
Hayashi (PX), Sato, etc).

30

From Martin-Löf type theory to Agda

• The implementation is based on a type-checking algorithm. Intensional
constructive type theory has the strong normalization property and type-
checking of normal terms is decidable!

• MLTTU (+W, etc) is an inconvenient language for programming. Add
general inductive definitions, general recursive schemata with termination
checker, records, and modules.

• Proof by pointing and clicking! Interactively refine typing judgements
with metavariables.

• Recent trends: lighter notation by introducing “implicit” arguments,
plugins of tools for proof search and random testing.

31

Inductive definitions

Consider again the problem of ML-style type inference.

• Type and Term are inductively defined sets (“recursive data types”).

• The typing relation M :: σ between a term and a type is an inductively
defined relation.

It is possible to code these definitions in MLTTU, but in Agda they are
taken as primitives. There is a construct data which makes it possible to
declare new inductively defined sets much like one declares a recursive data
type in a functional language, e g the terms of combinatory logic are

Term :: Set = data K | S | App (f :: Term) (a :: Term)

32

Inductive definitions and constructive foundations

Each inductive definition comes with its own formation, introduction,
elimination, and computation rules, which can be systematically generated
from the definition.

Martin-Löf 1984: “We can follow the same pattern used to define
natural numbers to introduce other inductively defined sets. We see here
the example of lists”.

Martin-Löf 1972: “The type N is just the prime example of a type
introduced by an ordinary inductive definition. However, it seems preferable
to treat this special case rather than to give a necessarily much more
complicated general formulation which would include (Σ ∈ A)B(x), A+B,
Nn and N as special cases. See Martin-Löf 1971 for a general formulation of
inductive definitions in the language of ordinary first order predicate logic.”

33

Inductively defined relation = inductively defined family

HasType :: Term -> Type -> Set
= idata Ktype (A,B :: Type) :: _ K (A => (B => A))

Stype (A,B,C :: Type) :: ...
Apptype (A,B :: Type)

(f,a :: Term)
(d :: HasType f (A => B))
(e :: HasType a A) ::
_ (App f a) B

is Agda’s representation of the definition of the typing relation

K : A ⇒ B ⇒ A S : · · · f : A ⇒ B a : A

f a : B

34

What is an inductive definition in general? Examples

• the rules for generating natural numbers by zero and successor

• the rules for generating well-formed formulas of a logic

• the axioms and inference rules generating theorems of the logic

• the productions of a context-free grammar

• the computation rules for a programming language

• the reflexive-transitive closure of a relation

35

Inductive definitions and recursive datatypes

• lists generated by Nil and Cons

• binary trees generated by EmptyTree and MkTree

• algebraic types in general: parameterized, many sorted term algebras

• infinitely branching trees; Brouwer ordinals; etc.

• inductive dependent types (vectors of a certain length, trees of a certain
height, balanced trees, etc)

• inductive-recursive definitions (sorted lists, freshlists, etc)

36

Reflexive and nested datatypes

Note that recursive datatypes in functional languages (e g Haskell)
include reflexive datatypes

data Lambda = Nil | Lambda (Lambda -> Lambda)

and nested datatypes

data Nest a = Nil | Cons a (Nest (a,a))
data Bush a = Nil | Cons a (Bush (Bush a))

Neither is accepted verbatim as an inductive definition in Martin-Löf type
theory.

37

Inductive definitions and constructive foundations

Classically, inductive definitions are understood as least fixed points of
monotone operators (or least sets closed under a set of rules).

P. Aczel (An introduction to inductive definitions, Handbook of Mathe-
matical Logic, 1976, pp 779 and 780.):

An alternative approach is to take induction as a primitive notion,
not needing justification in terms of other methods. ... It would be
interesting to formulate a coherent conceptual framework that made
induction the principal notion.

No universal principle. We may discover new stronger inductive generation
principles.

38

Inductive definitions and the notion of set
in Martin-Löf type theory

Martin-Löf type theory is such a coherent conceptual framework.

“(1) a set A is defined by prescribing how a canonical element of
A is formed as well as how two equal canonical elements of A are
formed.”

Per Martin-Löf (p8 in Intuitionistic Type Theory, Bibliopolis 1984)

This is the same as saying that a set is defined by its introduction rules, i
e, the rules for inductively generating its members.

39

Martin-Löf type theory and inductive definitions

• Basic set formers: Π,Σ,+, I,N,Nn,W,Un

• Adding new set formers with their rules when there is a need for them:
lists, binary trees, the well-founded part of a relation,

• Exactly what is a good inductive definition? Schemata for inductive
definitions, indexed inductive definitions, inductive-recursive definitions

• Generic formulation: universes for inductive definitions, indexed inductive
definitions, inductive-recursive definitions

40

Inductive-recursive definitions

Recall the inductive-recursive definition of the universe á la Tarski. We
only display one constructor to show the inductive-recursive nature of the
definition:

U : Set

T : U → Set

Σ̂ : (a : U) → (Ta → U) → U

T (Σ̂ a b) = Σx : T a.T (b x)

Why is such a strange definition constructively valid? Use Martin-Löf style
meaning explanations!

