Inductive Sets and Families in Martin-Lof’s Type Theory
and Their Set-Theoretic Semantics

Peter Dybjer

Chalmers University of Technology

Abstract

Martin-Lo6f’s type theory is presented in several steps. The kernel is a dependently typed A-calculus.
Then there are schemata for inductive sets and families of sets and for primitive recursive functions
and families of functions. Finally, there are set formers (generic polymorphism) and universes. At
each step syntax, inference rules, and set-theoretic semantics are given.

1 Introduction

Usually Martin-L6f’s type theory is presented as a closed system with rules for a finite collection of
set formers. But it is also often pointed out that the system is in principle open to extension: we
may introduce new sets when there is a need for them. The principle is that a set is by definition
inductively generated - it is defined by its introduction rules, which are rules for generating its
elements. The elimination rule is determined by the introduction rules and expresses definition by
primitive recursion on the way the elements of the set are generated. (In this paper I shall use the
term primitive recursive for the kind of recursion you have in type theory, which includes primitive
recursive functionals and ‘structural’ recursion on an arbitrary inductive (=inductively defined) set
(or family) including transfinite recursion.)

Backhouse [3] et.al. [4] exhibited a schema for inductive sets which delimits a class of definitions
admissible in Martin-Lof’s type theory which includes all the standard operations for forming
small sets except the equality set. This schema extends Schroeder-Heister’s schema for the logical
constants [13, 14] to the type-theoretic case, where proof objects are explicitly represented in the
theory.

Coquand and Paulin [5] and Dybjer [7] extended Backhouse’s schema to incorporate inductive
families and thus also inductive predicates. (Coquand and Paulin [5] presented their schema as
an extension of impredicative higher order logic and the calculus of constructions, but the formal
pattern is much the same as the one in Dybjer [7].) This schema covers all the standard operations
for forming small sets including the equality set. It also subsumes Martin-Lo6f’s schema for inductive
predicates in predicate logic [8].

In this paper I give a somewhat different presentation of the schema. One difference is that also
definitions of functions by primitive recursion are presented schematically (much like in Martin-Lof
[9]) rather than by the usual kind of elimination rules. I also separate the presentation of the
process of inductive generation of sets and families from the process of introducing parameters
(generic polymorphism). Moreover, I present a version of type theory without a logical framework

!This is a slightly modified version of a paper with the same title which appeared in the Proceedings of the First
Workshop on Logical Frameworks, Antibes, May 1990. Editors G. Huet and G. Plotkin. The research was partly
supported by ESPRIT Basic Research Action “Logical Frameworks” and Styrelsen for Teknisk Utveckling.

and without an underlying theory of expressions (like in Martin-Lo6f’s presentations of type theory
before and including the book [10]).

I also show how to interpret type theory, with the schema, in classical set theory. This gives a
non-intended but useful interpretation, compare Troelstra [16, page 2]: ‘The simplest interpretation
of MLy is in terms of a hierarchy within classical set theory, where II, 3, etc, correspond to the
formation of cartesian products, disjoint unions etc. as already indicated above; function, i.e.,
elements of cartesian products are regarded as equal if for each argument their values are equal,
etc.’

Salvesen [12] presented details of such an interpretation of type theory. Well-orderings and
the first universe were interpreted as inductively defined sets obtained by iterations of continuous
operators.

Coquand and Paulin [5] proposed to give a set-theoretic interpretation of their schema for
inductive sets by (i) translating the introduction rules defining a set to a strictly positive set
operator in type theory; (ii) introducing rules for fixed points of such set operators in type theory
and showing that the corresponding rules of the schema can be derived; (iii) interpreting type-
theoretic strictly positive operators as wy-continuous functors on the category of sets (assuming a
theory without universes).

In this paper I use Aczel’s [1] notion of rule set rather than continuous functors. It is really
only a variation, since a rule set generates a continuous operator. But it allows a direct concrete
translation of the type-theoretic introduction rules to set-theoretic rule sets and generalizes the
concrete construction of the term algebra 7% on a first order signature 3.

I also interpret inductive families.

Even though the interpretation is a non-intended one, there is an analogy with Martin-Lof’s
intuitive justifications of the rules of type theory, whereby the formation rule receives its meaning
from the introduction rules and the elimination rule receives its meaning from the equality rules.

