
Intuitionistic Type Theory

Per Martin-Löf

Notes by Giovanni Sambin of a series of lectures
given in Padua, June 1980

Contents

Introductory remarks . 1
Propositions and judgements . 2
Explanations of the forms of judgement 4
Propositions . 6
Rules of equality . 8
Hypothetical judgements and substitution rules 9
Judgements with more than one assumption and contexts 10
Sets and categories . 11
General remarks on the rules . 13
Cartesian product of a family of sets 13
Definitional equality . 16
Applications of the cartesian product 16
Disjoint union of a family of sets . 20
Applications of the disjoint union . 22
The axiom of choice . 27
The notion of such that . 28
Disjoint union of two sets . 29
Propositional equality . 31
Finite sets . 35
Consistency . 37
Natural numbers . 38
Lists . 42
Wellorderings . 43
Universes . 47

Preface

These lectures were given in Padova at the Laboratorio per Ricerche di Di-
namica dei Sistemi e di Elettronica Biomedica of the Consiglio Nazionale delle
Ricerche during the month of June 1980. I am indebted to Dr. Enrico Pagello
of that laboratory for the opportunity of so doing. The audience was made
up by philosophers, mathematicians and computer scientists. Accordingly, I
tried to say something which might be of interest to each of these three cate-
gories. Essentially the same lectures, albeit in a somewhat improved and more
advanced form, were given later in the same year as part of the meeting on
Konstruktive Mengenlehre und Typentheorie which was organized in Munich
by Prof. Dr. Helmut Schwichtenberg, to whom I am indebted for the invitation,
during the week 29 September – 3 October 1980.

The main improvement of the Munich lectures, as compared with those given
in Padova, was the adoption of a systematic higher level (Ger. Stufe) notation
which allows me to write simply

Π(A,B), Σ(A,B), W(A,B), λ(b),
E(c, d), D(c, d, e), R(c, d, e), T(c, d)

instead of

(Πx ∈ A)B(x), (Σx ∈ A)B(x), (Wx ∈ A)B(x), (λx) b(x),
E(c, (x, y) d(x, y)), D(c, (x) d(x), (y) e(y)), R(c, d, (x, y) e(x, y)),
T(c, (x, y, z) d(x, y, z)),

respectively. Moreover, the use of higher level variables and constants makes it
possible to formulate the elimination and equality rules for the cartesian product
in such a way that they follow the same pattern as the elimination and equality
rules for all the other type forming operations. In their new formulation, these
rules read

Π-elimination

c ∈ Π(A,B)
(y(x) ∈ B(x) (x ∈ A))

d(y) ∈ C(λ(y))
F(c, d) ∈ C(c)

and

Π-equality

(x ∈ A)
b(x) ∈ B(x)

(y(x) ∈ B(x) (x ∈ A))
d(y) ∈ C(λ(y))

F(λ(b), d) = d(b) ∈ C(λ(b))

respectively. Here y is a bound function variable, F is a new non-canonical
(eliminatory) operator by means of which the binary application operation can
be defined, putting

Ap(c, a) ≡ F(c, (y) y(a)),

and y(x) ∈ B(x) (x ∈ A) is an assumption, itself hypothetical, which has been
put within parentheses to indicate that it is being discharged. A program of the
new form F(c, d) has value e provided c has value λ(b) and d(b) has value e. This
rule for evaluating F(c, d) reduces to the lazy evaluation rule for Ap(c, a) when
the above definition is being made. Choosing C(z) to be B(a), thus independent
of z, and d(y) to be y(a), the new elimination rule reduces to the old one and
the new equality rule to the first of the two old equality rules. Moreover, the
second of these, that is, the rule

c ∈ Π(A,B)
c = (λx) Ap(c, x) ∈ Π(A,B)

can be derived by means of the I-rules in the same way as the rule

c ∈ Σ(A,B)
c = (p(c), q(c)) ∈ Σ(A,B)

is derived by way of example on p. 33 of the main text. Conversely, the new
elimination and equality rules can be derived from the old ones by making the
definition

F(c, d) ≡ d((x) Ap(c, x)).

So, actually, they are equivalent.
It only remains for me to thank Giovanni Sambin for having undertaken,

at his own suggestion, the considerable work of writing and typing these notes,
thereby making the lectures accessible to a wider audience.

Stockhom, January 1984,
Per Martin-Löf

Introductory remarks

Mathematical logic and the relation between logic and mathematics have been
interpreted in at least three different ways:

(1) mathematical logic as symbolic logic, or logic using mathematical symbol-
ism;

(2) mathematical logic as foundations (or philosophy) of mathematics;

(3) mathematical logic as logic studied by mathematical methods, as a branch
of mathematics.

We shall here mainly be interested in mathematical logic in the second sense.
What we shall do is also mathematical logic in the first sense, but certainly not
in the third.

The principal problem that remained after Principia Mathematica was com-
pleted was, according to its authors, that of justifying the axiom of reducibility
(or, as we would now say, the impredicative comprehension axiom). The rami-
fied theory of types was predicative, but it was not sufficient for deriving even
elementary parts of analysis. So the axiom of reducibility was added on the
pragmatic ground that it was needed, although no satisfactory justification (ex-
planation) of it could be provided. The whole point of the ramification was then
lost, so that it might just as well be abolished. What then remained was the
simple theory of types. Its official justification (Wittgenstein, Ramsey) rests on
the interpretation of propositions as truth values and propositional functions
(of one or several variables) as truth functions. The laws of the classical propo-
sitional logic are then clearly valid, and so are the quantifier laws, as long as
quantification is restricted to finite domains. However, it does not seem possible
to make sense of quantification over infinite domains, like the domain of natural
numbers, on this interpretation of the notions of proposition and propositional
function. For this reason, among others, what we develop here is an intuition-
istic theory of types, which is also predicative (or ramified). It is free from
the deficiency of Russell’s ramified theory of types, as regards the possibility of
developing elementary parts of mathematics, like the theory of real numbers,
because of the presence of the operation which allows us to form the cartesian
product of any given family of sets, in particular, the set of all functions from
one set to another.

In two areas, at least, our language seems to have advantages over traditional
foundational languages. First, Zermelo-Fraenkel set theory cannot adequately
deal with the foundational problems of category theory, where the category of
all sets, the category of all groups, the category of functors from one such cat-
egory to another etc. are considered. These problems are coped with by means
of the distinction between sets and categories (in the logical or philosophical
sense, not in the sense of category theory) which is made in intuitionistic type
theory. Second, present logical symbolisms are inadequate as programming
languages, which explains why computer scientists have developed their own

1

languages (FORTRAN, ALGOL, LISP, PASCAL, . . .) and systems of proof rules
(Hoare1, Dijkstra2, . . .). We have show elsewhere3 how the additional richness
of type theory, as compared with first order predicate logic, makes it usable as
a programming language.

Propositions and judgements

Here the distinction between proposition (Ger. Satz) and assertion or judgement
(Ger. Urteil) is essential. What we combine by means of the logical operations
(⊥, ⊃, &, ∨, ∀, ∃) and hold to be true are propositions. When we hold a
proposition to be true, we make a judgement:

judgementproposition A is true

In particular, the premisses and conclusion of a logical inference are judgements.
The distinction between propositions and judgements was clear from Frege to
Principia. These notions have later been replaced by the formalistic notions of
formula and theorem (in a formal system), respectively. Contrary to formulas,
propositions are not defined inductively. So to speak, they form an open concept.
In standard textbook presentations of first order logic, we can distinguish three
quite separate steps:

(1) inductive definition of terms and formulas,

(2) specification of axioms and rules of inference,

(3) semantical interpretation.

Formulas and deductions are given meaning only through semantics, which is
usually done following Tarski and assuming set theory.

What we do here is meant to be closer to ordinary mathematical practice.
We will avoid keeping form and meaning (content) apart. Instead we will at
the same time display certain forms of judgement and inference that are used
in mathematical proofs and explain them semantically. Thus we make explicit
what is usually implicitly taken for granted. When one treats logic as any other
branch of mathematics, as in the metamathematical tradition originated by
Hilbert, such judgements and inferences are only partially and formally repre-
sented in the so-called object language, while they are implicitly used, as in any
other branch of mathematics, in the so-called metalanguage.

1C. A. Hoare, An axiomatic basis of computer programming, Communications of the ACM,
Vol. 12, 1969, pp. 576–580 and 583.

2E. W. Dijkstra, A displine of Programming, Prentice Hall, Englewood Cliffs, N.J., 1976.
3P. Martin-Löf, Constructive mathematics and computer programming, Logic, Method-

ology and Philosophy of Science VI, Edited by L. J. Cohen, J. Los, H. Pfeiffer and K.-
P. Podewski, North-Holland, Amsterdam, 1982, pp. 153–175.

2

Our main aim is to build up a system of formal rules representing in the best
possible way informal (mathematical) reasoning. In the usual natural deduction
style, the rules given are not quite formal. For instance, the rule

A
A ∨B

takes for granted that A and B are formulas, and only then does it say that we
can infer A ∨ B to be true when A is true. If we are to give a formal rule, we
have to make this explicit, writing

A prop. B prop. A true

A ∨B true

or

A, B prop. ` A
` A ∨B

where we use, like Frege, the symbol ` to the left of A to signify that A is true.
In our system of rules, this will always be explicit.

A rule of inference is justified by explaining the conclusion on the assumption
that the premisses are known. Hence, before a rule of inference can be justified,
it must be explained what it is that we must know in order to have the right
to make a judgement of any one of the various forms that the premisses and
conclusion can have.

We use four forms of judgement:

(1) A is a set (abbr. A set),

(2) A and B are equal sets (A = B),

(3) a is an element of the set A (a ∈ A),

(4) a and b are equal elements of the set A (a = b ∈ A).

(If we read ∈ literally as
,
εστ ί, then we might write A ∈ Set, A = B ∈ Set,

a ∈ El(A), a = b ∈ El(A), respectively.) Of course, any syntactic variables could
be used; the use of small letters for elements and capital letters for sets is only for
convenience. Note that, in ordinary set theory, a ∈ b and a = b are propositions,
while they are judgements here. A judgement of the form A = B has no meaning
unless we already know A and B to be sets. Likewise, a judgement of the
form a ∈ A presupposes that A is a set, and a judgement of the form a = b ∈ A
presupposes, first, that A is a set, and, second, that a and b are elements of A.

3

Each form of judgement admits of several different readings, as in the table:

A set a ∈ A
A is a set a is an element of the set A A is nonempty
A is a proposition a is a proof (construction) of A is true

the proposition A
A is an intention a is a method of fulfilling A is fulfillable
(expectation) (realizing) the intention (realizable)

(expectation) A
A is a problem a is a method of solving the A is solvable
(task) problem (doing the task) A

The second, logical interpretation is discussed together with rules below. The
third was suggested by Heyting4 and the fourth by Kolmogorov5. The last is
very close to programming. “a is a method . . . ” can be read as “a is a program
. . . ”. Since programming languages have a formal notation for the program a,
but not for A, we complete the sentence with “. . . which meets the specifica-
tion A”. In Kolmogorov’s interpretation, the word problem refers to something
to be done and the word program to how to do it. The analogy between the first
and the second interpretation is implicit in the Brouwer-Heyting interpretation
of the logical constants. It was made more explicit by Curry and Feys6, but only
for the implicational fragment, and it was extended to intuitionistic first order
arithmetic by Howard7. It is the only known way of interpreting intuitionistic
logic so that the axiom of choice becomes valid.

To distinguish between proofs of judgements (usually in tree-like form) and
proofs of propositions (here identified with elements, thus to the left of ∈) we
reserve the word construction for the latter and use it when confusion might
occur.

Explanations of the forms of judgement

For each one of the four forms of judgement, we now explain what a judgement
of that form means. We can explain what a judgement, say of the first form,
means by answering one of the following three questions:

What is a set?

What is it that we must know in order to have the right to judge something
to be a set?

4A. Heyting, Die intuitionistische Grundlegung der Mathematik, Erkenntnis, Vol. 2, 1931,
pp. 106–115.

5A. N. Kolmogorov, Zur Deutung der intuitionistischen Logik, Mathematische Zeitschrift,
Vol. 35, 1932, pp. 58–65.

6H. B. Curry and R. Feys, Combinatory Logic, Vol. 1, North-Holland, Amsterdam, 1958,
pp. 312–315.

7W. A. Howard, The formulae-as-types notion of construction, To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, London, 1980,
pp. 479–490.

4

What does a judgement of the form “A is a set” mean?

The first is the ontological (ancient Greek), the second the epistemological
(Descartes, Kant, . . .), and the third the semantical (modern) way of posing
essentially the same question. At first sight, we could assume that a set is de-
fined by prescribing how its elements are formed. This we do when we say that
the set of natural numbers N is defined by giving the rules:

0 ∈ N a ∈ N
a′ ∈ N

by which its elements are constructed. However, the weakness of this definition
is clear: 1010, for instance, though not obtainable with the given rules, is clearly
an element of N, since we know that we can bring it to the form a′ for some
a ∈ N. We thus have to distinguish the elements which have a form by which
we can directly see that they are the result of one of the rules, and call them
canonical, from all other elements, which we will call noncanonical. But then,
to be able to define when two noncanonical elements are equal, we must also
prescribe how two equal canonical elements are formed. So:

(1) a set A is defined by prescribing how a canonical element of A is formed
as well as how two equal canonical elements of A are formed.

This is the explanation of the meaning of a judgement of the form A is a set.
For example, to the rules for N above, we must add

0 = 0 ∈ N and a = b ∈ N
a′ = b′ ∈ N

To take another example, A×B is defined by the rule

a ∈ A b ∈ B
(a, b) ∈ A×B

which prescribes how canonical elements are formed, and the rule

a = c ∈ A b = d ∈ B
(a, b) = (c, d) ∈ A×B

by means of which equal canonical elements are formed. There is no limitation
on the prescription defining a set, except that equality between canonical ele-
ments must always be defined in such a way as to be reflexive, symmetric and
transitive.

