
Normalization by evaluation
for typed lambda calculus with coproducts

T. Altenkirch �, P. Dybjer
�
, M. Hofmann

�
, P. Scott

�

April 11, 2001

Abstract
We solve the decision problem for simply typed lambda
calculus with strong binary sums, equivalently the word
problem for free cartesian closed categories with binary
coproducts. Our method is based on the semantical tech-
nique known as “normalization by evaluation” and in-
volves inverting the interpretation of the syntax into a
suitable sheaf model and from this extracting appropri-
ate unique normal forms. There is no rewriting theory in-
volved, and the proof is completely constructive, allowing
program extraction from the proof.

1 Introduction
In this paper we solve the decision problem for simply
typed lambda calculus with categorical coproduct (strong
disjoint sum) types. While this calculus is both natu-
ral and simple, the decision problem is a long-standing
thorny issue in the subject. Our solution is based on nor-
malization by evaluation (NBE) (also called “reduction-
free normalisation”) introduced by Martin-Löf [ML75]
for weak typed lambda calculus, and by Berger and
Schwichtenberg [BS91] for typed lambda calculus with���

-conversion. The technique has been further refined
by the authors and coworkers using category-theoretic
methods [CD97, AHS95, CDS97]. It has also been ex-
tended to other systems, such as System F [AHS96].
As shown by Berger, Eberl, Schwichtenberg, and Danvy
[BES98, Da96], NBE techniques yield fast normaliza-
tion algorithms, with applications in interactive proof
systems [BBSSZ98] and type-directed partial evaluation
[Da96, Da98, Fil01].

Here we show how to considerably extend the NBE
techniques to take into account type systems with strong
sums. The NBE method involves constructing a model
�
School of Computer Science and IT, University of Nottingham, Not-

tingham, UK, e-mail: txa@cs.nott.ac.uk�
Department of Computing Science, Chalmers Uni-

versity of Technology, S-412 96 Göteborg, Sweden,
e-mail: peterd@cs.chalmers.se	

Division of Informatics (LFCS), University of Edinburgh, Edin-
burgh EH9 3JZ, UK, e-mail: mxh@dcs.ed.ac.uk

Department of Mathematics, University of Ottawa, Ottawa, Ontario,
K1N 6N5, Canada. e-mail: phil@mathstat.uottawa.ca. The
author’s research is supported by a grant from NSERC.

�
and effectively “inverting” the evaluation of lambda

terms in
�

and thereby extracting certain unique syntac-
tic normal forms, from which a decision procedure easily
follows (we outline the proof below). The proof uses no
rewriting theory.

Typed lambda calculi with (strong) sum types arise very
naturally:
� In programming language theory, coproducts model

variant and enumerative types. The added categori-
cal equation for coproducts corresponds to a kind of
uniqueness for pattern matching or Case construc-
tion [AC98, Mit96, GLT89].� In proof theory, under the Curry-Howard Isomor-
phism, terms correspond to natural deduction proofs
in intuitionistic propositional
���������������� logic.
One then considers terms (proofs) modulo certain
equations, which guarantee, for example, that the
formula ����� acts as a coproduct type (with co-
pairing), as well as including the theory of com-
mutative conversions (cf [GLT89], pp 80-81). In
category theoretic terminology, such lambda theo-
ries correspond exactly to almost bicartesian closed
categories, that is, cartesian closed categories with
nonempty finite coproducts (generated by a set of
atomic types) [LS86].� As proved by Dougherty and Subrahmanyam
[DS95], a Friedman completeness theorem in Set
holds for cartesian closed categories with binary
coproducts. Therefore, the equality we decide
is the natural extensional equality on proofs in
intuitionistic propositional logic and on terms of the
typed lambda calculus with sums.

Much of traditional lambda calculus theory carries
through unscathed when we add products (and even weak
categorical data types) to the simply typed case. Unfor-
tunately, the addition of coproducts is considerably more
subtle. The difficulties with adding coproducts are de-
tailed in [Do93, DS95]: for example, the analog of Stat-
man’s 1-Section theorem fails in the presence of coprod-
ucts, confluence (of various standard rewriting presenta-
tions) fails, and the proof of Friedman’s completeness the-
orem for the case of coproducts uses difficult and involved

syntactical arguments [DS95].
A decision procedure for cartesian closed categories

with binary coproducts has been presented in Ghani’s the-
sis [Gh95a] (see [Gh95b] for a summary) although the
proof involves intricate rewriting techniques whose details
are daunting. Our method described here is quite different
and we believe conceptually simpler.

An algorithm for type-directed partial evaluation for a
call-by-value typed lambda calculus with sums has been
given by Danvy [Da96, Da98] and Filinski [Fil01]. This
algorithm uses continuations and is therefore also quite
different from ours. In particular, it does not decide equal-
ity in cartesian closed categories with binary coproducts.