I would also like to mention that Aczel [2] has shown how to interpret certain inductive sets,
such as the well-orderings of type theory, in a constructive set theory (which itself can be interpreted
in Martin-Lof’s type theory). Does it follow that the whole of Martin-Lof’s type theory can be
interpreted in this constructive set theory?

Type theory is presented in the following steps.

e The dependently typed A-calculus (section 2). This is like the simply typed A-calculus with
IT instead of —. It consists essentially of the general rules and the rules for IT in Martin-Lof
[10] except eta-conversion. (In the present intensional version of type theory of Martin-Lof
1986 there is no eta-conversion on the level of sets but only on the level of types.)

e Schema for inductive sets (section 3). This part of the schema is closely related to the well-
orderings.

e Schema for primitive recursive function definitions (section 4).

e Schema for inductive families (section 5). This generalizes the schema for inductive sets. The
simpler case is presented separately for the purpose of the presentation only.

e Schema for primitive recursive families of functions (section 6). This generalizes the schema
for primitive recursive functions.

e Generic set formers. The fact that a definition may depend on parameters gives rise to set
formers or generic polymorphism (section 7). Typical ambiguity is also discussed briefly,
and it is noted that the interpretation allows polymorphic constructors, but not polymorphic
recursive functions. Moreover, the possibilty of internalizing the schema, is discussed.

e Universes (section 8).

At each step I first give syntax, then inference rules, and finally a set-theoretic interpretation.
In this paper I don’t discuss simultaneous induction and recursion. The reader is referred to
Dybjer [7] for this and also for some examples of what can be defined using the schema.

2 The dependently typed A-calculus
We use ordinary notation, but omit mentioning variable restrictions, etc.

2.1 Expressions

Set expressions:

A = Iz : Ag.Ailz].

Element expressions:

a == z|Ax:Aalz]| ai(ao)-
Context expressions:

' == €|T,z: A
Judgement expressions:
J == T contest |[TFAset|TFa:A|TFA=A"|Tta=d:A
2.2 Inference rules
Some premises are omitted.
General rules:
I' context 'k A set
€ context
T,z : A context

I'F A set I'Fa:A

r-A=4 I'Fa=a:A

A=A 'Fa=d:A

THA' =A 'ta'=a:A

A=A A =A" 'Fa=d:A4A F'Fa=a": 4
'kFA=A" 'Fa=a":A
A=A 'Fa:A A=A 'Fa=d:A
I'Fa:A 'Fa=ada:A

'+ A set

'+ Ay set '+ A set T'F Ay set I'ta:A;
Iz:ApF A; set Iz:ApFa: A
Rules for the cartesian product of a family of sets:
'k Agset T,z:Agk Ai[z] set Tk Ay = Aj T,z: Ao F Ai[z] = Al[z]
'z : Ag.A[z] set I'FIz : Ag.A[z] = Hz : Aj.Al[z]
L,z:AgFalz]: A Iz : At a[z] =d[z] : A4
I'F Xz : Ap.az] : Iz : Ag. Ay [z] I'F Xz : Ap.a[z] = Az : Ap.d'[z] : Iz : Ag.A[z]
TFay:z: Ag.Ax] I'Fag: A T'Fa; =a) : Iz : Ag.Ay[z] T'Fag=ay: Ao
'+ a1(ap) : Aifao] I'F ai(ao) = d)(ap) : Ai]ao]

F,a::AOI—al[m]:Al[a:] Fl—a():AO
T'H ()\:II : Ao.al[CE])(ao) = al[ao] s Al[ao]

2.3 Interpretation of expressions

The basic idea of the interpretation is to interpret a type-theoretic concept as the corresponding
set-theoretic concept, which usually has the same name. So a (type-theoretic) set is interpreted as
a (set-theoretic) set, an element of a set as an element of a set, (definitional) equality as extensional
equality, (type-theoretic) cartesian product as (set-theoretic) cartesian product, function as function
graph, etc. A context is interpreted as a set of assignments.

Let [a]p be the denotation of the expression a under the assignment p. This assigns a set to
each variable in a finite list of variables which includes all variables which are free in a. Let () be
the empty assignment and let p¥ abbreviate p U {(z,u)}. Let also [a] abbreviate [a]0.

