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Abstract

We prove that every strictly positive endofunctor on the category of sets generated by Martin-Lof’s
extensional type theory has an initial algebra. This representation of inductively defined sets uses
essentially the wellorderings introduced by Martin-Lo6f in “Constructive Mathematics and Computer
Programming”.

1 Background

Martin-Lof [10] introduced a general set former for wellorderings in intuitionistic type theory. It has
formation rule

(z: A)
Aset B(z)set
Wo.aB(x)set

itroduction rule
(z : B(a))
a:A b(z) : Wy.aB(x)

sup(a,b) : Wy.a B(x)

elimination rule
(I : AJ Yy B(‘E) — WIUZAB(I)ﬂ 2! Ht:B(z) C(y(t)))
¢: Wy.aB(2) d(z,y,z): C(sup(a,b))
T(c,d) : Cle)

and equality rule
(z : B(a)) (x:Ayy: B(x) > WeaB(x),z: Ht:B(x) C(y(t)))
a:A b(x) : We.a B(z) d(z,y,z): C(sup(a,b))
T(sup(a,b),d) =d(a,b,\.T(b(t),d): C(c)

The elimination rule can be viewed either as a rule of transfinite induction or as a rule of definition by
transfinite recursion of a function f which maps a ¢ : Wy.4 B(x) into a set C(c). If we let

fle) =T(c,d)
then the recursion equation
f(sup(a,b)) = d(a,b, M. f(b(1)))

follows from the equality rule for wellorderings.
Martin-Lof [11] also showed that one can encode both the set of natural numbers and the set of
ordinals of the second number class in terms of the wellorderings, the finite sets Ng, N1, N2, and the
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first universe U. (N; is the finite set with ¢ elements 0;,1;,..., (¢ — 1); and R; is the é-ary conditional
appearing in the elimination rule for N;.)
The set N of natural numbers can be encoded by

N = Wl‘iNzBN(z);
where Bn(02) = No and By (12) = N1 (The explicit definition of By uses the first universe U.) Moreover,

0 = sup(02, (x)Ro(x)),
s(a) = sup(ls, (z)Ri(z,a)),

and the recursion operator R for N can be defined by
R(n,d,e) =T(n,g)
where

9(02,y,2) = d:C(0) = C(sup(02, Rg)) = C(sup(0a,y)
9(12,y,2) e(y(01),2(01)) : C(s(y(01))) = (Sﬂp(b;( )(01))) = C(sup(12,y))

Here we have used that in extensional type theory

y:RoiNo—)C

for all y : No — C and
y=(x)y(01) : Ny = C

for all y : Ny — C. These judgement are not derivable in intensional type theory, however, since the
left-hand side and right-hand side of the respective equalities have different normal forms.
Similarly, we can define the ordinals of the second number class by

0= Wz:N2 Bo (17)

where Bp (03) = Ng and Bo (1) = N.
We shall show that these are just two instances of a general representation theorem for inductively
defined sets in extensional type theory.

2 The representation theorem

The general result refers to sets which are inductively generated by strictly positive operators, that is,
operators built up from set variables and constants using 4+, x, and — with the restriction that no set
variable occurs to the left of —. For example, the set N of natural numbers is generated by ®(X) =
Ni + X and the set O of ordinals of the second number class is generated by ®(X) = Ny + (N — X).
Each strictly positive operator can be extended to a strictly positive functor on the category of sets
generated by extensional type theory. This category has sets in the sense of extensional type theory
as objects and elements of the set A — B as morphisms. Two morphisms are equal iff they are equal
elements of A — B iff they are extensionally equal functions from A to B. We can then formulate:

Theorem 1 FEach strictly positive functor on the category of sets generated by extensional type theory
has an wnitial algebra.

Proof. The initial algebra for the functor ®(X) = 3 ,(B(z) — X) is the arrow i : ®(W) — W,
where

W = Wy.aB(x)

and

i({a, b)) = sup(a,b).



Given another ®-algebra e : ®(C) — C, there is a morphism of ®-algebras h: W — C, where
h(c) =T(e,d)

for
d(z,y,z) = e((z, 2)).

That h is the unique such morphism is an “p-rule” which follows from extensionality of equality of
morphisms.

Theorem 1 now follows from lemma 3 below, which states that each strictly positive functor is
isomorphic to a functor of the form ®(X) = >, ,(B(z) — X) for some A and B.

The proof of lemma 3 uses the following fact:

Lemma 2 The following isomorphisms are valid in the category of sets generated by extensional type
theory:

Ny =2 Ng— A, (1)
A = Ny — A, (2)
A = Ax Ny, (3)
A = Ny xA, (4)
II > caw = [1¢, r()), (5)
z:Ay:B(z) ‘f:Ha::A B(x) T:A
[T ¢ew = I cwae) (6)
$3AyZB(:L‘) Z:Z.’E:A B(z)
Z B,(I,)-I- Z B”(l‘”) >~ Z B(l‘) (7)
T A’ g AN A+ A"

where, in the last isomorphism B(i(z')) = B'(2') and B(j(z")) = B"(z").