Like Ghani and Dougherty and Subrahmamyam, we
only consider the case of finite non-empty coproducts, that
is, an initial object (empty type) is not part of the structure.
We conjecture that the present approach can be extended
to full bicartesian closed categories including initial ob-
jects. However, this complicates the structure of our nor-
mal forms, and we have not yet completely checked that
all properties hold for the extended language.

Outline of Proof
Let � be a lambda theory. Our aim is to decide if

�������	��
���
�� � �
that is, if two possibly open terms

� �
and

�

of type � are

equal wrt � , where
�

is a type environment . We associate
with each term

�
a normal form ����� �	� . In this paper, these

normal forms are not themselves terms, but there is a func-
tion � mapping normal forms to terms in such a way that
the following two properties hold (cf. [CD97, CDS97]):

NF1
����� ��������� �	����
��

NF2
��� � � �
��

implies ����� � � ��
 ����� �
 � .
This implies that ��� � � �
��
 if and only if ����� � � �

����� �
 � , so that comparing normal forms will yield a deci-
sion procedure for � .

When � = the typed lambda calculus with
���

-
conversion, the authors and coworkers showed in!
AHS95 � CDS97" how to obtain a function ��� by in-

verting the presheaf interpretation of � . One defines
two natural transformations #%$ � ! ! ��" "'& (*)�� � � and+ $ � (*,-� � � & ! ! ��" " , where (*).� � � is the presheaf of
normal forms and (/,*� � � is the presheaf of neutral terms
of type � from � . Given a typing judgement

�0� � �1� � ,
where

��
�2 � � � � �43�343�� 2�56� � 5 , we define

����� �	��
 #7� ! ! � " "8� + ��9�: �����

where 9�: is the sequence � 2 � ��343�3 � 2�5�� and we omit type
superscripts. Since

! !<; " " is an interpretation, we have im-
mediately that

�=�>�?�0
@��

implies

! ! �?� " "
 ! ! ��
 " " , and

hence NF2 follows and NF1 is proved by induction on
�
,

using for example logical relations.
How do we obtain a function ��� when we add strong

sums to � ? The problem is that although the category
of presheaves has coproducts, a difficulty arises when we
try to invert the interpretation of coproducts. The maps #
and + are defined by induction on types, so in particular
we need to define + $�A�BC$CD in terms of + $�A and + $CD . But
coproducts in presheaves are calculated pointwise; so, for
example, how do we define + $�AEBF$CD��HG ��I ! ! �-J�" " :*K ! ! � � " " :
for a neutral term

�L� G � �*J K � � ? Since variables are
neutral terms, we must in particular define + $�A�BF$CD�� 27� ,
but there is no sensible way to decide whether this should
be in the first or the second disjunct.

As we shall show, the solution of this problem is to in-
troduce an appropriate Grothendieck topology and con-
sider the sheaves for that topology. This will give us a
way to “amalgamate” the contributions of + $ A and + $ D in
the definition of + $ A BF$ D .
Plan of the paper
In Section 2 we formally define the typed lambda calculus
with strong sums and show how it yields a free cartesian
closed category with binary coproducts. In Section 3 we
introduce our normal forms, and the auxiliary notions of
pure normal forms and neutral terms. The main idea is
to introduce a parallel case statement, and impose vari-
able conditions and a condition of redundancy-freeness to
obtain uniqueness of normal forms. In Section 4 we in-
troduce the category of constrained environments, where
objects are environments (type assigments) equipped with
equational constraints. This will serve as the underlying
category of our Grothendieck topology which is defined
in Section 5. There we also introduce the category of
sheaves for this topology and its bicartesian closed struc-
ture. This yields a canonical interpretation of the syntax
in the category of sheaves and in Section 6 we show how
to invert this interpretation and obtain normal forms.

2 Syntax
We follow the treatment of sums in natural deduction, as
in [GLT89, pp 80-81]. For ease of presentation, we restrict
ourselves to one base type.

Types are given by the grammar

� �M�N
�O�P � � � P �>Q � P � P � K �
Terms are given by

� �M�N
 2RP�ST2 3 � P��U�.PWVX� � �	YFP8Z J � ���CP8Z � � �	�FP4VXYFP[J � �	�FP [� � ���CP4\ � 2 3 �	� � 2 3 �	�C�
The Case term \ � 2 J 3 � J � � 2 � 3 � � �]�
 simultaneously
binds

2 J in
� J and

2��
in
�^�

.