The interpretation function is partial. Partiality is introduced in the interpretation of applica-
tion. But the interpretation of a derivable judgement will be defined and true.

The method with a partial interpretation function has also been used by Streicher for a cate-
gorical interpretation of the calculus of constructions [15].

Interpretation of set expressions:

Mz : Ao Ai[z]]lp = [[Aulz]]ps-
u€[Ao]p

This is defined iff [Ag]p is defined and [A;[z]]p% is defined whenever u € [Ao]p.

Interpretation of element expressions:
[zlp = p(=).
This is always defined.
[\ : Aalz]lp = {(u,[alz]]pz)|u € [A]p}-
This is defined iff [A]p is defined and [a[z]]p¥ is defined whenever u € [A]p.

[a1(ao)lp = ([aa]p)([aclp)-

4

This is defined iff [a;]p and [ag]p are defined, and [a1]p is a function the domain of which contains
[ao]p- (Observe that it is possible to interpret polymorphic application in set theory. This is not
the case for interpretations of type theory in general, compare Streicher [15].)

Interpretation of context expressions:

[e] = {0}
This is always defined.
[T,z : Al = {pzlp € [L]Aw e [A]p}.

This is defined iff I" is defined and [A]p is defined whenever p € [I'].
Interpretation of judgement expressions:

[T context] iff [I'] is a set of assignments.
This is defined iff [I'] is defined.
[T+ A set] iff [A]p is a set whenever p € [I'].
This is defined iff [I'] is defined and if [A]p is defined whenever p € [I'].
[TFa:A] iff [a]p € [A]p whenever p € [I'].
This is defined iff [I'] is defined and if [a]p and [A]p are defined whenever p € [I'].
[THA=A" iff [A]p = [A']p whenever p € [T].
This is defined iff [I'] is defined and if [A]p and [A']p are defined whenever p € [I'].
[Cra=d:A] iff [a]p=1[d]pA [a]p € [A]p A [a']p € [A]p whenever p € [T].
This is defined iff [T'] is defined and if [a]p, [a']p, and [A]p are defined whenever p € [T].

2.4 Soundness of the inference rules

Checking the soundness of the inference rules means checking that the interpretation of the con-
clusion of a rule is defined and true whenever the interpretation of the premises are defined and
true.

It is quite straightforward to check the soundness of all the inference rules. As an illustration
we show the soundness of the rule of application. The premises are interpreted as

[ai]p € H [A1i[z]]p; whenever p € [I]
u€[Ao]p

and
[ao]p € [Ao]p whenever p € [T].

From this we conclude that
([a1]p)([aolp) € [Ai[z]]pk*)” whenever p € [T,

and hence the conclusion of the rule follows, since

[A1[z]]pl*1P = [A1[ac]]p-

2.5 Telescopes

In the description of the schema below we shall frequently refer to sequences of dependent sets, to
sequences (tuples) of elements, and to sequences of typings of elements. De Bruijn has introduced
the term telescope for such sequences of dependent sets. Telescopes are closely related to contexts,
they are so as to speak contexts treated as objects. Telescopes can also be viewed as obtained by
iterating the Y-construction.

It is intended that the reader view the terms telescope, tuple, etc., and certain associated
notations as abbreviations and reduce them to formal notions of type theory in a way to be suggested
below. (The description is not complete, and sometimes the notation needs to be interpreted with
some good will in order to make sense.)

The new notation is explained as follows:

e Asisatelescope means that A; set, Ao[z1] set (z1 : A1),..., An[z1, ..., 2po1] (21 AL, .o Tt :
Anfl);

e As = As' means that A; = A; set, Ay[z1] = Ag[z1] set (z1 : A1),..., Ap[z1, . . T0n1] =
A1,y xp1] (12 A1y eee Tt 2 Ap1);

e as :: As means that a; : Ay, a9 : Agla1],...,an : Aplat, ..., an_1];
e as = as' 1 As means that a; = a : A1,a9 = a : Asla1],...,an = al, : Aplar, ..., an_1]
respectively.

We also write f(as) for f(ai1,...,a,), f(as,bs) for f(a1,...,an,b1,...,by), etc.