The proof of lemma 2 uses extensionality. The reason is similar to what was explained in the introduction
about the use of extensionality for proving the correctness of the encoding of natural numbers.

Lemma 3 For any strictly positive set operator ®, we can find a set A and a family of sets B(x) indexed
by elements x : A, such that, for all sets X

@(X) =) (B(z) > X).

T A

Proof. We proceed by induction on the structure of ®. Assume for the induction step that ®'(X) =
Zx:A,(BI(l‘) — X) for some A’, B and ®"(X) = Zx:A”(B”(I) — X) for some A", B"”. There are the
following cases

Variable. ®(X) = X. Let A = Ny and B(z) = N1. We need to show that

X = Ny x (N — X).

But this follows directly from (4) and (2).

Constant. ®(X) = K for some constant set K. Let A = K and B(z) = Njy.

We need to show that

K2 K x (Ng - X).

But this follows directly from (3) and (1)

Disjoint union. ¢(X) = ®'(X) + ®"(X). Let A = A"+ A" and B(i(2')) = B'(2') and B(j(z")) =
B2 . . . ), v .

We need to show that

Z(B’(:c’) - X) + Z (B"(2") = X) = Z (B(z) = X),

rl Al z!: Al A4 AN



where B(i(z')) = B'(2') and B(j(z")) = B"”(z"). But this follows directly from (7).
Cartesian product. &(X) = &'(X) x ®”(X). Let A= A’ x A” and B((2',2")) = B'(z') + B"(z").
We need to show that

SBE) = X)x Y (B = X)= Y (B(z) > X).

Al AN B ATX A
But this follows since we can construct the isomorphism pair (¢,'), where
U{{a’s ), (a”, 1)) = (o', a"), f)
for f(i(2')) = f'(z') and f(j(2")) = f"(«"), and
UGN DEXC RGN )
for f'(z') = f(i(2")) and f"(z") = f(j(z")).

Function space. ®(X) = K — ®'(X) for some constant set K. Let A = K — A’ and B(f) =
Zy:K BI(Ap(f, y)) We prove

/A/ fK—>A’yK
= > Q_BAp(fy) —» X)
[ K—A y.K

by using special cases of (5) and (6) respectively. O

We can now apply the proof to ®(X) = N1 + X and get an isomorphic representation of the natural
numbers as Wy.n, +n, B(x), where B(i(01)) = No and B(j(01)) = N1, which is essentially the same as
[11] given above.

Remark. Lemma 3 is the key result of the paper and theorem 1 is just a corollary. Given an
appropriate categorical formulation of initial algebras in general models of dependent types ([2], [12], [5],
[7]), we believe a stronger version of theorem 1 could be formulated and proved as a corollary of lemma

3.

3 Some remarks on intensional type theory

As already mentioned, this representation does not work directly in intensional type theory. Consider for
example Martin-Lof’s representation of the natural numbers. In intensional type theory we can still derive
the introduction rules but not the elimination rule. The reason is that we cannot prove by transfinite
induction without using extensionality that C(c) for all ¢ : Wy.n, By (2) from C(sup (02, (2) Ro(2))) and
C(a) implies C'(sup(la, (x)Ri(x,a)). We cannot even prove C(sup(02,b)) from C(sup(0s,(z)Ro(x))),
since we cannot prove that b and (z)Ro(x) are intensionally equal.

For similar reasons the isomorphisms in lemma 2 cannot be proved if equality in our category of sets
is equality in intensional type theory.

However, Hofmann [6] has shown how to build a category of setoids (sets with equivalence relations)
inside intensional type theory. This category is a model of extensional type theory. By applying theorem
1 to this category we get an indirect representation theorem for inductively defined sets in intensional
type theory.

4 Related work

Paulson [14] used wellorderings for deriving a variety of well-founded recursion operators in extensional
type theory.

Palmgren [13] showed how to use wellorderings for representing inductively defined predicates in type
theory.



Petersson and Synek [15] introduced a new set constructor for general trees in type theory. These trees
are related to the wellorderings, but encode extra information which can also be used for representing
inductively defined families of sets in a similar style as the representation described in the present paper.

General rules for initial algebras in dependent type theory can be found in Coquand and Paulin [2],
Mendler [12], Geuvers [5], and Jacobs [7].

Natural deduction formulations for inductively defined sets in type theory can be found in Backhouse
[1] and for inductively defined families in Dybjer [4, 3]. This is an alternative approach to inductive
definitions in type theory modelled on Martin-Lof’s natural deduction formulation of inductively defined
predicates in predicate logic [9]. This approach has also been formulated for inductive definitions in the
calculus of constructions by Coquand and Paulin [2] and Luo [§].
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