A type environment
�

is a finite function from variables
to types. The typing judgement

� �>� � � meaning
�

has type � in type environment
� is defined in the obvious

way. For example, the rule for Case is:

� � � 2 � � � � �6� � ��� � ����� J�� �
	 ���6� � � J K � ����6\ � 2 J 3 � J � � 2 � 3 � � �C�1���

Definition 2.1 Equality between terms in environment
� ,

denoted
� � ;
 ; � � , is the least (typed) congru-

ence generated by the following rules (omitting types to
improve readability):

� � � � S 2 3 � J ���^��
�� J ! �^���	2 "
� � � ��
�ST2 3 �C2 � if

2
�I)�� � �	�
Proj � Z � � V � J � �	�4Y���
�� �
SP

�
 V Z J � �	� � Z�� � �	��Y
Unit

�
 VXY
In � \ � 2 J 3 � J � � 2 � 3 � � � [� � �
 �
�� � ! �
 ��2 � "
Coprod

\ � 2 J 3 [J � 2 J �E� � 2 � 3 [� � 2 � � �U�/
��
Distrib � � \ � 2 J 3 � J � � 2 � 3 � � � �
 ��
\ � 2 J 3 �U� J � � 2 � 3 � � � �C�

if 2 J � 2 � �I)��]� �	�

We will refer to this equational theory as BiCCC. The
key categorical axiom (Coprod) is dual to (SP) and guar-
antees uniqueness of the co-pairing arrow out of a coprod-
uct. BiCCC entails all the usual commutative conversions
for sums, [GLT89], pp. 80-81.

It can be shown (cf. [LS86, CDS97]) that the free al-
most bicartesian closed category � J over one base objectO can be obtained as the category whose objects are type
environments and where a morphism from ��

2 � � � � ��343�3�� 2�� � � � to �
�� � � � � ��343�3�� �?5 � � 5 is a
sequence of terms � � � �43�343�� ��5%� , modulo BiCCC equality,
where � � � � � � � . Freeness means that for each BiCCC� and object

! ! O " " I � we have a unique structure- and
equation-preserving interpretation functor

! !M; " " � � J/&�� .

3 Normal Forms

Normal forms are defined simultaneously with pure nor-
mal forms and neutral terms. Normal (and pure normal)
forms are not genuine terms, but defined inductively by
the clauses below. If

�
is a type environment we write� ������� � � , resp.

�L��������� � � , resp.
� ���� ��1� � to

mean that expression � is a normal form, resp. pure normal
form, resp. neutral term of type � . We write)�� � ��� for the
set of free variables occurring in � . We write !#"%$'&)(+*4� ���
for the set of guards of a normal form � ; this will be de-
fined below as part of the rule for forming normal forms.

2�I
dom � �U���� �� 2 � � � 27�

��� �� G �?O��� ����� G �?O
��������� VHY.� �

��� ����� � J � �-J ��� ����� � �/� � ���� ����� V,� J � � �WY.� �-J Q � �
������ -� � � J Q � ������� Z � � ����� � � . I
0/ �49 �
��� ����� � � � ���� ����� [� � ���.� �*J K � � . I
0/ ��9 �

������ G � � � � ���������1� � ������� G � � �
� � 2C� � � ��� � � ����������]ST2 3 �.� � � �

where in the last rule we have the variable condition that2 I)��]�XG � for each G I !#"2$3&
(2*4� ��� .
We have two rules for forming normal forms:

(a)
���������1� � ��������4� � � and !#"2$'&)(+*�� ���
65

(b) Let 7

	G � ��343�3 �EG 5 � be a nonempty finite set of
neutral terms (so we assume the G � are pairwise dis-
tinct). For each 8 � 7 &
0/ �49 � we use the abbrevi-
ation

��91
�� � 2��	� � �93:<; D>= ��343�3 �
2 5 � �

5 93:<;>? = . Define

� ������ G � � � �J K � � � � ����� � �A@A@A@ � 5 	
� � 9 �����4� 9 ��� � 9CB D1E � J�� �
	��� ���1F �G7���� 2���HIH�H 2 5 3 �J9 �K9 � ���

and !#"2$'&)(+*4� F �G7���� 2 � H�HIH�2�5 3 � 9 � 9 ����
 7
where � �J9 � 9LB D1E � JI� �K	 is a family of normal forms
satisfying the following two side conditions:

Variable-condition: for each G I !#"2$3&
(2*�� �
9 � we
have
 2�� ��34343 � 2 5 �NM6)��]�XG �PO
65

.

Redundancy-freeness: The family � � 9 � 9 is not re-
dundant at any G � I 7 , where � � 9 � 9 is redun-
dant at G � whenever for all Q � 7SR
�G � � &

0/ �49 � , �>T0U ;>VXWE JJY and �>T0U ;>VGWER� Y are equal and nei-
ther contains the variable 2 � .

The variables
2 � �43�343 � 2�5 become bound in the F -

construct. For brevity we shall often use the alterna-
tive notation F �G7���� �JZ9 � 9 � , where the �JZ9 range over
abstractions 2 � �43�343 � 2�5 3 � 9 .

The idea is that F performs a simultaneous case split
over all the “guards”. For example, � 9 U ;[WE JKY corresponds
to a branch to be taken when G is of the form [J � 27� .

Example 3.1 The following examples show how the
side-conditions ensure uniqueness of normal forms as
computed by ��� in Section 1. For simplicity let the vari-
ables � (possibly with indices) in the examples below have
type O , so that they are normal terms.