An alternative approach would be to extend type theory with formal notions of telescopes and
tuples. In addition to the standard forms of judgement we would have the new forms As is a
telescope; As = As'; as 1 As; as = as' :: As. As other forms of judgement these judgements
would be made under assumptions. We would then have suitable rules for forming telescopes and
tuples. Furthermore, if we have telescopes, a context can be viewed as a single assumption zs :: As.
Compare also the discussion in section 7 on internalization of the schema.

The set-theoretic semantics can be extended to telescopes and tuples. When we write us € [As],
we understand that us is a tuple (u1, ..., u,) such that uy € [A1],-..,un € [An[T1,---, Tn_1]]or 2 1.

We also use index notation such as (ay)k, (Ax)k, and (ax : Ag)x to stand for ai,...,an,,
Aq,..., Ay, and a1 : A1,...,an, : A, respectively. This will be used, for example, to talk about
non-dependent telescopes of the form (Ag)g.

3 Schema for inductive sets

We have now presented the syntax and rules of the dependently typed A-calculus. Call this theory
Ty Ty can be extended successively obtaining the theories 77,75,

There are two different kinds of extensions.

The first kind is when 7,41 is obtained from T' = T,, by adding formation and introduction
rules for a new set former P (see section 3, 5, and 7).

The second kind is when 7,1 is obtained from 7' = T;, by adding a new function constant f,
which is defined by primitive recursion on some set (or family) and is specified by its type and its

computation rules (see section 4, 6, and 7). In this way we get schematic elimination and equality
rules.
We first treat the simple case without parameters and inductive families.

3.1 Expressions

Set expressions:

Element expressions

a ::= intro;(as, (b))

3.2 Inference rules

(J abbreviates I' - .J.)
Formation rules:

P set,
P=P
The ith introduction rules:
as :: Gs; (bg : Hs;ilas] — P)g
intro;(as, (bg)g) : P ’
as = as' :: Gs; (by = by, : Hsjplas] — P)y

intro;(as, (bg)k) = introj(as’, (b})k) : P’
where

e (Gs; is a telescope relative to T

e Hs;p[zs] is a telescope relative to 7' in the context zs :: Gs; for each k.

3.3 Inductive sets in set theory

We shall use Aczel’s [1] set-theoretic notion of rule set to interpret the introduction rules for a new
set former. The set defined inductively by a rule set is the least set closed under all rules in the
rule set.
A rule on a base set U in Aczel’s sense is a pair of sets (u,v), often written
U

’
v

such that u CU and v € U.
Let @ be a set of rules on U.
A set w is @-closed if u
—€edPAuCwDv e w.
v
There is a least ®-closed set
Z(®) = ﬂ{w CUlw ® — closed},

the set inductively defined by ®.

3.4 Interpretation of expressions
Interpretation of set expressions:
[Plp = Z(®p),

where

U, ran vy,
Op = , us € [Gs;], (v € [Hsiglzs]]os - U
P U{<|mtr0i|,us, (Uk)k>| [[Z]]’(k |I ’Lk[]]]ccs)k}7
3
where |intro;| € w is a code for the constructor intro;, and U = V,,, the set of sets generated before
stage a in the cumulative hierarchy, where « is chosen so that ®p is a rule set on U. This induces
the following requirements on the ordinal «:

e V, is closed under tupling, that is, a is a limit ordinal;
e wCV,,that is, w < a
e [Gs;] CV, for all 4

o [Hsip[zs]]% — Vo C V, for all us € [Gs;] and all ik. This can be achieved if [Hsg[zs]]%s C
Vo and if card [Hsi[zs|]% < carda for all us € [Gs;] and all ik. Because assume that
vg € [Hsik[zs]]s — Vo. Then for each ws € [Hs;[zs]]; we have (ws,vi(ws)) € Vj,, for
some ordinal Bys < a. Let B = Supyse[us;[as)jus Bws < . Hence, vy = {{ws, vp(ws))|ws €
[Hsik[zs]]xs} C Vg. So vy € V.

(If the theory T' does not include universes, then we can find @ < w,, (assuming wy41 = 24),
because the rank and cardinality of the interpretation of sets constructed without universes are
< Wy.)

Interpretation of element expressions:

Lintroi(as, (b)e)]p = (Jintroil, [as]e, (Iblo)e).