Now suppose we know A and B to be sets, that is, we know how canoni-
cal elements and equal canonical elements of A and B are formed. Then we
stipulate:

(2) two sets A and B are equal if

a ∈ A
a ∈ B

(that is, a ∈ A
a ∈ B and a ∈ B

a ∈ A)

and

5

a = b ∈ A
a = b ∈ B

for arbitrary canonical elements a, b.

This is the meaning of a judgement of the form A = B.
When we explain what an element of a set A is, we must assume we know

that A is a set, that is, in particular, how its canonical elements are formed.
Then:

(3) an element a of a set A is a method (or program) which, when executed,
yields a canonical element of A as result.

This is the meaning of a judgement of the form a ∈ A. Note that here we assume
the notion of method as primitive. The rules of computation (execution) of the
present language will be such that the computation of an element a of a set A
terminates with a value b as soon as the outermost form of b tells that it is
a canonical element of A (normal order or lazy evaluation). For instance, the
computation of 2 + 2 ∈ N gives the value (2 + 1)′, which is a canonical element
of N since 2 + 1 ∈ N.

Finally:

(4) two arbitrary elements a, b of a set A are equal if, when executed, a and b
yield equal canonical elements of A as results.

This is the meaning of a judgement of the form a = b ∈ A. This definition
makes good sense since it is part of the definition of a set what it means for two
canonical elements of the set to equal.

Example. If e, f ∈ A × B, then e and f are methods which yield canonical
elements (a, b), (c, d) ∈ A × B, respectively, as results, and e = f ∈ A × B if
(a, b) = (c, d) ∈ A×B, which in turn holds if a = c ∈ A and b = d ∈ B.

Propositions

Classically, a proposition is nothing but a truth value, that is, an element of
the set of truth values, whose two elements are the true and the false. Because
of the difficulties of justifying the rules for forming propositions by means of
quantification over infinite domains, when a proposition is understood as a truth
value, this explanation is rejected by the intuitionists and replaced by saying
that

a proposition is defined by laying down what counts as a proof of the
proposition,

and that

a proposition is true if it has a proof, that is, if a proof of it can be given8.
8D. Prawitz, Intuitionistic logic: a philosophical challenge, Logic and Philoshophy, Edited

by G. H. von Wright, Martinus Nijhoff, The Hague, pp. 1–10.

6

Thus, intuitionistically, truth is identified with provability, though of course
not (because of Gödel’s incompleteness theorem) with derivability within any
particular formal system.

The explanations of the meanings of the logical operations, which fit together
with the intuitionistic conception of what a proposition is, are given by the
standard table:

a proof of the proposition consists of
⊥ –

A&B a proof of A and a proof of B
A ∨B a proof of A or a proof of B
A ⊃ B a method which takes any proof

of A into a proof of B
(∀x)B(x) a method which takes an arbitrary

individual a into a proof of B(a)
(∃x)B(x) an individual a and a proof of B(a)

the first line of which should be interpreted as saying that there is nothing that
counts as a proof of ⊥.

The above table can be made more explicit by saying:

a proof of the proposition has the form
⊥ –

A&B (a, b), where a is a proof of A
and b is a proof of B

A ∨B i(a), where a is a proof of A,
or j(b), where b is a proof of B

A ⊃ B (λx) b(x), where b(a) is a proof
of B provided a is a proof of A

(∀x)B(x) (λx) b(x), where b(a) is a proof
of B(a) provided a is an individual

(∃x)B(x) (a, b), where a is an individual
and b is a proof of B(a)

As it stands, this table is not strictly correct, since it shows proofs of canonical
form only. An arbitrary proof, in analogy with an arbitrary element of a set, is
a method of producing a proof of canonical form.

If we take seriously the idea that a proposition is defined by laying down
how its canonical proofs are formed (as in the second table above) and accept
that a set is defined by prescribing how its canonical elements are formed, then
it is clear that it would only lead to unnecessary duplication to keep the notions
of proposition and set (and the associated notions of proof of a proposition and
element of a set) apart. Instead, we simply identify them, that is, treat them as
one and the same notion. This is the formulae-as-types (propositions-as-sets)
interpretation on which intuitionistic type theory is based.

7

Rules of equality

We now begin to build up a system of rules. First, we give the following rules of
equality, which are easily explained using the fact that they hold, by definition,
for canonical elements:

Reflexivity
a ∈ A

a = a ∈ A
A set
A = A

Symmetry
a = b ∈ A
b = a ∈ A

A = B
B = A

Transitivity

a = b ∈ A b = c ∈ A
a = c ∈ A

A = B B = C
A = C

For instance, a detailed explanation of transitivity is: a = b ∈ A means that
a and b yield canonical elements d and e, respectively, and that d = e ∈ A.
Similarly, if c yields f , e = f ∈ A. Since we assume transitivity for canonical
elements, we obtain d = f ∈ A, which means that a = c ∈ A.

The meaning of A = B is that

a ∈ A
a ∈ B

and

a = b ∈ A
a = b ∈ B

for a, b canonical elements of A and B. From the same for B = C, we also
obtain

a ∈ A
a ∈ C

and

a = b ∈ A
a = b ∈ C

for a, b canonical elements, which is the meaning of A = C.
In the same evident way, the meaning of A = B justifies the rules:

Equality of sets

a ∈ A A = B
a ∈ B

a = b ∈ A A = B
a = b ∈ B

8

Hypothetical judgements and substitution rules

The four basic forms of judgement are generalized in order to express also hy-
pothetical judgements, i.e. judgements which are made under assumptions. In
this section, we treat the case of one such assumption. So assume that A is a
set. The first form of judgement is generalized to the hypothetical form

(1) B(x) set (x ∈ A)

which says that B(x) is a set under the assumption x ∈ A, or, better, that
B(x) is a family of sets over A. A more traditional notation is {Bx}x∈A or
{Bx : x ∈ A}. The meaning of a judgement of the form (1) is that B(a) is
a set whenever a is an element of A, and also that B(a) and B(c) are equal
sets whenever a and c are equal elements of A. By virtue of this meaning, we
immediately see that the following substitution rules are correct:

Substitution

a ∈ A
(x ∈ A)
B(x) set

B(a) set

a = c ∈ A
(x ∈ A)
B(x) set

B(a) = B(c)

The notation

(x ∈ A)
B(x) set

only recalls that we make (have a proof of) the judgement that B(x) is a set
under the assumption x ∈ A, which does not mean that we must have a deriva-
tion within any particular formal system (like the one that we are in the process
of building up). When an assumption x ∈ A is discharged by the application of
a rule, we write it inside brackets.

The meaning of a hypothetical judgement of the form

(2) B(x) = D(x) (x ∈ A)

which says that B(x) and D(x) are equal families of sets over the set A, is that
B(a) and D(a) are equal sets for any element a of A (so, in particular, B(x)
and D(x) must be families of sets over A). Therefore the rule

Substitution

a ∈ A
(x ∈ A)

B(x) = D(x)
B(a) = D(a)

is correct. We can now derive the rule

a = c ∈ A
(x ∈ A)

B(x) = D(x)
B(a) = D(c)

9

from the above rules. In fact, from a = c ∈ A and B(x) set (x ∈ A), we obtain
B(a) = B(c) by the second substitution rule, and from c ∈ A, which is implicit
in a = c ∈ A, B(c) = D(c) by the third substitution rule. So B(a) = D(c) by
transitivity.

A hypothetical judgement of the form

(3) b(x) ∈ B(x) (x ∈ A)

means that we know b(a) to be an element of the set B(a) assuming we know
a to be an element of the set A, and that b(a) = b(c) ∈ B(a) whenever a and c
are equal elements of A. In other words, b(x) is an extensional function with
domain A and range B(x) depending on the argument x. Then the following
rules are justified:

Substitution

a ∈ A
(x ∈ A)

b(x) ∈ B(x)
b(a) ∈ B(a)

a = c ∈ A
(x ∈ A)

b(x) ∈ B(x)
b(a) = b(c) ∈ B(a)

Finally, a judgement of the form

(4) b(x) = d(x) ∈ B(x) (x ∈ A)

means that b(a) and d(a) are equal elements of the set B(a) for any element a
of the set A. We then have

Substitution

a ∈ A
(x ∈ A)

b(x) = d(x) ∈ B(x)
b(a) = d(a) ∈ B(a)

which is the last substitution rule.

Judgements with more than one assumption and
contexts

We may now further generalize judgements to include hypothetical judgements
with an arbitrary number n of assumptions. We explain their meaning by
induction, that is, assuming we understand the meaning of judgements with
n− 1 assumptions. So assume we know that

A1 is a set,

A2(x1) is a family of sets over A1,

A3(x1, x2) is a family of sets with two indices x1 ∈ A1 and x2 ∈ A2(x1),

10

. . .

An(x1, . . . , xn−1) is a family of sets with n−1 indices x1 ∈ A1, x2 ∈ A2(x1),
. . . , xn−1 ∈ An−1(x1, . . . , xn−2).

Then a judgement of the form

(1) A(x1, . . . , xn) set (x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, . . . , xn−1))

means that A(a1, . . . , an) is a set whenever a1 ∈ A1, a2 ∈ A2(a1), . . . , an ∈
An(a1, . . . , an−1) and thatA(a1, . . . , an) = A(b1, . . . , bn) whenever a1 = b1 ∈ A1,
. . . , an = bn ∈ An(a1, . . . , an−1). We say that A(x1, . . . , xn) is a family of sets
with n indices. The n assumptions in a judgement of the form (1) constitute
what we call the context, which plays a role analogous to the sets of formu-
lae Γ, ∆ (extra formulae) appearing in Gentzen sequents. Note also that any
initial segment of a context is always a context. Because of the meaning of a
hypothetical judgement of the form (1), we see that the first two rules of substi-
tution may be extended to the case of n assumptions, and we understand these
extensions to be given.

It is by now clear how to explain the meaning of the remaining forms of
hypothetical judgement:

(2) A(x1, . . . , xn) = B(x1, . . . , xn) (x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1))
(equal families of sets with n indices),

(3) a(x1, . . . , xn) ∈ A(x1, . . . , xn) (x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1))
(function with n arguments),

(4) a(x1, . . . , xn) = b(x1, . . . , xn) ∈ A(x1, . . . , xn) (x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1))
(equal functions with n arguments),

and we assume the corresponding substitution rules to be given.

Sets and categories

A category is defined by explaining what an object of the category is and when
two such objects are equal. A category need not be a set, since we can grasp
what it means to be an object of a given category even without exhaustive rules
for forming its objects. For instance, we now grasp what a set is and when two
sets are equal, so we have defined the category of sets (and, by the same token,
the category of propositions), but it is not a set. So far, we have defined several
categories:

the category of sets (or propositions),

the category of elements of a given set (or proofs of a proposition),

the category of families of sets B(x) (x ∈ A) over a given set A,

11

the category of functions b(x) ∈ B(x) (x ∈ A), where A set, B(x) set
(x ∈ A),

the category of families of sets C(x, y) (x ∈ A, y ∈ B(x)), where A set,
B(x) set (x ∈ A),

the category of functions c(x, y) ∈ C(x, y) (x ∈ A, y ∈ B(x)), where A is
a set, B(x) (x ∈ A) and C(x, y) (x ∈ A, y ∈ B(x)) families of sets,

etc.

In addition to these, there are higher categories, like the category of binary
function which take two sets into another set. The function ×, which takes two
sets A and B into their cartesian product A×B, is an example of an object of
that category.

We will say object of a category but element of a set, which reflects the
difference between categories and sets. To define a category it is not necessary
to prescribe how its objects are formed, but just to grasp what an (arbitrary)
object of the category is. Each set determines a category, namely the category
of elements of the set, but not conversely: for instance, the category of sets and
the category of propositions are not sets, since we cannot describe how all their
elements are formed. We can now say that a judgement is a statement to the
effect that something is an object of a category (a ∈ A, A set, . . .) or that two
objects of a category are equal (a = b ∈ A, A = B, . . .).

What about the word type in the logical sense given to it by Russell with
his ramified (resp. simple) theory of types? Is type synonymous with category
or with set? In some cases with the one, it seems, and in other cases with
the other. And it is this confusion of two different concepts which has led to
the impredicativity of the simple theory of types. When a type is defined as
the range of significance of a propositional function, so that types are what the
quantifiers range over, then it seems that a type is the same thing as a set.
On the other hand, when one speaks about the simple types of propositions,
properties of individuals, relations between individuals etc., it seems as if types
and categories are the same. The important difference between the ramified
types of propositions, properties, relations etc. of some finite order and the
simple types of all propositions, properties, relations etc. is precisely that the
ramified types are (or can be understood as) sets, so that it makes sense to
quantify over them, whereas the simple types are mere categories.

For example, BA is a set, the set of functions from the set A to the set B
(BA will be introduced as an abbreviation for (Πx ∈ A)B(x), when B(x) is
constantly equal to B). In particular, {0, 1}A is a set, but it is not the same
thing as ℘(A), which is only a category. The reason that BA can be construed
as a set is that we take the notion of function as primitive, instead of defining
a function as a set of ordered pairs or a binary relation satisfying the usual
existence and uniqueness conditions, which would make it a category (like ℘(A))
instead of a set.

12

When one speaks about data types in computer science, one might just as
well say data sets. So here type is always synonymous with set and not with
category.

General remarks on the rules

We now start to give the rules for the different symbols we use. We will follow
a common pattern in giving them. For each operation we have four rules:

set formation,

introduction,

elimination,

equality.