1. The normal form of S�� 3 \ � 2 � 3 � J � � 2 � 3 � � � � will beF �
 � � ��� 2 � 3 � 9 � 9 � where �)U � WE � Y
 S�� 3 � � . Note that
the expression S�� 3 F �
 � � ��� 2 � 3 � 9 � 9 � , where � U � WE � Y

� � , violates the side condition for (pure) normal
forms of

S
-form.

2. The normal form of the term
\ � 2 � 3 \ � 2
 3 � JEJ � � 2
 3 � J � � �
 �
� 2 � 3 \ � 2
 3 � � J � � 2
 3 � �E� � �
 �� �

will be
F �
 � � � �?
 � ��� 2�� 2�
 3 �J9 �J9 �

where �)U �
D
WE � � � � WE�� Y
 � � � . Note that the expres-

sion F �
 � � � ��� 2 � 3 F �
 �
 � ��� 2
 3 � 9 D � 9 � � 9 � � 9 D � � is not a
normal form since it violates the variable-condition:2 � is not free in the guard �
 of the normal formF �
 �?
 � ��� 27
 3 �J9 D � 9 � �J9 � � .

3. The normal form of \ � 2 3 � � � 2 3 � � � will be � . Note
that F �
 � � ��� 2 3 � � 9 � is not a normal form as � 2 3 � � 9 is
redundant at

�
.

4. Note however, that the normal form of \ �	��3 � � �
�T3 � �+�
will be F �
 � � ���
�T3 � �K9^� which is not redundant at

�
because of the variable condition in the definition of
redundancy.

Definition 3.2 The function � mapping
� ��� �*� � with
 I
�(/) ����(/) �E(*, � to terms

� � �7� ���.� � is defined in
the following way:
� � commutes with all the term formers except F (in

particular, preserves variables).
� �7� F �G7��
	G � ��� �J9?�J9 � �L
 \ � 2 J 3 � J � � 2�� 3 �^�4� �7�XG � ,

where
� �
 �7� F �X7���� �>T0U ;[WE � Y � T ��� .

It is easy to see that up to BiCCC equality this does not
depend on the choice of the witnessing term

� : and on the
order of the guards.

4 Neutral constrained environments
Like Dougherty and Subrahmanyam [DS95] and Fiore
and Simpson [FS99] we need to supply our type envi-
ronments with constraints. These will be the objects of a
category of constrained environments � , where the mor-
phisms will be injective renamings. The constraints are of

the form G
 [� � 2 � � and express which branch a certain
guard G takes. This is the idea behind our Grothendieck
topology on � : a “covering” expresses case-splitting.
This use of Grothendieck topologies is closely related to
[FS99] where they were used for proving a definability
result for a language with coproducts.
Definition 4.1 A neutral constrained environment, envi-
ronment for short, is a pair � P�� where � is a type environ-
ment and

�
is a set of constraints of the form G
 [J � 2 J �

or G
 [� � 2���� where
� � �� G � �-J K � � and

2 J � �-J
(resp.

2�� � � �) is contained in
�

and moreover,
� no two distinct constraints involve the same neutral

term, for example, � cannot contain G
 [J � 2 J � and
G
 [� � 2 � �

� no two distinct constraints refer to the same variable,
for example,

�
cannot contain G
 [J � 2 J � and G Z
[J � 2 J � unless G and G Z are identical.

A morphism from environment � P�� to environment � P��
is given by an injective function � �

dom � �U� & dom �X� �
satisfying � �	� � 2����
 � � 2�� and � �XG �
 [� �	� � 27� � is in

�
for each constraint G
 [� � 27� in

�
. In this way the environ-

ments form a category � in which composition is com-
position of functions.

If � extends
�

and
�

extends
�

then the inclusion � �
dom � �U��� & dom �G� � defines a morphism from � P��

to�6P��
which we call a projection.

We are interested in studying equality of terms relative
to a neutral constrained environment. The following defi-
nition is due to [DS95].
Definition 4.2 Let � P�� be an environment and �� be a list
of dummy terms of the same length as � and of appro-
priate (to be explained) type. A (variable-binding) type
environment

� :�� �!" ! " is defined as follows.

� :�� # ! "
 ! "
� : � $ A B $�A �	� � ;�%�&

A
: $ AJ=!" � " D

! "
\ � 2 J 3 � :'� �!" ! " � � 2 � 3 � � 2 � � �7�XG �
� : � $ D B $CD �	� � ;�%�&

D
: $ D>=!" � " A

! "
\ � 2 J 3 � J 2 J � � 2 � 3 � :(� �!" ! " � �7�XG �

Note that � :'�	�!" ! � " binds all variables mentioned in � .
Given two terms � � � � �%� and �L���
 ��� we write�6P�� � � �
��
 ��� to mean that

� Z � � :(� �!" ! � � "
6� :(� �!" ! �
 " ���

in the theory BiCCC for all appropriate � Z and �� . Here
�� must be chosen such that the terms

� :'�	�!" ! � � " are type

correct and
��Z

is obtained from
�

by removing the vari-
ables mentioned in

�
and possibly adding any extra free

variables occurring in the dummy terms �� .
Remark 4.3 Note that ordinary type environments have
no constraints but it follows immediately from the above
definition that

� P 5 � � �
��

implies

��� � �
��

.