3.5 Soundness of the inference rules

Formation rule. We have already shown that [P]p is a set.

The introduction rule is sound because assume that us € [Gs;]p whenever p € [I'], and v €
[Hsik[zs]]p%s — [P], whenever p € [I'], for all k. Then it follows that |J, ran vy C [P] and hence
since [P] is ®p-closed (|intro;|,us, (vk)k) € [P].

3.6 Logical consistency

Absurdity (L) is interpreted as the empty set, the set which is defined by the empty list of intro-
duction rules. We get that [_L] = (), so we cannot have a : L, since this entails [a] € 0. Hence the
set-theoretic interpretation shows the logical consistency of Martin-Lof’s type theory.

4 Primitive recursive functions

Functions can be defined by recursion on the way the elements of P are generated (primitive or
structural recursion). Here we give a schema for such definitions rather than a single elimination
rule.

4.1 Syntax

4.2 Inference rules

FElimination rules:
f:1z: P.C[z],

f=f:1z: PC[z].
The ith equality rules:
as :: Gs; (b, : Hs;ilas] = P)g
flintro;(as, (b)) = di(as, (bg, Azs = Hs;jplas].f(bk(28)))k) : Clintro;(as, (bx)k)]’

where
e C]z] is a set in the context z : P;
.
d; : Ilzs: Gs;.
(Iyg : (Hsiglzs]) = P).

My, : (Hzs 2 Hsi[rs].Clyk(28)]))k-
Clintroi(zs, (yk)k)]-

4.3 Primitive recursive functions in set theory

A rule set @ is deterministic if .

u u
—€EPA—€DPDu="1.
v v

If ® is deterministic, functions on Z(®) can be defined by recursion on the way the elements in
Z(®) are generated.

4.4 Interpretation of expressions

Since ®p is deterministic, type-theoretic primitive recursion can be interpreted as set-theoretic
primitive recursion on Z(®p). Let

[fle = Z(¥y),

where

Ur{(vk(ws), vi,(ws))|ws € [Hs;x[zs]]45}
= U rod, us, (o), [us, G, o))

us € [Gsi],

(vi € [Hsix[zs]]s: — [P],

vy, € II [Cluk()lesgs)}

wsE[Hsplws]]4$

Uy is a rule set on 3,,crp[C[2]]7 - This is easily proved by ®p-induction since the pairs in Z(¥y)
are generated in parallel with the elements of Z(®p) and since the requirements on d; ensure that
the second component is in [C[z]]¥.

4.5 Soundness of the inference rules

Since ®p is deterministic ¥y defines a function on [P]. Hence

[flee][[Cl=sY,

we[P]p

and the elimination rule is validated.

To prove the soundness of the equality rules we need to prove three things: two memberships
and an equality. The memberships are immediate. The equality is a direct consequence of the
definition of Uy.

5 Inductive families

We now treat the more general case of inductively defined families of sets, but still postpone the
discussion of parameters.
5.1 Expressions
Set expressions:
A == P(as).
Element expressions

a ::= intro;(as, (b))

5.2 Inference rules

Formation rules:

as :: Is
P(as) set’
as :: Is

P(as) = P(as)’
where

e s is a telescope relative to T'.

The ith introduction rules:
as :: Gs; (b : Ilzs :: Hs;,[as].P(gsik|as, zs]))k
intro;(as, (bg)x) : P(ps;[as]) ’

as = as' :: Gs; (bg = b, : Ilzs :: Hsj,[as].P(gsik[as, 28]))k

?

intro;(as, (bk)k) = intro;(as’, (b))x) : P(psilas])

where

10

e (s; is a telescope relative to T
e Hs;p[zs] is a telescope relative to T in the context zs :: Gs; for each k;
o gsik[zs, zs] :: Is relative to T' in the context zs :: Gs;, zs :: Hs;[zs| for each k;

e ps;[zs] :: Is relative to T in the context zs :: G's;.

5.3 Inductive families in set theory

Let I and U be sets and let ® be a rule set on I x U. Then ® inductively defines a family ZF(®)
of sets in U over I by
IF(®)(@) = {u € Ul(i,u) € Z(®)}

for each 7 € I.