The formation rule says that we can form a certain set (proposition) from
certain other sets (propositions) or families of sets (propositional functions).
The introduction rules say what are the canonical elements (and equal canonical
elements) of the set, thus giving its meaning. The elimination rule shows how we
may define functions on the set defined by the introduction rules. The equality
rules relate the introduction and elimination rules by showing how a function
defined by means of the elimination rule operates on the canonical elements of
the set which are generated by the introduction rules.

In the interpretation of sets as propositions, the formation rules are used to
form propositions, introduction and elimination rules are like those of Gentzen9,
and the equality rules correspond to the reduction rules of Prawitz10.

We remark here also that to each rule of set formation, introduction and
elimination, there corresponds an equality rule, which allows us to substitute
equals for equals.

The rules should be rules of immediate inference; we cannot further analyse
them, but only explain them. However, in the end, no explanation can substitute
each individual’s understanding.

Cartesian product of a family of sets

Given a set A and a family of sets B(x) over the set A, we can form the product :

Π-formation

A set

(x ∈ A)
B(x) set

(Πx ∈ A)B(x) set

A = C

(x ∈ A)
B(x) = D(x)

(Πx ∈ A)B(x) = (Πx ∈ C)D(x)
9G. Gentzen, Untersuchungen über das logische Schliessen, Mathematische Zeitschrift,

Vol. 39, 1934, pp. 176–210 and 405–431.
10D. Prawitz, Natural Deduction, A Proof-Theoretical Study, Almqvist & Wiksell, Stock-

holm, 1965.

13

The second rule says that from equal arguments we get equal values. The
same holds for all other set forming operations, and we will never spell it out
again. The conclusion of the first rule is that something is a set. To understand
which set it is, we must know how its canonical elements and its equal canonical
elements are formed. This is explained by the introduction rules:

Π-introduction

(x ∈ A)
b(x) ∈ B(x)

(λx) b(x) ∈ (Πx ∈ A)B(x)

(x ∈ A)
b(x) = d(x) ∈ B(x)

(λx) b(x) = (λx) d(x) ∈ (Πx ∈ A)B(x)

Note that these rules introduce canonical elements and equal canonical elements,
even if b(a) is not a canonical element of B(a) for a ∈ A. Also, we assume that
the usual variable restriction is met, i.e. that x does not appear free in any
assumption except (those of the form) x ∈ A. Note that it is necessary to un-
derstand that b(x) ∈ B(x) (x ∈ A) is a function to be able to form the canonical
element (λx) b(x) ∈ (Πx ∈ A)B(x); we could say that the latter is a name of
the former. Since, in general, there are no exhaustive rules for generating all
functions from one set to another, it follows that we cannot generate inductively
all the elements of a set of the form (Πx ∈ A)B(x) (or, in particular, of the
form BA, like NN).

We can now justify the second rule of set formation. So let (λx) b(x) be a
canonical element of (Πx ∈ A)B(x). Then b(x) ∈ B(x) (x ∈ A). Therefore,
assuming x ∈ C we get x ∈ A by symmetry and equality of sets from the premiss
A = C, and hence b(x) ∈ B(x). Now, from the premiss B(x) = D(x) (x ∈ A),
again by equality of sets (which is assumed to hold also for families of sets), we
obtain b(x) ∈ D(x), and hence (λx) b(x) ∈ (Πx ∈ C)D(x) by Π-introduction.
The other direction is similar.

(x ∈ C)
A = C
C = A

x ∈ A
b(x) ∈ B(x)

(x ∈ C)
A = C
C = A

x ∈ A
B(x) = D(x)

b(x) ∈ D(x)
(λx) b(x) ∈ (Πx ∈ C)D(x)

We remark that the above derivation cannot be considered as a formal proof
of the second Π-formation rule in type theory itself since there is no formal
rule of proving an equality between two sets which corresponds directly to the
explanation of what such an equality means. We also have to prove that

14

(λx) b(x) = (λx) d(x) ∈ (Πx ∈ A)B(x)

(λx) b(x) = (λx) d(x) ∈ (Πx ∈ C)D(x)

under the same assumptions. So let (λx) b(x) and (λx) d(x) be equal canonical
elements of (Πx ∈ A)B(x). Then b(x) = d(x) ∈ B(x) (x ∈ A), and therefore
the derivation

(x ∈ C)
A = C
C = A

x ∈ A
b(x) = d(x) ∈ B(x)

(x ∈ C)
A = C
C = A

x ∈ A
B(x) = D(x)

b(x) = d(x) ∈ D(x)
(λx) b(x) = (λx) d(x) ∈ (Πx ∈ C)D(x)

shows that (λx) b(x) and (λx) d(x) are equal canonical elements of (Πx∈C)D(x).

Π-elimination

c ∈ (Πx ∈ A)B(x) a ∈ A
Ap(c, a) ∈ B(a)

c = d ∈ (Πx ∈ A)B(x) a = b ∈ A
Ap(c, a) = Ap(d, b) ∈ B(a)

We have to explain the meaning of the new constant Ap (Ap for Application).
Ap(c, a) is a method of obtaining a canonical element of B(a), and we now ex-
plain how to execute it. We know that c ∈ (Πx ∈ A)B(x), that is, that c is a
method which yields a canonical element (λx) b(x) of (Πx ∈ A)B(x) as result.
Now take a ∈ A and substitute it for x in b(x). Then b(a) ∈ B(a). Calculat-
ing b(a), we obtain as result a canonical element of B(a), as required. Of course,
in this explanation, no concrete computation is carried out; it has the character
of a thought experiment (Ger. Gedankenexperiment). We use Ap(c, a) instead
of the more common b(a) to distinguish the result of applying the binary appli-
cation function Ap to the two arguments c and a from the result of applying b
to a. Ap(c, a) corresponds to the application operation (c a) in combinatory
logic. But recall that in combinatory logic there are no type restrictions, since
one can always form (c a), for any c and a.

Π-equality

a ∈ A
(x ∈ A)

b(x) ∈ B(x)
Ap((λx) b(x), a) = b(a) ∈ B(a)

c ∈ (Πx ∈ A)B(x)
c = (λx) Ap(c, x) ∈ (Πx ∈ A)B(x)

15

The first equality rule show how the new function Ap operates on the canonical
elements of (Πx ∈ A)B(x). Think of (λx) b(x) as a name of the program b(x).
Then the first rule says that applying the name of a program to an argument
yields the same result as executing the program with that argument as input.
Similarly, the second rule is needed to obtain a notation, Ap(c, x), for a program
of which we know only the name c. The second rule can be explained as follows.
Recall that two elements are equal if they yield equal canonical elements as
results. So suppose c yields the result (λx) b(x), where b(x) ∈ B(x) (x ∈ A).
Since (λx) Ap(c, x) is canonical, what we want to prove is

(λx) b(x) = (λx) Ap(c, x) ∈ B(x) (x ∈ A)

By the rule of Π-introduction for equal elements, we need b(x) = Ap(c, x) ∈ B(x)
(x ∈ A). This means b(a) = Ap(c, a) ∈ B(a) provided a ∈ A. But this is true,
since c yields (λx) b(x) and hence Ap(c, a) yields the same value as b(a).

The rules for products contain the rules for BA, which is the set of functions
from the set A to the set B. In fact, we take BA to be (Πx ∈ A)B, where B
does not depend on x. Here the concept of definitional equality is useful.

Definitional equality

Definitional equality is intensional equality, or equality of meaning (synonymy).
We use the symbol ≡ or =def. (which was first introduced by Burali-Forti).
Definitional equality ≡ is a relation between linguistic expressions; it should not
be confused with equality between objects (sets, elements of a set etc.) which
we denote by =. Definitional equality is the equivalence relation generated
by abbreviatory definitions, changes of bound variables and the principle of
substituting equals for equals. Therefore it is decidable, but not in the sense
that a ≡ b ∨ ¬(a ≡ b) holds, simply because a ≡ b is not a proposition in the
sense of the present theory. Definitional equality is essential in checking the
formal correctness of a proof. In fact, to check the correctness of an inference
like

A true B true
A&B true

for instance, we must in particular make sure that the occurrences of the ex-
pressions A and B above the line and the corresponding occurrences below are
the same, that is, that they are definitionally equal. Note that the rewriting of
an expression is not counted as a formal inference.

Applications of the cartesian product

First, using definitional equality, we can now define BA by putting

BA ≡ A→ B ≡ (Πx ∈ A)B,

16

provided B does not depend on x. We next consider the Π-rules in the interpre-
tation of propositions as sets. If, in the first rule, Π-formation, we think of B(x)
as a proposition instead of a set, then, after the definition

(∀x ∈ A)B(x) ≡ (Πx ∈ A)B(x),

it becomes the rule

∀-formation

A set

(x ∈ A)
B(x) prop.

(∀x ∈ A)B(x) prop.

which says that universal quantification forms propositions. A set merely says
that the domain over which the universal quantifier ranges is a set and this is
why we do not change it into A prop. Note that the rule of ∀-formation is just
an instance of Π-formation. We similarly have

∀-introduction

(x ∈ A)
B(x) true

(∀x ∈ A)B(x) true

which is obtained from the rule of Π-introduction by suppressing the proof b(x).
Namely we write in general A true instead of a ∈ A for some a, when A is
thought of as a proposition and we don’t care about what its proof (construction)
is.

More generally, we can suppress proofs as follows. Suppose that

a(x1, . . . , xn) ∈ A(x1, . . . , xm)
(x1 ∈ A1, . . . , xm ∈ Am(x1, . . . , xm−1),
xm+1 ∈ Am+1(x1, . . . , xm), . . . , xn ∈ An(x1, . . . , xm))

namely, suppose that Am+1 up to An and A depend only on x1, . . . , xm. Then,
if we are merely inerested in the truth of A(x1, . . . , xm), it is inessential to write
explicit symbols for the elements of Am+1, . . . , An; so we abbreviate it with

A(x1, . . . , xm) true

(x1 ∈ A1, . . . , xm ∈ Am(x1, . . . , xm−1),
Am+1(x1, . . . , xm) true, . . . , An(x1, . . . , xm) true).

Similarly, we write

A(x1, . . . , xm) prop.

(x1 ∈ A1, . . . , xm ∈ Am(x1, . . . , xm−1),
Am+1(x1, . . . , xm) true, . . . , An(x1, . . . , xm) true)

17

that is, A(x1, . . . , xm) is a proposition provided x1 ∈ A1, . . . , xm ∈ Am(x1, . . . , xm−1)
and Am+1(x1, . . . , xm), . . . , An(x1, . . . , xm) are all true, as an abbreviation of

A(x1, . . . , xm) prop.

(x1 ∈ A1, . . . , xm ∈ Am(x1, . . . , xm−1),
xm+1 ∈ Am+1(x1, . . . , xm), . . . , xn ∈ An(x1, . . . , xm)).

Turning back to the ∀-rules, from the rule of Π-elimination, we have in
particular

∀-elimination

a ∈ A (∀x ∈ A)B(x) true

B(a) true

Restoring proofs, we see that, if c is a proof of (∀x ∈ A)B(x), then Ap(c, a)
is a proof of B(a); so a proof of (∀x ∈ A)B(x) is a method which takes an
arbitrary element of A into a proof of B(a), in agreement with the intuitionistic
interpretation of the universal quantifier.

If we now define

A ⊃ B ≡ A→ B ≡ BA ≡ (Πx ∈ A)B,

where B does not depend on x, we obtain from the Π-rules the rules for impli-
cation. From the rule of Π-formation, assuming B does not depend on x, we
obtain

⊃-formation

A prop.

(A true)
B prop.

A ⊃ B prop.

which is a generalization of the usual rule of forming A ⊃ B, since we may also
use the assumption A true to prove B prop. This generalization is perhaps more
evident in the Kolmogorov interpretation, where we might be in the position to
judge B to be a problem only under the assumption that the problem A can be
solved, which is clearly sufficient for the problem A ⊃ B, that is, the problem
of solving B provided that A can be solved, to make sense. The inference rules
for ⊃ are:

⊃-introduction

(A true)
B true

A ⊃ B true

which comes from the rule of Π-introduction by suppressing proofs, and

⊃-eliminiation

A ⊃ B true A true
B true

which is obtained from the rule of Π-elimination by the same process.

18

Example (the combinator I). Assume A set and x ∈ A. Then, by Π-
introduction, we obtain (λx)x ∈ A → A, and therefore, for any proposition A,
A ⊃ A is true. This expresses the fact that a proof of A ⊃ A is the method:
take the same proof (construction). We can define the combinator I putting
I ≡ (λx)x. Note that the same I belongs to any set of the form A → A, since
we do not have different variables for different types.

Example (the combinator K). Assume A set, B(x) set (x ∈ A) and let
x ∈ A, y ∈ B(x). Then, by λ-abstraction on y, we obtain (λy)x ∈ B(x) → A,
and, by λ-abstraction on x, (λx) (λy)x ∈ (Πx ∈ A) (B(x) → A). We can
define the combinator K putting K ≡ (λx) (λy)x. If we think of A and B
as proppositions, where B does not depend on x, K appears as a proof of
A ⊃ (B ⊃ A); so A ⊃ (B ⊃ A) is true. K expresses the method: given any
proof x of A, take the function from B to A which is constantly x for any proof y
of B.

Example (the combinator S). Assume A set, B(x) set (x ∈ A), C(x, y) set
(x ∈ A, y ∈ B(x)) and let x ∈ A, f ∈ (Πx ∈ A)B(x) and g ∈ (Πx ∈ A)
(Πy ∈ B(x))C(x, y). Then Ap(f, x) ∈ B(x) and Ap(g, x) ∈ (Πy ∈ B(x))C(x, y)
by Π-elimination. So, again by Π-elimination,

Ap(Ap(g, x),Ap(f, x)) ∈ C(x,Ap(f, x)).