5 Sheaves over environments
We consider the functor category �� �����
 ���
	���
����

of
presheaves and natural transformations between them. We
recall the following definitions of the structure of �� . A
presheaf is given by a family of sets � :'�	� indexed by
environments and for each morphism � � � P�� & � P��
a function ��� � � :'� � &���� ��� such that � �
 9 and
��� o �
 � � o ��� . If � I � :'�	� we may write ��� � ��� for
������� � in case � is clear from the context. This notation
will in particular be used when � is a projection.

A natural transformation from presheaf � to presheaf�
is given by a family Q :�� � of maps Q :��	� � � :'� � &� :(� � such that

� � o Q :'� �
 Q�� ��� o ��� (naturality). If � I
� :'� � we may write Q���� � for Q :'� � � � � . Naturality then
reads Q�� � � � � ���
 Q�� �!� :�� � � .

As any category of presheaves, the category �� is bi-
cartesian closed, that is, supports the interpretation of the
type formers � � Q � � � K , (and "). If we denote the in-
terpreting presheaves with the same symbols thus writing
e.g. � � �

for the function space of presheaves, we have
the following explicit constructions of the type formers in���
	 �
#���

:

� :'� �

 VXY �
� �=Q � � :'� �
 � :(� � Q � :'�	�
� � K � � :'� �
 � :(� � K � :'�	�
� � � � � :(� �
 ��>� �>� ; � � P�� � Q$� � �

However, as we mentioned in the introduction, we are not
able to obtain normal forms by inverting this presheaf in-
terpretation. Instead we shall consider the interpretation
of terms in the category of sheaves over a certain topol-
ogy, and show that this can be inverted.

Recall that the basis of a Grothendieck topology is a
collection of basic coverings, satisfying the axioms of
identity, transitivity, and stability [MM92, p.111]. A cov-
ering of an object

� P��
in � is here a family of arrows

with codomain �6P�� . Since the category � does not have
pullbacks in general, we use a modified axiom of stability
[MM92, p.156]. Moreover, like [FS99] we only require
that the identity is a singleton covering, not that all iso-
morphisms are coverings.
Definition 5.1 The basis % for a Grothendieck topology
on � is inductively generated by the following clauses:
� The identity covering containing only the arrow
9 :�� � is a basic covering of

�6P��
.

� If
� ���� G � � J K � � and G is not mentioned in

�
,

and if the family of projections from � � � P�� � � � forms
a basic covering of � � 2 J � � J P � � G
 [J � 2 J � and
the family of projections from � � � P�� � � � forms a ba-
sic covering of � � 2 � � � � P � �EG
 [� � 2 � � , then the
disjoint union of the projections from � � � P�� � � � and
� � � P�� � � � forms a basic covering of � P�� .

The general concept of sheaves for Grothendieck
topologies need not be presented, since it here specialises
to the following rather digestible definition:

Proposition 5.2 A presheaf � is a sheaf for % iff
whenever

� P��
is covered by

� � 2 J � �*J P�� �EG
 [J � 2 J � and� � 2 � � � � P�� �EG
 [� � 2 � � , that is,
������ G � � J K � � and

8 J I � : � $ A B $ A � � � ; %�&
A
: $ A =8 � I � : � $ D B $ D � � � ; %�&
D
: $ D =

then there exists a unique 8 I � :(� � (called pasting) such
that

8&� : � $ A B $ A � � � ; %�&
A
: $ A =

 8 J
8&� : � $ D B $ D � � � ; %�&

D
: $ D =

 8 �
The following result follows from general properties of

Grothendieck topologies and will therefore not be proved,
see [MM92] for an exposition.

Proposition 5.3

1. The terminal object in �� is a sheaf,

2. if � � � are sheaves so is � Q �
(cartesian product),

3. if
�

is a sheaf and � is a presheaf then � � �
is a

sheaf (function space)

4. for each presheaf � there exists a sheaf �'� (the as-
sociated sheaf or sheafification) and a natural trans-
formation

� � � &(�)� such that whenever
�

is a
sheaf and 8 � � & �

then there exists a unique8+* � �'� & �
with 8+* o

�
 8 . In other words, the
sheaves form a reflective subcategory of � ,

5. The sheafification functor � preserves binary prod-
ucts.

6. if � � � are sheaves the coproduct � K �
is in general

not a sheaf, but �7� � K � �
is the coproduct of � and�

in the subcategory of sheaves.