5.4 Interpretation of expressions

Interpretation of set expressions:

[P(as)lp = ZF(@p)([as]p),

where

U{Uk{ [gsik[zs, zs]l55 55 vk (ws))|ws € [[Hsik[ﬂvs]]]g?}'
([psi[zs]]zs, (lintroil, us, (ve)k))
us € [Gsi],
(v € [Hsw[zs]lz; = Uk},
where U is chosen so that ®p is a rule set on [Is] x U. Such a U = V,, is found in a similar way

to the case for inductive sets above.
Interpretation of element expressions:

[introi(as, (bk)k)lp = (lintroil, [as]p; ([bx]p)k)-

5.5 Soundness of the inference rules
Formation rule. This is sound since ZF(®p) is a family of sets over [Is].
The introduction rule is sound because assume that
us € [Gsi]p

and

v € II [P(gsik[zs, zs))]pzs s »
ws€[Hs;[zs]]p%s

whenever p € [I'], for all k. Then it follows that for each ws € [Hs;;[zs]]p% we have
(lgsikles, zs]lpzs 25, ve(ws)) € T(Pp).
Hence, by ®p-closedness

(Ipsilzsl]pys, (|intros|, us, (vi)k)) € Z(2p)
and thus
(|intro;|, us, (vg)k) € [P(psi[zs])].

11

6 Primitive recursive families of functions

We give a schema for functions which are defined by recursion on the way the elements of P(as)
are generated. This generalizes the schema in section 4. Note that we have a kind of simultaneous
recursion: an element of P(ps;[as]) is generated from the elements of (P(gs;x[as, zs]))k-

6.1 Syntax
a = f(as)
6.2 Inference rules
Elimination rule:
as :: Is

f(as) : Iz : P(as).Clz]’
as =as' 1 Is
f(as) = f(as') : Uz : P(as).Clz]

The ith equality rule:

as :: Gs; (b : Ilzs :: Hs;,[as].P(gsik|as, zs]))k
f(psilas]) (intro;(as, (bk)x))
= di(as, (bg, (Azs :: Hsiglas].f(gsik[as, zs])(bk(2$))))k)
Clpsilas], intro;(as, (bg)k)]

where
e C[zs,z] is a set in the context zs :: Is,z : P(zs);
[J
d; : Izs:Gs;.
(Iyg : (Izs :: Hsii[xs]. P(gsik[zs, zs]))-
My}, : (Tzs = Hsig[zs].Clgsi[ws, 2s], ye(25)]) k-
Clpsi[zs], introi(zs, (yk)k)]-
6.3 Primitive recursive families of functions in set theory

The rule set ®p is still deterministic. As a consequence we could define functions on the pairs
(as,c) in Z(Pp). But we want curried versions instead. Such functions can be defined as inductive
families of set-theoretic functions.

12

6.4 Interpretation of expressions

Let
[f(as)]lp = ZF(¥y)([as]p),
where
L Uallgsilms, 2SI, (g (ws), v (ws))ws € [Hsales]l2s)
Vs = U sz, (imtrod, s, (on), [dd] Cus, 0o))))
us € [Gsi],

wee IT [Pasiles, zs])]55%5,
ws€[Hs;[zs]]4s

U;c € H [[C[qsik[xsazs]ayk(zs)] gzg)ssyzk)k}

wsE[Hs;plxs]]%s

\I/f is a rule set on Euse[[ls]] Ewe[[P(zs)]]gg HC[LES, Z] gzg)

6.5 Soundness of inference rules

Omitted.

7 Polymorphism

7.1 Generic set formers and parameters

So far we have presented a completely monomorphic version of type theory similar to the type
theory presented in Martin-Lof [9]. (Martin-Lof also introduced a new constant P for each instance
of IIz : Ap.Ai[z] and a new constant f for each instance Az : A.a[z]. Thereby bound variables
were avoided altogether.) But it is important both for convenience and expressiveness to introduce
parameters in the inductive definitions. (We distinguish generic set formers, the arguments of which
are called parameters, and inductive families of sets, the arguments of which are called indices.) A
parameter can be either a set (or family) or an element (or function). The standard set formers all
have sets (or families) as parameters: these are the A, Ay, and A; in ¥z : Ag. A1, Ao + A1, Eq(A),
Wax : Ag.-Ai. A nice example of a set former which has an element as a parameter is the equality
predicate (due to Christine Paulin) Eq'(A,a) on a set A, where the set A and the element a : A
are parameters. The elimination rule (disregarding proof objects) for this predicate is the rule of
substitution: if C is a predicate on A such that C(a) is true, then Vz : A.(Eq'(4,a)(z) D C(z)).
This rule is a derived rule for Eq(A), which has a more complex elimination rule expressing that
Eq(A) is defined as the least reflexive relation on A. Another example of a set former which takes
an element as a parameter is Peterson’s and Synek’s trees (generalized well-orderings) [11].
The set-theoretic interpretation extends directly to the case with parameters.