Now, by λ-abstraction on x, we obtain

(λx) Ap(Ap(g, x),Ap(f, x)) ∈ (Πx ∈ A)C(x,Ap(f, x)),

and, by λ-abstraction on f ,

(λf) (λx) Ap(Ap(g, x),Ap(f, x))
∈ (Πf ∈ (Πx ∈ A)B(x)) (Πx ∈ A)C(x,Ap(f, x)).

Since the set to the right does not depend on g, abstracting on g, we obtain

(λg) (λf) (λx) Ap(Ap(g, x),Ap(f, x))
∈ (Πx ∈ A) (Πy ∈ B(x))C(x, y)

→ (Πf ∈ (Πx ∈ A)B(x)) (Πx ∈ A)C(x,Ap(f, x)).

We may now put

S ≡ (λg) (λf) (λx) Ap(Ap(g, x),Ap(f, x))

which is the usual combinator S, denoted by λg f x. g x (f x) in combinatory
logic. In this way, we have assigned a type (set) to the combinator S. Now
think of C(x, y) as a propositional function. Then we have proved

(∀x ∈ A) (∀y ∈ B(x))C(x, y)
⊃ (∀f ∈ (Πx ∈ A)B(x)) (∀x ∈ A)C(x,Ap(f, x)) true

19

which is traditionally written

(∀x ∈ A) (∀y ∈ B(x)) (C(x, y)) ⊃ (∀f ∈
∏

x∈ABx) (∀x ∈ A)C(x, f(x)).

If we assume that C(x, y) does not depend on y, then (Πy ∈ B(x))C(x, y) ≡
B(x)→ C(x) and therefore

S ∈ (Πx ∈ A) (B(x)→ C(x))→ ((Πx ∈ A)B(x)→ (Πx ∈ A)C(x)).

So, if we think of B(x) and C(x) as propositions, we have

(∀x ∈ A) (B(x) ⊃ C(x)) ⊃ ((∀x ∈ A)B(x) ⊃ (∀x ∈ A)C(x)) true.

Now assume that B(x) does not depend on x and that C(x, y) does not depend
on x and y. Then we obtain

S ∈ (A→ (B → C))→ ((A→ B)→ (A→ C)),

that is, in the logical interpretation,

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) true.

This is just the second axiom of the Hilbert style propositional calculus. In this
last case, the proof above, when written in treeform, becomes:

(x ∈ A) (f ∈ A→ B)
Ap(f, x) ∈ B

(x ∈ A) (g ∈ A→ (B → C))
Ap(g, x) ∈ B → C

Ap(Ap(g, x),Ap(f, x)) ∈ C
(λx) Ap(Ap(g, x),Ap(f, x)) ∈ A→ C

(λf) (λx) Ap(Ap(g, x),Ap(f, x)) ∈ (A→ B)→ (A→ C)
(λg) (λf) (λx) Ap(Ap(g, x),Ap(f, x)) ∈ (A→ (B → C))→ ((A→ B)→ (A→ C))

Disjoint union of a family of sets

The second group of rules is about the disjoint union of a family of sets.

Σ-formation

A set

(x ∈ A)
B(x) set

(Σx ∈ A)B(x) set

A more traditional notation for (Σx ∈ A)B(x) would be
∑

x∈ABx (
∐

x∈ABx

or
⋃

x∈ABx). We now explain what set (Σx ∈ A)B(x) is by prescribing how its
canonical elements are formed. This we do with the rule:

20

Σ-introduction

a ∈ A b ∈ B(a)
(a, b) ∈ (Σx ∈ A)B(x)

We can now justify the equality rule associated with Σ-formation:

A = C

(x ∈ A)
B(x) = D(x)

(Σx ∈ A)B(x) = (Σx ∈ C)D(x)

In fact, any canonical element of (Σx ∈ A)B(x) is of the form (a, b) with
a ∈ A and b ∈ B(a) by Σ-introduction. But then we also have a ∈ C and
b ∈ D(a) by equality of sets and substitution. Hence (a, b) ∈ (Σx ∈ C)D(x) by
Σ-introduction. The other direction is similar.

Σ-elimination

c ∈ (Σx ∈ A)B(x)
(x ∈ A, y ∈ B(x))
d(x, y) ∈ C((x, y))

E(c, (x, y) d(x, y)) ∈ C(c)

where we presuppose the premiss C(z) set (z ∈ (Σx ∈ A)B(x)), although
it is not written out explicitly. (To be precise, we should also write out the
premisses A set and B(x) set (x ∈ A).) We explain the rule of Σ-elimination
by showing how the new constant E operates on its arguments. So assume
we know the premisses. Then we execute E(c, (x, y) d(x, y)) as follows. First
execute c, which yields a canonical element of the form (a, b) with a ∈ A and
b ∈ B(a). Now substitute a and b for x and y, respectively, in the right premiss,
obtaining d(a, b) ∈ C((a, b)). Executing d(a, b) we obtain a canonical element e
of C((a, b)). We now want to show that e is also a canonical element of C(c). It
is a general fact that, if a ∈ A and a has value b, then a = b ∈ A (note, however,
that this does not mean that a = b ∈ A is necessarily formally derivable by
some particular set of formal rules). In our case, c = (a, b) ∈ (Σx ∈ A)B(x)
and hence, by substitution, C(c) = C((a, b)). Remembering what it means for
two sets to be equal, we conclude from the fact that e is a canonical element
of C((a, b)) that e is also a canonical element of C(c).

Another notation for E(c, (x, y) d(x, y)) could be (Ex, y) (c, d(x, y)), but we
prefer the first since it shows more clearly that x and y become bound only
in d(x, y).

Σ-equality

a ∈ A b ∈ B(a)
(x ∈ A, y ∈ B(x))
d(x, y) ∈ C((x, y))

E((a, b), (x, y) d(x, y)) = d(a, b) ∈ C((a, b))

21

(Here, as in Σ-elimination, C(z) set (z ∈ (Σx ∈ A)B(x)) is an implicit premiss.)
Assuming that we know the premisses, the conclusion is justified by imagining
E((a, b), (x, y) d(x, y)) to be executed. In fact, we first execute (a, b), which
yields (a, b) itself as result; then we substitute a, b for x, y in d(x, y), obtaining
d(a, b) ∈ C((a, b)), and execute d(a, b) until we obtain a canonical element e ∈
C((a, b)). The same canonical element is produced by d(a, b), and thus the
conclusion is correct.

A second rule of Σ-equality, analogous to the second rule of Π-equality, is
now derivable, as we shall see later.

Applications of the disjoint union

As we have already done with the cartesian product, we shall now see what are
the logical interpretations of the disjoint union. If we put

(∃x ∈ A)B(x) ≡ (Σx ∈ A)B(x),

then, from the Σ-rules, interpreting B(x) as a propositional function over A, we
obtain as particular cases:

∃-formation

A set

(x ∈ A)
B(x) prop.

(∃x ∈ A)B(x) prop.

∃-introduction

a ∈ A B(a) true

(∃x ∈ A)B(x) true

In accordance with the intuitionistic interpretation of the existential quantifier,
the rule of Σ-introduction may be interpreted as saying that a (canonical) proof
of (∃x ∈ A)B(x) is a pair (a, b), where b is a proof of the fact that a satisfies B.
Suppressing proofs, we obtain the rule of ∃-introduction, in which, however, the
first premiss a ∈ A is usually not made explicit.

∃-elimination

(∃x ∈ A)B(x) true

(x ∈ A, B(x) true)
C true

C true

Here, as usual, no assumptions, except those explicitly written out, may depend
on the variable x. The rule of Σ-elimination is stronger than the ∃-eliminiation
rule, which is obtained from it by suppressing proofs, since we take into consid-
eration also proofs (constructions), which is not possible within the language of

22

first order predicate logic. This additional strength will be visible when treating
the left and right projections below.

The rules of disjoint union deliver also the usual rules of conjunction and
the usual properties of the cartesian product of two sets if we define

A&B ≡ A×B ≡ (Σx ∈ A)B,

where B does not depend on x. We derive here only the rules of conjunction.

&-formation

A prop.

(A true)
B prop.

A&B prop.

This rule is an instance of Σ-formation and a generalization of the usual rule
of forming propositions of the form A & B, since we may know that B is a
proposition only under the assumption that A is true.

&-introduction

A true B true
A&B true

Restoring proofs, we see that a (canonical) proof of A& B is pair (a, b), where
a and b are given proofs of A and B respectively.

&-elimination

A&B true

(A true, B true)
C true

C true

From this rule of &-elimination, we obtain the standard &-elimination rules by
choosing C to be A and B themselves:

A&B true (A true)
A true

A&B true (B true)
B true

Example (left projection). We define

p(c) ≡ E(c, (x, y)x)

and call it the left projection of c since it is a method of obtaining the value
of the first (left) coordinate of the pair produced by an arbitrary element c
of (Σx ∈ A)B(x). In fact, if we take the term d(x, y) in the explanation of Σ-
elimination to be x, then we see that to execute p(c) we first obtain the pair (a, b)
with a ∈ A and b ∈ B(a) which is the value of c, and then substitute a, b for
x, y in x, obtaining a, which is executed to yield a canonical element of A.
Therefore, taking C(z) to be A and d(x, y) to be x in the rules of Σ-elimination
and Σ-equality, we obtain as derived rules:

23

Left projection

c ∈ (Σx ∈ A)B(x)
p(c) ∈ A

a ∈ A b ∈ B(a)
p((a, b)) = a ∈ A

If we now turn to the logical interpretation, we see that

c ∈ (Σx ∈ A)B(x)
p(c) ∈ A

holds, which means that from a proof of (∃x ∈ A)B(x) we can obtain an element
ofA for which the propertyB holds. So we have no need of the description opera-
tor (ιx)B(x) (the x such that B(x) holds) or the choice operator (εx)B(x) (an x
such that B(x) holds), since, from the intuitionistic point of view, (∃x ∈ A)B(x)
is true when we have a proof of it. The difficulty with an epsilon term (εx)B(x)
is that it is construed as a function of the property B(x) itself and not of the
proof of (∃x)B(x). This is why Hilbert had to postulate both a rule of the form

(∃x)B(x) true

(εx)B(x) individual

a counterpart of which we have just proved, and a rule of the form

(∃x)B(x) true

b((εx)B(x)) true

which has a counterpart in the first of the rules of right projection that we shall
see in the next example.

Example (right projection). We define

q(c) ≡ E(c, (x, y) y).

Take d(x, y) to be y in the rule of Σ-elimination. From x ∈ A, y ∈ B(x) we
obtain p((x, y)) = x ∈ A by left projection, and therefore B(x) = B(p((x, y))).
Now choose C(z) set (z ∈ (Σx ∈ A)B(x)) to be the family B(p(z)) set (z ∈
(Σx ∈ A)B(x)). Then the rule of Σ-elimination gives q(c) ∈ B(p(c)). More
formally:

c ∈ (Σx ∈ A)B(x)
(y ∈ B(x))

(x ∈ A) (y ∈ B(x))
p((x, y)) = x ∈ A
x = p((x, y)) ∈ A
B(x) = B(p((x, y)))

y ∈ B(p((x, y)))
q(c) ≡ E(c, (x, y) y) ∈ B(p(c))

24

So we have:

Right projection

c ∈ (Σx ∈ A)B(x)
q(c) ∈ B(p(c))

a ∈ A b ∈ B(a)
q((a, b)) = b ∈ B(a)

The second of these rules is derived by Σ-equality in much the same way as the
first was derived by Σ-elimination.

When B(x) is thought of as a propositional function, the first rule of right
projection says that, if c is a construction of (∃x ∈ A)B(x), then q(c) is a
construction of B(p(c)), where, by left projection, p(c) ∈ A. Thus, suppressing
the construction in the conclusion, B(p(c)) is true. Note, however, that, in case
B(x) depends on x, it is impossible to suppress the construction in the premiss,
since the conclusion depends on it.

Finally, when B(x) does not depend on x, so that we may write it simply
as B, and both A and B are thought of as propositions, the first rule of right
projection reduces to

&-elimination

A&B true
B true

by suppressing the constructions in both the premiss and the conclusion.

Example (axioms of conjunction). We first derive A ⊃ (B ⊃ (A & B))
true, which is the axiom corresponding to the rule of &-introduction. Assume
A set, B(x) set (x ∈ A) and let x ∈ A, y ∈ B(x). Then (x, y) ∈ (Σx ∈ A)B(x)
by Σ-introduction, and, by Π-introduction, (λy) (x, y) ∈ B(x)→ (Σx ∈ A)B(x)
(note that (Σx ∈ A)B(x) does not depend on y) and (λx) (λy) (x, y) ∈
(Πx ∈ A) (B(x)→ (Σx ∈ A)B(x)). The logical reading is then

(∀x ∈ A) (B(x) ⊃ (∃x ∈ A)B(x)) true,

from which, in particular, when B does not depend on x,

A ⊃ (B ⊃ (A&B)) true.

We now use the left and right projections to derive A & B ⊃ A true and
A & B ⊃ B true. To obtain the first, assume z ∈ (Σx ∈ A)B(x). Then
p(z) ∈ A by left projection, and, by λ-abstraction on z,

(λz) p(z) ∈ (Σx ∈ A)B(x)→ A.

In particular, when B(x) does not depend on x, we obtain

A&B ⊃ A true.

25

To obtain the second, from z ∈ (Σx ∈ A)B(x), we have q(z) ∈ B(p(z)) by right
projection, and hence, by λ-abstraction,

(λz) q(z) ∈ (Πz ∈ (Σx ∈ a)B(x))B(p(z))

(note that B(p(z)) depends on z). In particular, when B(x) does not depend
on x, we obtain

A&B ⊃ B true.