7. if , �.- � � & �
and � � � are sheaves then the

equaliser of , and - is a sheaf.

We write � P�� ����� � � � to mean that � ����� � �
� and, moreover, none of the neutral terms mentioned in�

is contained in !#"2$'&)(+*4� ��� . Intuitively, this is because

no case split is ever needed for a guard whose value is
already known through the environment. Note that there
is no need to define � P�� ���� �1� � and � P�� ������� � �
� , since all guards inside neutral and pure normal terms
include variables bound by S ’s. Hence the constraints in� cannot affect � .

For a type � we define the presheaves (*)�� � � �
��(/).� � � � (/,*� � � �����I&��'� � � as follows:

(*)�� � � :(� �

 � P � P��������4� � � �
��(*).� � � :(� �

 � P ���������4� � � �
(/,*� � � :(� �

 � P ��� �� G � � �

���I&�� � � � :(� �

 � P � P����-� � � � ���	�
where

�
�	� �[Z
stands for

� P����-�
 �JZ�� � .
If � � � P�� & � P��

and
� P�� � �� � � � then

(*,/� � � � � ���'I (*,/� � � � ��� is defined by replacing each
free variable

2
in
�

by � � 27� . The morphism parts ���I&�� �
and ��(/) � are defined analogously.

If
� I (*) :(� � � � � then (/)���� ��� is defined by first re-

placing each free variable
2

in
�

by � � 2�� and then plug-
ging in all the constraints mentioned in

�
by repeatedly

performing the following atomic restriction operation (an
analogous operation appears in Ghani’s thesis [Gh95a]
under the name “first and second residue”).
Definition 5.4 Let

��I (*)�� � � :(� � and
� � �� G � �-J K

� � . Then we define the restriction
� ! G �
 [� � 2 � � " of

�
to� � 2 � � � � P � � G
 [� � 2 � � (along the projections) as follows.

� ! G �
 [� � 2�� "
 �
, if G OI !#"%$'&)(+*4� ���F �G7 �
�G � ��� �J9 �J9 � ! G �
 [� � 2 � � "
 F�� � �G7���� �>T0U ;[WE � Y � T �

where F � � computes a normal form to be defined be-
low. Note that we cannot simply replace F � � by F be-
cause the set of guards can become empty upon plug-
ging in a constraint, new redundancies may be created,
and the variable conditions may be violated. We de-
fine F � � � 5 �
 � � � to be � and F �X7 �
	G � ��� � 9 � 9 � to be\ � � � 2 J 3 F � � �X7���� � 9 U ;[WE JKY � 9 � � � 2 � 3 F � � �G7���� � 9 U ;[WE1� Y � � � G .

To compute
\ � � � 2 J 3 � J � � 2�� 3 � �4� G we first check

whether
� � depend on

2 � and are different (see the
definition of redundancy). If not, we return

� J �
 � �4�
, or

otherwise, we return F �
�G � � 7 J � 7 � � � T � , where

7 �

	G � I !#"2$3&
(+*�� � � �4P 2 � �I)��]�XG � � �
for .
 / ��9 , and the family

� T
is adjusted accordingly.

Proposition 5.5 � defines natural transformations
(*).� � � & �
��&�� � � � , ��(/).� � � & ���I&�� � � � ,
(*,/� � � &��
��&�� � � � .

If 8 � � �X� � �U� is a morphism in the free BiCCC � ,
that is, a sequence of terms in type environment � , then! � "��& ! 8 � " defines a natural transformation ���I&�� �G8 � �

�
��&�� �G� � &��
��&�� � �U� . This makes �
��&�� � ; � a functor
from � to �� preserving � and cartesian products.

Proposition 5.6 The presheaf ���I&�� � � � is a sheaf.

Proposition 5.7 The presheaf (*)�� � � is a sheaf and
is isomorphic to the sheafification ���
��(*).� � ��� of
� (*) � � � with the embedding

� � ��(*).� � � & (*).� � �
given by

� :(� � � ���
 �
.

If
� � G � �*J K � � , then the pasting of two normal

forms
� � I (*).� � � : � $ V B $ V � � � ; % & V : $ V = is the normal form\ � � � 2 J 3 � J � � 2 � 3 � � � G I (/)�� � � :(� � .

Let us write
��� � � �

for the full subcategory of �� con-
sisting of the sheaves. We know from Prop. 5.3 that��� � � �

is a BiCCC. Since the category � J of sequences
of types and terms is a free BiCCC there is a unique inter-
pretation functor

! !<; " " � � J & ��� � � � , determined by
! ! O " "
 (*)�� O^�

Concretely, this functor is given by defining a canonical
BiCCC structure on

��� � � �
.