7.2 Typical ambiguity

The set-theoretic interpretation given above is polymorphic (introduces typical ambiguity) in the
constructors but not in the recursive functions. This is because the denotation of intro;(as, (bg)r)

13

does not depend on the denotations of Gs;, and Hs;[zs], and (in the case of families) Is, whereas
the denotation of f depends on the denotations of Gs;, Hs;;[zs], and d;, and (in the case of families)
Is, ps;[zs], and gs;k[zs, zs].

7.3 Internalization

I have presented an open theory, that is, a theory which can be extended whenever there is a need
for it. But the schema precisely determines what an admissible extension of a given theory T is,
and hence the schema defines a collection of theories obtainable by such extensions.

Is it possible to turn this external schema into an internal construction? Consider first the case
of inductive sets. Each set P is determined by a list (indexed by i) of pairs of telescopes Gs; and
lists (indexed by k) of telescopes Hs;. It is tempting to write something like

P =W((zs : Gs;, (Hsi[zs))k)i)

and

f=T((zs :: Gsi, (Hsi[25))k, di)i),

because of the similarity between the schema for inductive sets and structural recursive functions
on the one hand and the rules for the well-orderings on the other. We could then put

Wz : Ag-Ar[z] = W(((z : Ao), ((A1[2])))),

and observe that the well-orderings is the special case where all lists and telscopes have length 1.
Other standard set formers could be defined by

L w((),
T = w0, 0));
N-= W0, 0)(0; (O)),
O = W0, 0); (0, (0 (0, ((N)))),
Ao+ A1 = W(((4o),) ((41),0)),
Ao x Ar = W(((4o;41),0))),
Sz Ao Aifz] = W(((z : Ao; Ai[z]), ()))

However, there are no formal means in type theory for introducing W and 7, not even in the
theory of logical types (Martin-Lof’s logical framework). It seems that we would need to extend
this framework with certain formal notions of telescope and non-dependent list.

Also note that we need the extra generality provided by the schema as compared with the
well-orderings, since we consider intensional type theory. In extensional type theory on the other
hand, we can use well-orderings for representing inductive sets, see Dybjer [6]. But even so, this
is done by non-trivial coding and by assuming some basic set formers such as L, T, +, and X, in
addition to I, which is needed for the schema too.

For inductive families we could similarly try to write

P=WZF(Is,(zs :: Gs;, (zs :: Hsji[xs],qsik|zs, 28])k, psi[xs])i)

and
[=TFIs,(zs :: Gs;, (zs :: Hsj[xs], qsik|xs, 28))k, psilxs], di)i)-

14

This does not resemble any standard set former, even though the first three arguments have a
similar function to the first three arguments of Petersson’s and Synek’s trees [11].
Some set formers written in terms of WF:

Eq(A) = WF((A),((z : 4),(); (z;2))),
Bq'(A,a) = WF((A),(0, 0 (a))-

8 Universes

We assume a countable sequence Uy, Uy, Us, ... and formulate rules for universes a la Russell [10].
Formation rules:
U, set,
Up =U,.
Introduction rules:
Un : Uy,
Up=Up:U,

if m < n, and
Pl—AOIUn F,$:A0|‘A1[.’L‘]:Un

T'HIlx: AoAl[.’L'] : Un ’
T'FAy=A;:U, T,z:AgF Ai[z] = Al[z] : Uy
['FIlz: Ap.Ai[z] =z : Ay.Al[z] : U, '

Elimination rules:

A:U,

A set’
A=A":U,

A=A

These rules extend the dependently typed A-calculus with universes (getting the theory TOU)
and are independent of the particular set formers introduced later. As in the case without universes
we may extend T{ to obtain a sequence of theories TV, T, When extending T' =T\ to T\,
by adding a new set former P or a new function constant f we may use the rules for universes to
justify that the G's;, Hs;,[zs], etc. are sets.