Example (another application of the disjoint union). The rule of Σ-
elimination says that any function d(x, y) with arguments in A and B(x) gives
also a function (with the same values, by Σ-equality) with a pair in (Σx ∈ A)B(x)
as single argument. What we now prove is an axiom corresponding to this rule.
So, assume A set, B(x) set (x ∈ A), C(z) set (z ∈ (Σx ∈ A)B(x)) and let
f ∈ (Πx ∈ A) (Πy ∈ B(x))C((x, y)). We want to find an element of

(Πx ∈ A) (Πy ∈ B(x))C((x, y))→ (Πz ∈ (Σx ∈ A)B(x))C(z).

We define Ap(f, x, y) ≡ Ap(Ap(f, x), y) for convenience. Then Ap(f, x, y) is a
ternary function, and Ap(f, x, y) ∈ C((x, y)) (x ∈ A, y ∈ B(x)). So, assuming
z ∈ (Σx ∈ A)B(x), by Σ-elimination, we obtain E(z, (x, y) Ap(f, x, y)) ∈ C(z)
(discharging x ∈ A and y ∈ B(x)), and, by λ-abstraction on z, we obtain the
function

(λz) E(z, (x, y) Ap(f, x, y)) ∈ (Πz ∈ (Σx ∈ A)B(x))C(z)

with argument f . So we still have the assumption

f ∈ (Πx ∈ A) (Πy ∈ B(x))C(x, y),

which we discharge by λ-abstraction, obtaining

(λf) (λz) E(z, (x, y) Ap(f, x, y)) ∈
(Πx ∈ A) (Πy ∈ B(x))C(x, y)→ (Πz ∈ (Σx ∈ A)B(x))C(z).

In the logical reading, we have

(∀x ∈ A) (∀y ∈ B(x))C((x, y)) ⊃ (∀z ∈ (Σx ∈ A)B(x))C(z) true,

which reduces to the common

(∀x ∈ A) (B(x) ⊃ C) ⊃ ((∃x ∈ A)B(x) ⊃ C) true

when C does not depend on z, and to

(A ⊃ (B ⊃ C)) ⊃ (A&B) ⊃ C) true

when, in addition, B is independent of x.

26

The axiom of choice

We now show that, with the rules introduced so far, we can give a proof of the
axiom of choice, which in our symbolism reads:

(∀x ∈ A) (∃y ∈ B(x))C(x, y)
⊃ (∃f ∈ (Πx ∈ A)B(x)) (∀x ∈ A)C(x,Ap(f, x)) true.

The usual argument in intuitionistic mathematics, based on the intuition-
istic interpretation of the logical constants, is roughly as follows: to prove
(∀x) (∃y)C(x, y) ⊃ (∃f) (∀x)C(x, f(x)), assume that we have a proof of the an-
tecedent. This means that we have a method which, applied to an arbitrary x,
yields a proof of (∃y)C(x, y), that is, a pair consisting of an element y and a
proof of C(x, y). Let f be the method which, to an arbitrarily given x, assigns
the first component of this pair. Then C(x, f(x)) holds for an arbitrary x, and
hence so does the consequent. The same idea can be put into symbols, getting a
formal proof in intuitionistic type theory. Let A set, B(x) set (x ∈ A), C(x, y)
set (x ∈ A, y ∈ B(x)), and assume z ∈ (Πx ∈ A) (Σy ∈ B(x))C(x, y). If x is
an arbitrary element of A, i.e. x ∈ A, then, by Π-elimination, we obtain

Ap(z, x) ∈ (Σy ∈ B(x))C(x, y).

We now apply left projection to obtain

p(Ap(z, x)) ∈ B(x)

and right projection to obtain

q(Ap(z, x)) ∈ C(x, p(Ap(z, x))).

By λ-abstraction on x (or Π-introduction), discharging x ∈ A, we have

(λx) p(Ap(z, x)) ∈ (Πx ∈ A)B(x),

and, by Π-equality,

Ap((λx) p(Ap(z, x)), x) = p(Ap(z, x)) ∈ B(x).

By substitution, we get

C(x,Ap((λx) p(Ap(z, x)), x)) = C(x, p(Ap(z, x)))

and hence, by equality of sets,

q(Ap(z, x)) ∈ C(x,Ap((λx) p(Ap(z, x)), x))

where (λx) q(Ap(z, x)) is independent of x. By abstraction on x,

(λx) q(Ap(z, x)) ∈ (Πx ∈ A)C(x,Ap((λx) p(Ap(z, x)), x)).

27

We now use the rule of pairing (that is, Σ-introduction) to get

((λx) p(Ap(z, x)), (λx) q(Ap(z, x))) ∈
(Σf ∈ (Πx ∈ A)B(x)) (Πx ∈ A)C(x,Ap(f, x))

(note that, in the last step, the new variable f is introduced and substituted for
(λx) p(Ap(z, x)) in the right member). Finally by abstraction on z, we obtain

(λz) ((λx) p(Ap(z, x)), (λx) q(Ap(z, x))) ∈ (Πx ∈ A) (Σy ∈ B(x))C(x, y)
⊃ (Σf ∈ (Πx ∈ A)B(x)) (Πx ∈ A)C(x,Ap(f, x)).

In Zermelo-Fraenkel set theory, there is no proof of the axiom of choice, so
it must be taken as an axiom, for which, however, it seems to be difficult to
claim self-evidence. Here a detailed justification of the axiom of choice has been
provided in the form of the above proof. In many sorted languages, the axiom
of choice is expressible but there is no mechanism to prove it. For instance,
in Heyting arithmetic of finite type, it must be taken as an axiom. The need
for the axiom of choice is clear when developing intuitionistic mathematics at
depth, for instance, in finding the limit of a sequence of reals or a partial inverse
of a surjective function.

The notion of such that

In addition to disjoint union, existential quantification, cartesian product A×B
and conjunction A & B, the operation Σ has a fifth interpretation: the set of
all a ∈ A such that B(a) holds. Let A be a set and B(x) a proposition for
x ∈ A. We want to define the set of all a ∈ A such that B(a) holds (which
is usually written {x ∈ A : B(x)}). To have an element a ∈ A such that
B(a) holds means to have an element a ∈ A together with a proof of B(a),
namely an element b ∈ B(a). So the elements of the set of all elements of A
satisfying B(x) are pairs (a, b) with b ∈ B(a), i.e. elements of (Σx ∈ A)B(x).
Then the Σ-rules play the role of the comprehension axiom (or the separation
principle in ZF). The information given by b ∈ B(a) is called the witnessing
information by Feferman11. A typical application is the following.

Example (the reals as Cauchy sequences).

R ≡ (Σx ∈ N→ Q) Cauchy(x)

is the definition of the reals as the set of sequences of rational numbers satisfying
the Cauchy condition,

Cauchy(a) ≡ (∀e ∈ Q) (e > 0 ⊃ (∃m ∈ N) (∀n ∈ N) (|am+n − am| ≤ e)),
11S. Feferman, Constructive theories of functions and classes, Logic Colloquium 78, Edited

by M. boffa, D. van Dalen and K. McAloon, North-Holland, Amsterdam, 1979, pp. 159–224.

28

where a is the sequence a0, a1, . . . In this way, a real number is a sequence of
rational numbers together with a proof that it satisfies the Cauchy condition.
So, assuming c ∈ R, e ∈ Q and d ∈ (e > 0) (in other words, d is a proof of the
proposition e > 0), then, by means of the projections, we obtain p(c) ∈ N→ Q
and q(c) ∈ Cauchy(p(c)). Then

Ap(q(c), e) ∈ (e > 0 ⊃ (∃m ∈ N) (∀n ∈ N) (|am+n − am| ≤ e))

and
Ap(Ap(q(c), e), d) ∈ (∃m ∈ N) (∀n ∈ N) (|am+n − am| ≤ e).

Applying left projection, we obtain the m we need, i.e.

p(Ap(Ap(q(c), e), d)) ∈ N,

and we now obtain am by applying p(c) to it,

Ap(p(c), p(Ap(Ap(q(c), e), d))) ∈ Q.

Only by means of the proof q(c) do we know how far to go for the approximation
desired.

Disjoint union of two sets

We now give the rules for the sum (disjoint union or coproduct) of two sets.

+-formation

A set B set
A+B set

The canonical elements of A+B are formed using:

+-introduction

a ∈ A
i(a) ∈ A+B

b ∈ B
j(b) ∈ A+B

where i and j are two new primitive constants; their use is to give the information
that an element of A+B comes from A or B, and which of the two is the case.
It goes without saying that we also have the rules of +-introduction for equal
elements:

a = c ∈ A
i(a) = i(c) ∈ A+B

b = d ∈ B
j(b) = j(d) ∈ A+B

Since an arbitrary element c of A + B yields a canonical element of the form
i(a) or j(b), knowing c ∈ A + B means that we also can determine from which
of the two sets A and B the element c comes.

29

+-elimination

c ∈ A+B

(x ∈ A)
d(x) ∈ C(i(x))

(y ∈ B)
e(y) ∈ C(j(y))

D(c, (x) d(x), (y) e(y)) ∈ C(c)

where the premisses A set, B set and C(z) set (z ∈ A + B) are presupposed,
although not explicitly written out. We must now explain how to execute a
program of the new form D(c, (x) d(x), (y) e(y)). Assuume we know c ∈ A+B.
Then c will yield a canonical element i(a) with a ∈ A or j(b) with b ∈ B. In
the first case, substitute a for x in d(x), obtaining d(a), and execute it. By the
second premiss, d(a) ∈ C(i(a)), so d(a) yields a canonical element of C(i(a)).
Similarly, in the second case, e(y) instead of d(x) must be used to obtain e(b),
which produces a canonical element of C(j(b)). In either case, we obtain a
canonical element of C(c), since, if c has value i(a), then c = i(a) ∈ A+ B and
hence C(c) = C(i(a)), and, if c has value j(b), then c = j(b) ∈ A+B and hence
C(c) = C(j(b)). From this explanation of the meaning of D, the equality rules:

+-equality

a ∈ A
(x ∈ A)

d(x) ∈ C(i(x))
(y ∈ B)

e(y) ∈ C(j(y))
D(i(a), (x) d(x), (y) e(y)) = d(a) ∈ C(i(a))

b ∈ B
(x ∈ A)

d(x) ∈ C(i(x))
(y ∈ B)

e(y) ∈ C(j(y))
D(j(b), (x) d(x), (y) e(y)) = e(b) ∈ C(j(b))

become evident.
The disjunction of two propositions is now interpreted as the sum of two

sets. We therefore put:
A ∨B ≡ A+B.

From the formation and introduction rules for +, we then obtain the corre-
sponding rule for ∨:

∨-formation

A prop. B prop.

A ∨B prop.

∨-introduction

A true
A ∨B true

B true
A ∨B true

Note that, if a is a proof of A, then i(a) is a (canonical) proof of A ∨ B, and
similarly for B.

30

∨-elimination

A ∨B true

(A true)
C true

(B true)
C true

C true

follows from the rule of +-elimination by choosing a family C ≡ C(z) (z ∈ A+B)
which does not depend on z and suppressing proofs (constructions) both in the
premisses, including the assumptions, and the conclusion.

Example (introductory axioms of disjunction). Assume A set, B set and
let x ∈ A. Then i(x) ∈ A + B by +-introduction, and hence (λx) i(x) ∈ A →
A+B by λ-abstraction on x. If A and B are propositions, we have A ⊃ A ∨B
true. In the same way, (λy) j(y) ∈ B → A+B, and hence B ⊃ A ∨B true.

Example (eliminatory axiom of disjunction). Assume A set, B set, C(z)
set (z ∈ A + B) and let f ∈ (Πx ∈ A)C(i(x)), g ∈ (Πy ∈ B)C(j(y)) and
z ∈ A + B. Then, by Π-elimination, from x ∈ A, we have Ap(f, x) ∈ C(i(x)),
and, from y ∈ B, we have Ap(g, y) ∈ C(j(y)). So , using z ∈ A + B, we can
apply +-elimination to obtain D(z, (x) Ap(f, x), (y) Ap(g, y)) ∈ C(z), thereby
discharging x ∈ A and y ∈ B. By λ-abstraction on z, g, f in that order, we get

(λf) (λg) (λz) D(z, (x) Ap(f, x), (y) Ap(g, y))
∈ (Πx ∈ A)C(i(x))→ ((Πy ∈ B)C(j(y))→ (Πz ∈ A+B)C(z)).

This, when C(z) is thought of as a proposition, gives

(∀x ∈ A)C(i(x)) ⊃ ((∀y ∈ B)C(j(y)) ⊃ (∀z ∈ A+B)C(z)) true.

If, moreover, C(z) does not depend on z and A, B are propositions as well, we
have

(A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨B ⊃ C)) true.

Propositional equality

We now turn to the axioms for equality. It is a tradition (deriving its origin from
Principia Mathematica) to call equality in predicate logic identity. However,
the word identity is more properly used for definitional equality, ≡ or =def.,
discussed above. In fact, an equality statement, for instance, 22 = 2 + 2 in
arithmetic, does not mean that the two members are the same, but merely that
they have the same value. Equality in predicate logic, however, is also different
from our equality a = b ∈ A, because the former is a proposition, while the latter
is a judgement. A form of propositional equality is nevertheless indispensable:
we want an equality I(A, a, b), which asserts that a and b are equal elements of
the set A, but on which we can operate with the logical operations (recall that
e.g. the negation or quantification of a judgement does not make sense). In a
certain sense, I(A, a, b) is an internal form of =. We then have four kinds of
equality:

31

(1) ≡ or =def.,

(2) A = B,

(3) a = b ∈ A,

(4) I(A, a, b).