6 Inverting the interpretation function
We will now define natural transformations

$ � ! ! ��" "�& (/)�� � �+ $ � (/,*� � � & ! ! ��" "
in such a way that for a term

���6� � � ,

����� ��� �����
 # $: � ! ! � " "8� + :: ��9 : �����

will satisfy NF1:
� #�� � (/).� O^� & (/).� O^� is the identity function.
+ � � (*,/� O^� & (*).� O^� is the injection from neutral
terms to normal terms given by the obvious term-
formation rules.

� #�� � �>& (*)�� � � is the constant function returning
the normal form VHY .
+ � � (*,*� � � & � is the constant function return-
ing the element

VXY*I � . (As before we use the same
signs for corresponding syntactic and semantic no-
tions.)

� # $ A�� $ D
 � $��<& � � o � # $ A Q # $ D � where � $��<& � � �
(*).� �*J � Q'(*)�� � �4� & (/)�� �*JRQ � �W� is the unique
map satisfying

� $��<& � � � � � � ��
��
>V,� � � ��
�Y for pure nor-
mal forms

�E� � ��
 . This map exists by Proposition 5.7
and the fact that � preserves products.

+ $�A � $CD:��
� �HG �
 V + $�A:(� � � Z J �XG ��� � + $CD:'� � � Z � �HG ����Y

� Let � I ! ! � � � " " :��	�
 �� � �>� ; � � P�� � Q! ! �-" " � ! ! � " " � . Then

$����:(� � ��� �0
 S � � 2 3 # �: � $ B $ � � ���T�
� � + $: � $ B $ � � � 27��� �

where � is the projection from
� � 2�� � P � to

� P��
.

Here
S � � 2 3 F �G7���� 2�� 343�3 2 5 3 �J9 �J9 � is obtained by di-

viding 7 into two sets, 7 J which contains the
guards which do not depend on 2 , and 7 � , which
contains the guards which do. Then we return
���	��

����������������� A � ����� ����� �	�!���������������"�#� D � $&% A�' % D

(% D
("(% A

(
Compare also example 1 in 3.1.

Let G I (/,*� � � � � :(� � . Then + $��)�:'� � �XG �/I ! ! � �
� " " :�� � is defined by

� + $����:�� � �HG � � � ��� �	� � � �

+ �� ��� � (*, ���XG � �X# $� ��� ��� ��� �.I ! ! � " " � ���

where � I �>�G� P�� � � P�� � and � I ! ! ��" " � ��� .

� # $ A BF$ D is the unique map (arising from the coprod-
uct property of

! ! � J K � � " ") satisfying

$ A BC$ D � [*�+J ��� ����
 [� �J � # $ A � � ���# $ A BC$ D � [*�+� �-, � ��
 [� �� �X# $ D �-, � �

Here [*�+J � [�*	+� are the coproduct injections in ��� � � �
and [� �J � (*)�� � J � & (/).� � J K � � � is the unique
map satisfying [� �J � ���
 [J � ��� for pure normal form� � � J . Similarly for [� �� .
To construct

+ $�A BF$CD I (*,*� �-J K � ��� & ! ! �*J K � � " "
consider G I (/,-� �*J K � �4� :(� � : either G
 [J � 27�*I�

in which case we put 8 :�� � �XG ��
 [*�+J � + $ A:(� � � 27� � , or
G
 [� � � �.I � and we put 8 :�� � �XG ��
 [*�+� � + $CD:'� � � � ��� ,
or G is not mentioned in � in which case we define8 :'� � �XG � as the unique pasting of

� J �
���
 [*�+J � + $�A: � $ B $�A �	� � ;�%�&
A
: $ = �

2����
� � �
���
 [*�+� � + $ D: � $ B $ D �	� � ;�%�&

D
: $ = �

2����

It follows by straightforward calculations that all these are
indeed natural transformations.
Proposition 6.1 In order to establish NF1, that is,

��

�7� # $ � ! ! � " " � + ��9 : � ��� for

� � � � � we define a family of
subsheaves . $: � �0/ ! ! �-" " :�� � Q ���I&�� � � � :(� � , such that

(i) For all � I ! ! ��" " :'� � and
���6� � � :

�#. $:�� � � � � P�� � ���X# $:'� � � � ����
��

(ii) For all G I (*,/� � � :(� �
+ $:(� � �XG � . $:(� � �7�XG �

We can extend . to type environments by letting
� � � �43�343 � � 5 � . ::�� � �X8 � ��34343 �
8 5%� iff � � . $

V
:'� � 8 � for 921

. 143 , where
��
�2 � � � � �43�343 2�5 � � 5 . Similarly, we can

extend # and + to type environments as well.

Proposition 6.2 (Logical Relations Lemma) If
�>� � ��

and ��5. ::(� � �8 then

! ! � " "8� �� � .76:(� � � ! �8 � �2 " �
where �2 are the variables in

�
.

Theorem 6.3 The equational theory BiCCC is decidable.