41

Inductive-recursive definition of ordered lists

OrdList : Set

lb : N → OrdList → Bool

Nil : OrdList

Cons : (x : N) → (xsp : OrdList) → T (lb x xsp) → OrdList

lb x Nil = True

lb x (Cons y xsp q) = x ≤ y

42

Recursion schemata

In MLTTU all recursion must be expressed using the recursion combi-
nators (elimination rule), that is, programming must be done by primitive
(or structural) recursion. This is inconvenient in practice.

In Agda one does not need to adhere to this principle strictly:

• Functions can be defined by case analysis

• Recursive calls are checked by separate termination checker. The criterion
is that recursive calls are on structurally smaller terms.

43

Examples of definitions accepted by Agda

half 0 = 0

half (Succ 0) = 0

half (Succ (Succ n)) = Succ (half n)

eqN 0 0 = True

eqN 0 (Succ n) = False

eqN (Succ m) 0 = False

eqN (Succ m) (Succ n) = eqN m n

44

Examples of definitions accepted by Agda - 2

Also recursive definitions of sets are accepted directly without reduction
to universes:

A0 = 1

ASucc n = A×An

Remark: Agda has a construct case for definition by case analysis.

45

Building proofs by pointing and clicking

The most recent interactive theorem prover for Martin-Löf type theory
built at Chalmers, main implementor Catarina Coquand with extension by
Makoto Takeyama (former Chalmers now at AIST).

The window interface Alfa written by Thomas Hallgren.

Alf. Main idea. “Do proof by pointing and clicking”. Build

a : A

by step-wise constructing a and A. Either think of a as a term of type A or
as a program with the specification A or as a proof of the proposition A.

46

An example

Build the polymorphic identity function.

λA.λx.x : (A : Set) → A → A

Write this in Agda syntax, and let Agda type-check it!

id :: (A :: Set) -> A -> A
id = \A -> \x -> x

However, for complex dependent programs and proofs in constructive type
theory it is unfeasible to directly write it down and type-check it.

47

Interactively refine typing with metavariables

First, give the function a name, eg “id”, with an unknown type and
unknown definition:

id :: ?0
id = ?1

You can now stepwise instantiate the type ?1 and term ?2. Begin with the
type. It is a dependent function type. Place the cursor on ?1 and type the
template for dependent function space. (A :: ?) -> ? and use the Agda
command “refine”! Agda checks that it is a correct partial type expression.
Your screen is

id :: (A :: ?2) -> ?3
id = ?1

48

Interactively refine typing with metavariables - 2

id :: (A :: ?2) -> ?3
id = ?1

You can now refine either ?1, ?2, or 3. If we refine ?1 we can choose the
command “abstract” after typing a variable name e g A in the place holder
for ?1. We get

id :: (A :: ?2) -> ?3
id = \(A :: ?4) -> ?5

Etc. At each stage the type-checking algorithm maintains the consistency
of the typing. Unlike Coq, Agda always shows the partial term/proof-term
on the screen. Agda also has a command “suggest” suggesting possible
refinements.

49

Proof construction

Proof construction is the same as term construction - you manipulate
a proof term on the screen. (This is unlike most other systems, including
Coq, where you do not see the proof terms directly, but instead give com-
mands/tactics manipulating proofs, reducing goals to subgoals) Contrast
with systems such as Coq, where you write the script “refine”, “give”,
“auto”, ...

50

Automation - three possibilities

Reflection. Write internal decision procedure:

decide :: Sublogic -> Bool
[[-]] :: Sublogic -> Set
sound :: (phi :: Sublogic) -> decide phi = True -> [[phi]]

Proof search by external tool producing proof object. Example: Agsy,
the Agda Synthesizer. Proof-object checked by type-checker.

Proof search by external tool producing no proof object. Example: the
FOL-plugins of AgdaLight and Agda.

51

Combining tests and proofs

Some of Agda’s propositions (types) are testable in a similar way as the
QuickCheck tool of Claessen and Hughes. Cf Hayashi’s use of testing in
connection with PX.

Example. The following type expresses the correctness of a sorting
algorithm sort

(xs :: List N) ->
(ordered (sort xs) && permutation xs (sort xs)) = True

Test it by randomly generating elements of List N, and check the RHS!

Cover project at Chalmers is about combining random testing with
automatic and interactive proof.

52

Conclusion: intensional constructive type theory vs
classical logic as basis for interactive theorem provers

Advantages:

• “Native” functional programming language with powerful data types

• Normalization during type-checking. Reflection.

Disadvantages:

• Intensionality?

• Automatic techniques for classical logic more well-developed

53