Equality between objects is expressed in a judgement and must be defined sep-
arately for each category, like the category sets, as in (2), or the category of
elements of a set, as in (3); (4) is a proposition, whereas (1) is a mere stipu-
lation, a relation between linguistic expressions. Note however that I(A, a, b)
true is a judgement, which will turn out to be equivalent to a = b ∈ A (which is
not to say that it has the same sense). (1) is intensional (sameness of meaning),
while (2), (3) and (4) are extensional (equality between objects). As for Frege,
elements a, b may have different meanings, or be different methods, but have the
same value. For instance, we certainly have 22 = 2 + 2 ∈ N, but not 22 ≡ 2 + 2.

I-formation

A set a ∈ A b ∈ A
I(A, a, b) set

We now have to explain how to form canonical elements of I(A, a, b). The
standard way to know that I(A, a, b) is true is to have a = b ∈ A. Thus the
introduction rule is simply: if a = b ∈ A, then there is a canonical proof r
of I(A, a, b). Here r does not depend on a, b or A; it does not matter what
canonical element I(A, a, b) has when a = b ∈ A, as long as it has one.

I-introduction

a = b ∈ A
r ∈ I(A, a, b)

We could now adopt elimination and equality rule for I in the same style as for
Π, Σ, +, namely introducing a new eliminatory operator. We would then derive
the following rules, which we here take instead as primitive:

I-elimination

c ∈ I(A, a, b)
a = b ∈ A

I-equality

c ∈ I(A, a, b)
c = r ∈ I(A, a, b)

Finally, note that I-formation is the only rule up to now which permits the
formation of families of sets. If only the operations Π, Σ, +, Nn, N, W were
allowed, we would only get constant sets.

32

Example (introductory axiom of identity). Assume A set and let x ∈ A.
Then x = x ∈ A, and, by I-introduction, r ∈ I(A, x, x). By abstraction on x,
(λx) r ∈ (∀x ∈ A) I(A, x, x). Therefore (λx) r is a canonical proof of the law of
identity on A.

(x ∈ A)
x = x ∈ A

r ∈ I(A, x, x)
(λx) r ∈ (∀x ∈ A) I(A, x, x)

Example (eliminatory axiom of identity). Given a set A and a property
B(x) prop. (x ∈ A) over A, we claim that the law of equality corresponding to
Leibniz’s principle of indiscernibility holds, namely that equal elements satisfy
the same properties,

(∀x ∈ A) (∀y ∈ A) (I(A, x, y) ⊃ (B(x) ⊃ B(y))) true.

To prove it, assume x ∈ A, y ∈ A and z ∈ I(A, x, y). Then x = y ∈ A and hence
B(x) = B(y) by substitution. So, assuming w ∈ B(x), by equality of sets, we
obtain w ∈ B(y). Now by abstraction on w, z, y, x in that order, we obtain a
proof of the claim:

(w ∈ B(x))

(z ∈ I(A, x, y))
x = y ∈ A

(x ∈ A)
B(x) set

B(x) = B(y)
w ∈ B(y)

(λw)w ∈ B(x) ⊃ B(y)
(λz) (λw)w ∈ I(A, x, y) ⊃ (B(x) ⊃ B(y))

(λx) (λy) (λz) (λw)w ∈ (∀x ∈ A) (∀y ∈ A) I(A, x, y) ⊃ (B(x) ⊃ B(y))

The same problem (of justifying Leibniz’s principle) was solved in Principia
by the use of impredicative second order quantification. There one defines

(a = b) ≡ (∀X) (X(a) ⊃ X(b))

from which Leibniz’s principle is obvious, since it is taken to define the mean-
ing of identity. In the present language, quantification over properties is not
possible, and hence the meaning of identity has to be defined in another way,
without invalidating Leibniz’s principle.

Example (proof of the converse of the projection laws). We can now
prove that the inference rule

c ∈ (Σx ∈ A)B(x)
c = (p(c), q(c)) ∈ (Σx ∈ A)B(x)

33

is derivable. It is an analogue of the second Π-equality rule, which could also be
derived, provided the Π-rules were formulated following the same pattern as the
other rules. Assume x ∈ A, y ∈ B(x). By the projection laws, p((x, y)) = x ∈ A
and q((x, y)) = y ∈ B(x). Then, by Σ-introduction (equal elements form equal
pairs),

(p((x, y)), q((x, y))) = (x, y) ∈ (Σx ∈ A)B(x).

By I-introduction,

r ∈ I((Σx ∈ A)B(x), (p((x, y)), q((x, y))), (x, y)).

Now take the family C(z) in the rule of Σ-elimination to be I((Σx ∈ A)B(x),
(p(z), q(z)), z). Then we obtain

E(c, (x, y) r) ∈ I((Σx ∈ A)B(x), (p(c), q(c)), c)

and hence, by I-elimination, (p(c), q(c)) = c ∈ (Σx ∈ A)B(x).

c ∈ (Σx ∈ A)B(x)

(x ∈ A) (y ∈ B(x))
p((x, y)) = x ∈ A

(x ∈ A) (y ∈ B(x))
q((x, y)) = y ∈ B(x)

(p((x, y)), q((x, y))) = (x, y) ∈ (Σx ∈ A)B(x)
r ∈ I((Σx ∈ A)B(x), (p((x, y)), q((x, y))), (x, y))

E(c, (x, y) r) ∈ I((Σx ∈ A)B(x), (p(c), q(c)), c)
(p(c), q(c)) = c ∈ (Σx ∈ A)B(x)

This example is typical. The I-rules are used systematically to show the unique-
ness of a function, whose existence is given by an elimination rule, and whose
properties are expressed by the associated equality rules.

Example (properties and indexed families of elements). There are two
ways of looking at subsets of a set B:

(1) a subset of B is a propositional function (property) C(y) (y ∈ B);

(2) a subset of B is an indexed family of elements b(x) ∈ B (x ∈ A).

Using the identity rules, we can prove the equivalence of these two concepts.
Given an indexed family as in (2), the corresponding property is

(∃x ∈ A) I(B, b(x), y) (y ∈ B),

and conversely, given a property as in (1), the corresponding indexed family is

p(x) ∈ B (x ∈ (Σy ∈ B)C(y)).

34

Finite sets

Note that, up to now, we have no operations to build up sets from nothing, but
only operations to obtain new sets from given ones (and from families of sets).
We now introduce finite sets, which are given outright; hence their set formation
rules will have no premisses. Actually, we have infinitely many rules, one group
of rules for each n = 0, 1, . . .

Nn-formation
Nn set

Nn-introduction

mn ∈ Nn (m = 0, 1, . . . , n− 1)

So we have the sets N0 with no elements, N1 with the single canonical element 01,
N2 with canonical elements 02, 12, etc.

Nn-elimination

c ∈ Nn cm ∈ C(mn) (m = 0, 1, . . . , n− 1)
Rn(c, c0, . . . , cn−1) ∈ C(c)

Here, as usual, the family of sets C(z) set (z ∈ Nn) may be interpreted as a
property over Nn. Assuming we know the premisses, Rn is explained as follows:
first execute c, whose result is mn for some m between 0 and n− 1. Select the
corresponding element cm of C(mn) and continue by executing it. The result
is a canonical element d ∈ C(c), since c has been seen to be equal to mn and
cm ∈ C(mn) is a premiss. Rn is recursion over the finite set Nn; it is a kind of
definition by cases. From the meaning of Rn, given by the above explanation,
we have the n rules (note that mn ∈ Nn by Nn-introduction):

Nn-equality

cm ∈ C(mn) (m = 0, 1, . . . , n− 1)
Rn(mn, c0, . . . , cn−1) = cm ∈ C(mn)

(one such rule for each choice of m = 0, 1, . . . , n − 1 in the conclusion). An
alternative approach would be to postulate the rule for n equal to 0 and 1 only,
define N2 ≡ N1 + N1, N3 ≡ N1 + N2 etc., and then derive all other rules.

Example (about N0). N0 has no introduction rule and hence no elements;
it is thus natural to put

⊥ ≡ ∅ ≡ N0.

The elimination rule becomes simply

35

N0-elimination

c ∈ N0

R0(c) ∈ C(c)

The explanation of the rule is that we understand that we shall never get an
element c ∈ N0, so that we shall never have to execute R0(c). Thus the set of
instructions for executing a program of the form R0(c) is vacuous. It is similar
to the programming statement abort introduced by Dijkstra12.

When C(z) does not depend on z, it is possible to suppress the proof (con-
struction) not only in the conclusion but also in the premiss. We then arrive at
the logical inference rule

⊥-elimination

⊥ true
C true

traditionally called ex falso quodlibet. This rule is often used in ordinary math-
ematics, but in the form

A ∨B true

(B true)
⊥ true

A true

which is easily seen to be equivalent to the form above.

Example (about N1). We define

> ≡ N1.

Then 01 is a (canonical) proof of >, since 01 ∈ N1 by N1-introduction. So > is
true. We now want to prove that 01 is in fact the only element of N1, that is,
that the rule

c ∈ N1

c = 01 ∈ N1

is derivable. In fact, from 01 ∈ N1, we get 01 = 01 ∈ N1, and hence r ∈
I(N1, 01, 01). Now apply N1-elimination with I(N1, z, 01) (z ∈ N1) for the fam-
ily of sets C(z) (z ∈ N1). Using the assumption c ∈ N1, we get R1(c, r) ∈
I(N1, c, 01), and hence c = 01 ∈ N1.

Conversely, by making the definition R1(c, c0) ≡ c0, the rule of N1-elimination
is derivable from the rule

c ∈ N1

c = 01 ∈ N1

and the rule of N1-equality trivializes. Thus the operation R1 can be dispensed
with.

12See note 2.

36

Example (about N2). We make the definition

Boolean ≡ N2.

Boolean is the type used in programming which consists of the two truth val-
ues true, false. So we could put true ≡ 02 and false ≡ 12. Then we can define
if c then c0 else c1 ≡ R2(c, c0, c1) because, if c is true, which means c yields 02,
then R2(c, c0, c1) has the same value as c0; otherwise c yields 12 and R2(c, c0, c1)
has the same value as c1.

As for N1 above, we can prove that any element of N2 is either 02 or 12, but
obviously only in the propositional form

c ∈ N2

I(N2, c, 02) ∨ I(N2, c, 12) true

Example (negation). If we put

∼A ≡ ¬A ≡ −A ≡ A→ N0

we can easily derive all the usual rules of negation.

Consistency

What can we say about the consistency of our system of rules? We can under-
stand consistency in two different ways:

(1) Metamathematical consistency. Then, to prove mathematically the con-
sistency of a theory T , we consider another theory T ′, which contains codes for
propositions of the original theory T and a predicate Der such that Der(‘A’)
expresses the fact that the proposition A with code ‘A’ is derivable in T . Then
we define Cons ≡ ¬Der(‘⊥’) ≡ Der(‘⊥’) ⊃ ⊥ and (try to) prove that Cons is
true in T ′. This method is the only one applicable when, like Hilbert, we give
up the hope of a semantical justification of the axioms and rules of inference;
it could be followed, with success, also for intuitionistic type theory, but, since
we have been as meticulous about its semantics as about its syntax, we have
no need of it. Instead, we convince ourselves directly of its consistency in the
following simple minded way.

(2) Simple minded consistency. This means simply that ⊥ cannot be proved,
or that we shall never have the right to judge ⊥ true (which unlike the proposi-
tion Cons above, is not a mathematical proposition). To convince ourselves of
this, we argue as follows: if c ∈ ⊥ would hold for some element (construction) c,
then c would yield a canonical element d ∈ ⊥; but this is impossible since ⊥ has
no canonical element by definition (recall that we defined ⊥ ≡ N0). Thus ⊥ true
cannot be proved by means of a system of correct rules. So, in case we hit upon
a proof of ⊥ true, we would know that there must be an error somewhere in
the proof; and, if a formal proof of ⊥ true is found, then at least one of the
formal rules used in it is not correct. Reflecting on the meaning of each of the

37

rules of intuitionistic type theory, we eventually convince ourselves that they
are correct; therefore we will never find a proof of ⊥ true using them.

Finally, note that, in any case, we must rely on the simple minded con-
sistency of at least the theory T ′ in which Cons is proved in order to obtain
the simple minded concsistency (which is the form of consistency we really care
about) from the metamathematical consistency of the original theory T . In fact,
once c ∈ Cons for some c is proved, one must argue as follows: if T were not
consistent, we would have a proof in T of ⊥ true, or a ∈ N0 for some a. By
coding, this would give ‘a’ ∈ Der(‘⊥’); then we would obtain Ap(c, ‘a’) ∈ ⊥,
i.e. that ⊥ true is derivable in T ′. At this point, to conclude that ⊥ true is not
provable in T , we must be convinced that ⊥ true is not provable in T ′.

Natural numbers

So far, we have no means of constructing an infinite set. We now introduce the
simplest one, namely the set of natural numbers, by the rules:

N-formation
N set

N-introduction
0 ∈ N a ∈ N

a′ ∈ N
Note that, as is the case with any other introduction rule, a′ ∈ N is always
canonical, whatever element a is. Thus a ∈ N means that a has value either
0 or a′1, where a1 has value either 0 or a′2, etc., until, eventually, we reach an
element an which has value 0.