Proof. The above shows that the normalisation function
��� satisfies NF1, because by (ii) and �7��9 : �
 9 : , we know
that

+ :: ��94: � . :: 9�:
Hence by Proposition 6.2, we know that

! ! � " "8� + :: ��9�: ��� . $: �

Hence, by (i) (cf. Remark 4.3)
��� �7�8����� �	���
 ���X# $: � ! ! � " "8� + :: ��9�: ��� ���
��

As we pointed out in the introduction NF2 holds automat-
ically, and hence it follows that

��� � �
��
98 � ����� � � �
 ����� �
 �

This yields a decision procedure since equality of normal
forms is decidable. (Note that when writing the algorithm
we represent the finite set of guards as a list or a tree,
so that normal forms are only unique up to the ordering
of the guards.) Furthermore, the interpretation in ��� � � �
as well as the definition of # � + are clearly algorithmic.
In fact, the whole development can be formalised in ex-
tensional Martin-Löf type theory using standard methods
for formalizing category theory in Martin-Löf type the-
ory. This would be one way of demonstrating explicitly
that all functions we construct by abstract mathematical
means are computable. :

References
[AHS95] T. Altenkirch, M. Hofmann, T. Streicher, Cat-

egorical reconstruction of a reduction-free nor-
malisation proof, Proc. CTCS ’95 Springer LNCS
953, 182–199.

[AHS96] T. Altenkirch, M. Hofmann, T. Streicher,
Reduction- free normalisation for a polymor-
phic system, 11th Annual IEEE LICS Symposium,
1996, 98-106.

[AC98] R. M. Amadio, P-L. Curien, Selected Domains
and Lambda Calculi, Camb. Univ. Press, 1998.

[BBSSZ98] H. Benl, U. Berger, H. Schwichtenberg, M.
Seisenberger and W. Zuber, Proof theory at work:
Program development in the Minlog system, in:
Automated Deduction, W. Bibel and P.H. Schmitt,
eds., Vol. II, Kluwer 1998).

[BES98] U. Berger, M. Eberl, H. Schwichtenberg Nor-
malization by evaluation, Prospects for hardware
foundations (NADA), Springer LNCS 1546, 1998,
pp. 117–137.

[BS91] U. Berger and H. Schwichtenberg, An inverse to
the evaluation functional for typed S - calculus,6th
Annual IEEE LICS Symposium, 1991, 203-211.

[CD97] T. Coquand and P. Dybjer, Intuitionistic Model
Constructions and Normalization Proofs, Math.
Structures in Compter Science 7, 1997, 75-94.

[CDS97] D. Čubrić, P. Dybjer and P.J.Scott. Normaliza-
tion and the Yoneda Embedding, Math. Structures
in Compter Science 8, No.2, 1997, 153-192.

[Da96] O. Danvy. Type-directed partial evaluation,
POPL’96, ACM Press, 242-257.

[Da98] O. Danvy. Type-directed partial evaluation, Par-
tial evaluation, Practice and Theory, Proceed-
ings of the 1998 DIKU Summer School, Springer
LNCS 1706, 367-411.

[DiCo95] R. Di Cosmo. Isomorphism of Types: from
S

-
calculus to information retrieval and language
design, Birkhäuser, 1995.

[Do93] D. Dougherty. Some lambda calculi with catgor-
ical sums and products, RTA5, Springer LNCS
690, 1993, 135-151.

[DS95] D. Dougherty and R. Subrahmanyam, Equality
between Functionals in the Presence of Coprod-
ucts, Inf. & Comp. (to appear). Prelim. version in:
10th Annual IEEE LICS Symposium, 1995, 282-
291.

[Fil01] A. Filinski, Normalization by Evaluation for the
Computational Lambda-Calculus, to appear in the
proceedings of TLCA 2001.

[FS99] M. Fiore and A. Simpson. Lambda Definability
with Sums via Grothendieck Logical Relations,
TLCA’99, Springer LNCS 1581.

[Gh95a] N. Ghani, Adjoint Rewriting, PhD thesis, LFCS,
Univ. of Edinburgh, Nov. 1995.

[Gh95b] N. Ghani,
���

-equality for coproducts. TLCA ’95
Springer LNCS 902,1995,171-185.

[GLT89] J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and
Types, Cambridge Tracts in Theoretical Computer
Science 7, 1989.

[JGh95] C. B. Jay and N. Ghani, The virtues of eta expan-
sion, Journal of Functional Programing, 5, no.2,
1995,135-154.

[LS86] J. Lambek and P. J. Scott. Introduction to Higher
Order Categorical Logic, Cambridge Studies in
Advanced Mathematics 7, Cambridge University
Press, 1986.

[MM92] S. Mac Lane, I. Moerdijk. Sheaves in Geometry
and Logic, Springer-Verlag, 1992.

[ML75] P. Martin-Löf. An Intuitionistic Theory of Types:
Predicative Part, Logic Colloquium ‘73, North-
Holland, 1975.

[Mit96] J. C. Mitchell. Foundations for Programming
Languages, MIT Press, 1996.