Moreover, for each set former P(ts) which may depends on certain parameters ts (see the
previous section) we have universe introduction rules reflecting the formation rule of P. Assume
that the definition of P(ts) involves the telescopes Gs;[ts] and Hs;i[zs,ts] (see section 3 and 5),
and that Gs;[ts] : U, and Hs;g[zs,ts|: U, (zs :: Gs;) whenever the set parameters in ¢s are in Uy,.
Then we get an introduction rule for U, by modifying the conclusion P(t¢s) set of the formation
rule to P(ts) : Uy, by modifying each premise for a set parameter A : set to A : Uy, and by leaving
each premise for an element unchanged. (This situation is somewhat complex and we won’t give a
completely formal presentation. If we introduce the internal set former for inductive families WF,
then it would be easy to let the formation rule of W.F be reflected as a universe introduction rule.)

A natural set-theoretic interpretation of the sequence of universes is as a sequence of set-
theoretic universes. But this would not reflect the fact that a universe in type theory is a set,

15

and thus inductively defined by its introduction rules. In particular it would not interpret the
elimination rule for that universe.

So instead we could make the interpretation dependent on the particular collection of set formers
introduced, and let rule sets corresponding to the introduction rules for U,, inductively generate
[Un]- The latter approach is similar to Salvesen’s interpretation of the universe [12]. Note however

that,

provided we have introduced at least one infinite set in Up, the requirement that [Up] is a set

implies that there exists a strongly inaccessible cardinal sup,,¢[g, card u.

References

[1]

2]

[10]

[11]

[12]

P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathe-
matical Logic, chapter C.7, pages 739-782. North Holland, 1977.

P. Aczel. The type theoretic interpretation of constructive set theory: inductive definitions. In
Logic, Methodology and Philosophy of Science VII, pages 17-49. Elsevier Science Publishers
B.V., 1986.

R. Backhouse. On the meaning and construction of the rules in Martin-Lof’s theory of types.
Technical Report CS 8606, University of Groningen, Department of Mathematics and Com-
puting Science, 1986. Presented at the Workshop on General Logic, Edinburgh, February
1987.

R. Backhouse, P. Chisholm, G. Malcolm, and E. Saaman. Do-it-yourself type theory (part 1).
Formal Aspects of Computing, 1:19-84, 1989.

T. Coquand and C. Paulin. Inductively defined types. In Proceedings of the Workshop on
Programming Logic, Bastad, May 1989.

P. Dybjer. Inductively defined sets in Martin-Lof’s type theory. In Proceedings of the Workshop
on General Logic, Edinburgh, February 1987.

P. Dybjer. An inversion principle for Martin-Lof’s type theory. In Proceedings of the Workshop
on Programming Logic, Bastad, May 1989.

P. Martin-Lof. Hauptsatz for the intuitionistic theory of iterated inductive definitions. In
J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages 179—
216. North-Holland, 1971.

P. Martin-L6f. An intuitionistic theory of types: Predicative part. In Logic Colloquium 73,
pages 73-118. North-Holland, 1975.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

K. Petersson and D. Synek. A set constructor for inductive sets in Martin-L6f’s type theory.
In Category Theory and Computer Science, pages 128-140. Springer-Verlag, LNCS 389, 1989.

A. B. Salvesen. Typeteori - en studie. Technical report, Department of Computer Science,
University of Oslo, 1984. Cand.Scient-thesis.

16

[13] P. Schroeder-Heister. A natural extension of natural deduction. Journal of Symbolic Logic,
49(4), December 1984.

[14] P. Schroeder-Heister. Judgements of higher levels and standardized rules for logical constants
in Martin-Lo6f’s theory of logic. Unpublished paper, June 1985.

[15] T. Streicher. Correctness and Completeness of a Categorical Semantics of the Calculus of
Constructions. PhD thesis, Fakultat fiir Mathematik und Informatik, Universitit Passau,
1988.

[16] A. S. Troelstra. On the syntax of Martin-Lof’s type theories. Theoretical Computer Science,
51:1-26, 1987.

17