N-elimination

c ∈ N d ∈ C(0)
(x ∈ N, y ∈ C(x))
e(x, y) ∈ C(x′)

R(c, d, (x, y) e(x, y)) ∈ C(c)

where C(z) set (z ∈ N). R(c, d, (x, y) e(x, y)) is explained as follows: first ex-
ecute c, getting a canonical element of N, which is either 0 or a′ for some
a ∈ N. In the first case, continue by executing d, which yields a canonical
element f ∈ C(0); but, since c = 0 ∈ N in this case, f is also a canon-
ical element of C(c) = C(0). In the second case, substitute a for x and
R(a, d, (x, y) e(x, y)) (namely, the preceding value) for y in e(x, y) so as to get
e(a,R(a, d, (x, y) e(x, y))). Executing it, we get a canonical f which, by the right
premiss, is in C(a′) (and hence in C(c) since c = a′ ∈ N) under the assump-
tion R(a, d, (x, y) e(x, y)) ∈ C(a). If a has value 0, then R(a, d, (x, y) e(x, y))
is in C(a) by the first case. Otherwise, continue as in the second case, until
we eventually reach the value 0. This explanation of the elimination rule also
makes the equality rules

38

N-equality

d ∈ C(0)
(x ∈ A, y ∈ C(x))
e(x, y) ∈ C(x′)

R(0, d, (x, y) e(x, y)) = d ∈ C(0)

a ∈ N d ∈ C(0)
(x ∈ N, y ∈ C(x))
e(x, y) ∈ C(x′)

R(a′, d, (x, y) e(x, y)) = e(a,R(a, d, (x, y) e(x, y))) ∈ C(a′)

evident. Thinking of C(z) (z ∈ N) as a propositional function (property) and
suppressing the proofs (constructions) in the second and third premisses and in
the conclusion of the rule of N-elimination, we arrive at

Mathematical induction

c ∈ N C(0) true

(x ∈ N, C(x) true)
C(x′) true

C(c) true

If we explicitly write out the proof (construction) of C(c), we see that it is
obtained by recursion. So recursion and induction turn out to be the same
concept when propositions are interpreted as sets.

Example (the predecessor function). We put

pd(a) ≡ R(a, 0, (x, y)x).

This definition is justified by computing R(a, 0, (x, y)x): if a yields 0, then
pd(a) also yields 0, and, if a yields b′, then pd(a) yields the same value as
R(b′, 0, (x, y)x), which, in turn, yields the same value as b. So we have pd(0) = 0
and pd(a′) = a, which is the usual definition, but here these equalities are not
definitional. More precisely, we have

a ∈ N
pd(a) ∈ N

which is an instance of N-elimination, and{
pd(0) = 0 ∈ N,
pd(a′) = a ∈ N,

which we obtain by N-equality.
Using pd, we can derive the third Peano axiom

a′ = b′ ∈ N
a = b ∈ N

39

Indeed, from a′ = b′ ∈ N, we obtain pd(a′) = pd(b′) ∈ N which, together with
pd(a′) = a ∈ N and pd(b′) = b ∈ N, yields a = b ∈ N by symmetry and
transitivity. We can also obtain it in the usual form (∀x, y) (x′ = y′ ⊃ x = y),
that is, in the present symbolism,

(∀x ∈ N) (∀y ∈ N) (I(N, x′, y′) ⊃ I(N, x, y)) true.

In fact, assume x ∈ N, y ∈ N and z ∈ I(N, x′, y′). By I-elimination, x′ = y′ ∈ N;
hence x = y ∈ N, from which r ∈ I(N, x, y) by I-introduction. Then, by
λ-abstraction, we obtain that (λx) (λy) (λz) r is a proof (construction) of the
claim.

Example (addition). We define

a+ b ≡ R(b, a, (x, y) y′).

The meaning of a+ b is to perform b times the successor operation on a. Then
one easily derives the rules:

a ∈ N b ∈ N
a+ b ∈ N

a ∈ N
a+ 0 = a ∈ N

a ∈ N b ∈ N
a+ b′ = (a+ b)′ ∈ N

from which we can also derive the corresponding axioms of first order arith-
metic, like in the preceding example. Note again that the equality here is not
definitional.

Example (multiplication). We define

a · b ≡ R(b, 0, (x, y) (y + a)).

Usual properties of the product a · b can then easily be derived.

Example (the bounded µ-operator). We want to solve the problem: given
a boolean function f on natural numbers, i.e. f ∈ N → N2, find the least
argument, under the bound a ∈ N, for which the value of f is true. The
solution will be a function µ(x, f) ∈ N (x ∈ N, f ∈ N→ N2) satisfying:

µ(a, f) =

{
the least b < a such that Ap(f, b) = 02 ∈ N, if such b exists,
a, otherwise.

Such a function will be obtained by solving the recursion equations:{
µ(0, f) = 0 ∈ N,
µ(a′, f) = R2(Ap(f, 0), 0, µ(a,

←−
f)′) ∈ N,

40

where
←−
f ≡ (λx) Ap(f, x′) is f shifted one step to the left, i.e. Ap(

←−
f , x) =

Ap(f, x′) ∈ N2 (x ∈ N). In fact, in case the bound is zero, µ(0, f) = 0 ∈ N, irre-
spective of what function f is. When the bound has successor form, µ(a′, f) =
µ(a,
←−
f)′ ∈ N, provided that f(0) = false ≡ 12 ∈ N2; otherwise, µ(a′, f) = 0 ∈ N.

Therefore to compute µ(a, f), we can shift f until the bound is 0, but checking
each time if the value at 0 is true ≡ 02 or false ≡ 12. Even if it admits of a prim-
itive recursive solution, the problem is most easily solved through higher types,
as we shall now see in detail. We want to find a function µ(x) ∈ (N→ N2)→ N
(x ∈ N) such that{

µ(0) = (λf) 0 ∈ (N→ N2)→ N,
µ(a′) = (λf) R2(Ap(f, 0), 0,Ap(µ(a),

←−
f)′) ∈ (N→ N2)→ N,

so that we can define the function u(a, f) we are looking for by putting µ(a, f) ≡
Ap(µ(a), f). The requirements on µ(a) may be satisfied through an ordinary
primitive recursion, but on a higher type; this task is fulfilled by the rule of
N-elimination. We obtain

µ(a) ≡ R(a, (λf) 0, (x, y) (λf) R2(Ap(f, 0), 0,Ap(y,
←−
f)′)) ∈ (N→ N2)→ N

under the premisses a ∈ N and f ∈ N→ N2, and hence

µ(x, f) ∈ N (x ∈ N, f ∈ N→ N2).

Written out in tree form the above proof of µ(a, f) ∈ N looks as follows:

a ∈ N
0 ∈ N

(λf) 0 ∈ (N→ N2)→ N

(f ∈ N→ N2) 0 ∈ N

Ap(f, 0) ∈ N2 0 ∈ N

(y ∈ (N→ N2)→ N)

(f ∈ N→ N2)
←−
f ∈ N→ N2

Ap(y,
←−
f) ∈ N

Ap(y,
←−
f)′ ∈ N

R2(Ap(f, 0), 0,Ap(y,
←−
f)′) ∈ N

(λf) R2(Ap(f, 0), 0,Ap(y,
←−
f)′) ∈ (N→ N2)→ N

µ(a) ≡ R(a, (λf) 0, (x, y) (λf) R2(Ap(f, 0), 0,Ap(y,
←−
f)′)) ∈ (N→ N2)→ N f ∈ N→ N2

µ(a, f) ≡ Ap(µ(a), f) ∈ N

Observe how the evaluation of µ(a, f) ≡ Ap(µ(a), f) ≡ Ap(R(a, (λf) 0,
(x, y) (λf) R2(Ap(f, 0), 0,Ap(y,

←−
f)′)), f) proceeds. First, a is evaluated. If the

value of a is 0, the value of µ(a, f) equals the value of Ap((λf) 0, f), which is 0.
If, on the other hand, the value of a is b′, the value of µ(a, f) equals the value
of

Ap((λf) R2(Ap(f, 0), 0, µ(b,
←−
f)′), f),

which, in turn, equals the value of

R2(Ap(f, 0), 0, µ(b,
←−
f)′).

41

Next, Ap(f, 0) is evaluated. If the value of Ap(f, 0) is true ≡ 02, then the value
of µ(a, f) is 0. If, on the other hand, the value of Ap(f, 0) is false ≡ 12, then
the value of µ(a, f) equals the value of µ(b,

←−
f)′.

Lists

We can follow the same pattern used to define natural numbers to introduce
other inductively defined sets. We see here the example of lists.

List-formation

A set
List(A) set

where the intuitive explanation is: List(A) is the set of lists of elements of the
set A (finite sequences of elements of A).

List-introduction

nil ∈ List(A)
a ∈ A b ∈ List(A)

(a.b) ∈ List(A)

where we may also use the notation () ≡ nil.

List-elimination

c ∈ List(A) d ∈ C(nil)
(x ∈ A, y ∈ List(A), z ∈ C(y))

e(x, y, z) ∈ C((x.y))
listrec(c, d, (x, y, z) e(x, y, z)) ∈ C(c)

where C(z) (z ∈ List(A)) is a family of sets. The instructions to execute listrec
are: first execute c, which yields either nil, in which case continue by executing d
and obtain f ∈ C(nil) = C(c), or (a.b) with a ∈ A and b ∈ List(A); in this case,
execute e(a, b, listrec(b, d, (x, y, z) e(x, y, z))) which yields a canonical element
f ∈ C((a.b)) = C(c). If we put g(c) ≡ listrec(c, d, (x, y, z) e(x, y, z)), then f is
the value of e(a, b, g(b)).

List-equality

d ∈ C(nil)
(x ∈ A, y ∈ List(A), z ∈ C(y))

e(x, y, z) ∈ C((x.y))
listrec(nil, d, (x, y, z) e(x, y, z)) = d ∈ C(nil)

a ∈ A b ∈ List(A) d ∈ C(nil)
(x ∈ A, y ∈ List(A), z ∈ C(y))

e(x, y, z) ∈ C((x.y))

listrec((a.b), d, (x, y, z) e(x, y, z))
= e(a, b, listrec(b, d, (x, y, z) e(x, y, z))) ∈ C((a.b))

Similar rules could be given for finite trees and other inductively defined con-
cepts.

42

Wellorderings

The concept of wellordering and the principle of transfinite induction were first
introduced by Cantor. Once they had been formulated in ZF, however, they lost
their original computational content. We can construct ordinals intuitionisti-
cally as wellfounded trees, which means that they are no longer totally ordered.

W-formation

A set

(x ∈ A)
B(x) set

(Wx ∈ A)B(x) set

What does it mean for c to be an element of (Wx ∈ A)B(x)? It means that,
when calculated, c yields a value of the form sup(a, b) for some a and b, where
a ∈ A and b is a function such that, for any choice of an element v ∈ B(a),
b applied to v yields a value sup(a1, b1), where a1 ∈ A and b1 is a function such
that, for any choice of v1 in B(a1), b1 applied to v1 has a value sup(a2, b2), etc.,
until in any case (i.e. however the successive choices are made) we eventually
reach a bottom element of the form sup(an, bn), where B(an) is empty, so that
no choice of an element in B(an) is possible. The following picture, in which we
loosely write b(v) for Ap(b, v), can help (look at it from bottom to top):

By the preceding explanation, the following rule for introducing canonical ele-
ments is justified:

W-introduction

a ∈ A b ∈ B(a)→ (Wx ∈ A)B(x)
sup(a, b) ∈ (Wx ∈ A)B(x)

Think of sup(a, b) as the supremum (least ordinal greater than all) of the ordi-
nals b(v), where v ranges over B(a).

We might also have a bottom clause, 0 ∈ (Wx ∈ A)B(x) for instance, but
we obtain 0 by taking one set in B(x) set (x ∈ A) to be the empty set: if

43

a0 ∈ A and B(a0) = N0, then R0(y) ∈ (Wx ∈ A)B(x) (y ∈ B(a0)) so that
sup(a0, (λy) R0(y)) ∈ (Wx ∈ A)B(x) is a bottom element.

From the explanation of what an element of (Wx ∈ A)B(x) is, we see
the correctness of the elimination rule, which is at the same time transfinite
induction and transfinite recursion. The appropriate principle of transfinite in-
duction is: if the property C(w) (w ∈ (Wx ∈ A)B(x)) is inductive (i.e. if
it holds for all predecessors Ap(b, v) ∈ (Wx ∈ A)B(x) (v ∈ B(a)) of an ele-
ment sup(a, b), then it holds for sup(a, b) itself), then C(c) holds for an arbitrary
element c ∈ (Wx ∈ A)B(x). A bit more formally,

c ∈ (Wx ∈ A)B(x)
(∀x ∈ A) (∀y ∈ B(x)→ (Wx ∈ A)B(x))

((∀v ∈ B(x))C(Ap(y, v)) ⊃ C(sup(x, y))) true

C(c) true

Now we resolve this, obtaining the W-elimination rule. One of the premisses is
that C(sup(x, y)) is true, provided that x ∈ A, y ∈ B(x)→ (Wx ∈ A)B(x) and
(∀v ∈ B(x))C(Ap(y, v)) is true. Letting d(x, y, z) be the function which gives
the proof of C(sup(x, y)) in terms of x ∈ A, y ∈ B(x) → (Wx ∈ A)B(x) and
the proof z of (∀v ∈ B(x))C(Ap(y, v)), we arrive at the rule

W-elimination

c ∈ (Wx ∈ A)B(x)
(x ∈ A, y ∈ B(x)→ (Wx ∈ A)B(x), z ∈ (Πv ∈ B(x))C(Ap(y, v)))

d(x, y, z) ∈ C(sup(x, y))
T(c, (x, y, z) d(x, y, z)) ∈ C(c)

where T(c, (x, y, z) d(x, y, z)) is executed as follows. First execute c, which
yields sup(a, b), where a ∈ A and b ∈ B(a) → (Wx ∈ A)B(x). Select the
components a and b and substitute them for x and y in d, obtaining d(a, b, z).
We must now substitute for z the whole sequence of previous function val-
ues. This sequence is (λv) T(Ap(b, v), (x, y, z) d(x, y, z)), because Ap(b, v) ∈
(Wx ∈ A)B(x) (v ∈ B(a)) is the function which enumerates the subtrees (pre-
decessors) of sup(a, b). Then d(a, b, (λv) T(Ap(b, v), (x, y, z) d(x, y, z))) yields a
canonical element e ∈ C(c) as value under the assumption that T(Ap(b, v),
(x, y, z) d(x, y, z)) ∈ C(Ap(b, v)) (v ∈ B(a)). If we write f(c) ≡ T(c, (x, y, z) d(x, y, z)),
then, when c yields sup(a, b), f(c) yields the same value as d(a, b, (λv) f(Ap(b, v))).
This explanation also shows that the rule

W-equality

a ∈ A b ∈ B(a)→ (Wx ∈ A)B(x)
(x ∈ A, y ∈ B(x)→ (Wx ∈ A)B(x), z ∈ (Πv ∈ B(x))C(Ap(y, v)))

d(x, y, z) ∈ C(sup(x, y))

T(sup(a, b), (x, y, z) d(x, y, z))
= d(a, b, (λv) T(Ap(b, v), (x, y, z) d(x, y, z))) ∈ C(sup(a, b))

is correct.

44

Example (the first number class). Having access to the W-operation and
a family of sets B(x) (x ∈ N2) such that B(02) = N0 and B(12) = N1, we
may define the first number class as (Wx ∈ N2)B(x) instead of taking it as
primitive.

Example (the second number class). We give here the rules for a simple
set of ordinals, namely the set O of all ordinals of the second number class, and
show how they are obtained as instances of the general rules for wellorderings.

O-formation
O set

Cantor generated the second number class from the initial ordinal 0 by applying
the following two principles:

(1) given α ∈ O, form the successor α′ ∈ O;

(2) given a sequence of ordinals α0, α1, α2, . . . in O, form the least ordinal
in O greater than each element of the sequence.

We can give pictures:

(1) if

is in O, then we can build the successor α′:

(2) if

is a sequence of ordinals in O, then we can build the supremum supn(αn):

So O will be inductively defined by the three rules:

O-introduction

0 ∈ O a ∈ O
a′ ∈ O

b ∈ N→ O
sup(b) ∈ O

Transfinite induction over O is evident, and it is given by

45

c ∈ O C(0) true

(x ∈ O, C(x) true)
C(x′) true

(z ∈ N→ O, (∀n ∈ N)C(Ap(z, n)) true)
C(sup(z)) true

C(c) true

where C(z) (z ∈ O) is a property over O. Writing it with proofs, we obtain

O-elimination

c ∈ O d ∈ C(0)
(x ∈ O, y ∈ C(x))
e(x, y) ∈ C(x′)

(z ∈ N→ O, w ∈ (Πn ∈ N)C(Ap(z, n)))
f(z, w) ∈ C(sup(z))

T(c, d, (x, y) e(x, y), (z, w) f(z, w)) ∈ C(c)

where the transfinite recursion operator T is executed as follows. First, exe-
cute c. We distinguish the three possible cases:

if we get 0 ∈ O, the value of T(c, d, (x, y) e(x, y), (z, w) f(z, w)) is the value
of d ∈ C(0);

if we get a′, then the value is the value of e(a,T(a, d, (x, y) e(x, y), (z, w) f(z, w)));

if we get sup(b), we continue by executing f(b, (λx) T(Ap(b, x), d, (x, y) e(x, y),
(z, w) f(z, w))).

In any case, we obtain a canonical element of C(c) as result.
It is now immediate to check that we can obtain all O-rules (including O-

equality, which has not been spelled out) as instances of the W-rules if we put

O ≡ (Wx ∈ N3)B(x),

where B(x) (x ∈ N3) is a family of sets such that B(03) = N0, B(13) = N1 and
B(23) = N. Such a family can be constructed by means of the universe rules.

Example (initial elements of wellorderings). We want to show that, if at
least one index set is empty, then the wellordering (Wx ∈ A)B(x) is nonempty.
Recall that we want to do it intuitionistically, and recall that A true is equivalent
to A nonempty, so that ¬A true is equivalent to A empty. So our claim is:

(∃x ∈ A)¬B(x)→ (Wx ∈ A)B(x) true.

To see this, assume x ∈ A, y ∈ ¬B(x) and v ∈ B(x). Then Ap(y, v) ∈ N0 ≡ ⊥
and hence R0(Ap(y, v)) ∈ (Wx ∈ A)B(x), applying the rule of N0-elimination.
We now abstract on v to get (λv) R0(Ap(y, v)) ∈ B(x) → (Wx ∈ A)B(x)
and, by W-introduction, sup(x, (λv) R0(Ap(y, v))) ∈ (Wx ∈ A)B(x). Assuming
z ∈ (Σx ∈ A)¬B(x), by Σ-elimination, we have

E(z, (x, y) sup(x, (λv) R0(Ap(y, v)))) ∈ (Wx ∈ A)B(x),

46

from which by λ-abstraction on z,

(λz) E(z, (x, y) sup(x, (λv) R0(Ap(y, v)))) ∈ (Σx ∈ A)¬B(x)→ (Wx ∈ A)B(x).

We now want to show a converse. However, note that we cannot have
(Wx ∈ A)B(x) → (∃x ∈ A)¬B(x) true, because of the intuitionistic mean-
ing of the existential quantifier. But we do have:

(Wx ∈ A)B(x)→ ¬(∀x ∈ A)B(x) true.

Assume x ∈ A, y ∈ B(x) → (Wx ∈ A)B(x) and z ∈ B(x) → N0. Note that
B(x)→ N0 ≡ (Πv ∈ B(x))C(Ap(y, v)) for C(w) ≡ N0, so that we can apply the
rule of W-elimination. Assuming f ∈ (Πx ∈ A)B(x), we have Ap(f, x) ∈ B(x),
and hence also Ap(z,Ap(f, x)) ∈ N0. Ap(z,Ap(f, x)) takes the role of d(x, y, z)
in the rule of W-elimination. So, if we assume w ∈ (Wx ∈ A)B(x), we obtain
T(w, (x, y, z) Ap(z,Ap(f, x))) ∈ N0. Abstracting on f , we have

(λf) T(w, (x, y, z) Ap(z,Ap(f, x))) ∈ ¬(∀x ∈ A)B(x),

and, abstracting on w, we have

(λw) (λf) T(w, (x, y, z) Ap(z,Ap(f, x))) ∈ (Wx ∈ A)B(x)→ ¬(∀x ∈ A)B(x).

Universes

So far, we only have a structure of finite types, because we can only iterate the
given set forming operations starting from I(A, a, b), N0, N1, . . . and N a finite
number of times. To strengthen the language, we can add transfinite types,
which in our language are obtained by introducing universes. Recall that there
can be no set of all sets, because we are not able to exhibit once and for all all
possible set forming operations. (The set of all sets would have to be defined by
prescribing how to form its canonical elements, i.e. sets. But this is impossible,
since we can always perfectly well describe new sets, for instance, the set of all
sets itself.) However, we need sets of sets, for instance, in category theory. The
idea is to define a universe as the least set closed under certain specified set
forming operations. The operations we have been using so far are:

A set

(x ∈ A)
B(x) set

(Πx ∈ A)B(x) set

A set

(x ∈ A)
B(x) set

(Σx ∈ A)B(x) set

A set B set

A+B set

A set b, c ∈ A
I(A, b, c) set

N0 set N1 set . . . N set
A set

(x ∈ A)
B(x) set

(Wx ∈ A)B(x) set

There are two possible ways of building a universe, i.e. to obtain closure under
possibly transfinite iterations of such operations.

47

Formulation à la Russell. Consider Π, Σ, . . . both as set forming operations
and as operations to form canonical elements of the set U , the universe. This
is like in ramified type theory.

Formulation à la Tarski. So called because of the similarity between the
family T (x) (x ∈ U) below and Tarski’s truth definition. We use new symbols,
mirroring (reflecting) Π, Σ, . . . , to build the canonical elements of U . Then U
consists of indices of sets (like in recursion theory). So we will have the rules:

U-formation
U set

a ∈ U
T (a) set

U and T (x) (x ∈ U) are defined by a simultaneous transfinite induction, which,
as usual, can be read off the following introduction rules:

U-introduction

a ∈ U
(x ∈ T (a))
b(x) ∈ U

π(a, (x) b(x)) ∈ U
a ∈ U

(x ∈ T (a))
b(x) ∈ U

T (π(a, (x) b(x))) = (Πx ∈ T (a))T (b(x))

a ∈ U
(x ∈ T (a))
b(x) ∈ U

σ(a, (x) b(x)) ∈ U
a ∈ U

(x ∈ T (a))
b(x) ∈ U

T (σ(a, (x) b(x))) = (Σx ∈ T (a))T (b(x))

a ∈ U b ∈ U
a+ b ∈ U

a ∈ U b ∈ U
T (a+ b) = T (a) + T (b)

a ∈ U b ∈ T (a) c ∈ T (a)
i(a, b, c) ∈ U

a ∈ U b ∈ T (a) c ∈ T (a)
T (i(a, b, c)) = I(T (a), b, c)

n0 ∈ U n1 ∈ U . . . T (n0) = N0 T (n1) = N1 . . .

n ∈ U T (n) = N

a ∈ U
(x ∈ T (a))
b(x) ∈ U

w(a, (x) b(x)) ∈ U
a ∈ U

(x ∈ T (a))
b(x) ∈ U

T (w(a, (x) b(x))) = (Wx ∈ T (a))T (b(x))

We could at this point iterate the process, obtaining a second universe U ′ with
the two new introduction rules:

u ∈ U ′ T ′(u) = U

a ∈ U
t(a) ∈ U ′

a ∈ U
T ′(t(a)) = T (a)

then a third universe U ′′, and so on.

48

In the formulation à la Russell, T disappears and we only use capital letters.
So the above rules are turned into:

U-formation
U set

A ∈ U
A set

U-introduction

A ∈ U
(x ∈ A)
B(x) ∈ U

(Πx ∈ A)B(x) ∈ U
A ∈ U

(x ∈ A)
B(x) ∈ U

(Σx ∈ A)B(x) ∈ U

A ∈ U B ∈ U
A+B ∈ U

A ∈ U b, c ∈ A
I(A, b, c) ∈ U

N0 ∈ U N1 ∈ U . . . N ∈ U

A ∈ U
(x ∈ A)
B(x) ∈ U

(Wx ∈ A)B(x) ∈ U

However, U itself is not an element of U . In fact, the axiom U ∈ U leads to a
contradiction (Girard’s paradox13). We say that a set A is small, or a U -set, if
it has a code a ∈ U , that is, if there is an element a ∈ U such that T (a) = A.
More generally, a family A(x1, . . . , xn) (x1 ∈ A1, . . . , xn ∈ An(x1, . . . , xn−1))
is said to be small provided A(x1, . . . , xn) = T (a(x1, . . . , xn)) (x1 ∈ A1, . . . ,
xn ∈ An(x1, . . . , xn−1)). So the category of small sets is closed under the
operations Σ, Π, etc. U is a perfectly good set, but it is not small. Using U , we
can form transfinite types (using a recursion with value in U , for instance).

The set V ≡ (Wx ∈ U)T (x) (or, in the formulation à la Russell, simply
(WX ∈ U)X) has been used by Aczel14 to give meaning to a constructive
version of Zermelo-Fraenkel set theory via intuitionistic type theory.

Example (fourth Peano axiom). We now want to prove the fourth Peano
axiom, which is the only one not trivially derivable from our rules. So the claim
is:

(∀x ∈ N)¬I(N, 0, x′) true.

We use U -rules in the proof; it is probably not possible to prove it otherwise.
From N set, 0 ∈ N, x ∈ N we have x′ ∈ N and I(N, 0, x′) set. Now assume y ∈
I(N, 0, x′). Then, by I-elimination, 0 = x′ ∈ N. By U -introduction, n0 ∈ U and

13J. Y. Girard, Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur, Thèse, Université Paris VII, 1972.

14P. Aczel, The type theoretic interpretation of constructive set theory, Logic Collo-
quium 77, Edited by A. Macintyre, L. Pacholski and J. Paris, North-Holland, Amsterdam,
1978, pp. 55–66.

49

n1 ∈ U . Then we define f(a) ≡ R(a, n0, (x, y)n1), so that f(0) = n0 ∈ U and
f(a′) = n1 ∈ U provided that a ∈ N. From 0 = x′ ∈ N, we get, by the equality
part of the N-elimination rule, R(0, n0, (x, y)n1) = R(x′, n0, (x, y)n1) ∈ U . But
R(0, n0, (x, y)n1) = n0 ∈ U and R(0, n0, (x, y)n1) = n1 ∈ U by the rule of
N-equality. So, by symmetry and transitivity, n0 = n1 ∈ U . By the (implicitly
given) equality part of the U -formation rule, T (n0) = T (n1). Hence, from
T (n0) = N0 and T (n1) = N1, N0 = N1. Since 01 ∈ N1, we also have 01 ∈ N0.
So (λy) 01 ∈ I(N, 0, x′)→ N0 and (λx) (λy) 01 ∈ (∀x ∈ N)¬I(N, 0, x′).

We remark that, while it is obvious (by reflecting on its meaning) that
0 = a′ ∈ N is not provable, a proof of ¬I(N, 0, a′) true seems to involve treating
sets as elements in order to define a propositional function which is ⊥ on 0 and
> on a′.

50

	Introductory remarks
	Propositions and judgements
	Explanations of the forms of judgement
	Propositions
	Rules of equality
	Hypothetical judgements and substitution rules
	Judgements with more than one assumption and contexts
	Sets and categories
	General remarks on the rules
	Cartesian product of a family of sets
	Definitional equality
	Applications of the cartesian product
	Disjoint union of a family of sets
	Applications of the disjoint union
	The axiom of choice
	The notion of such that
	Disjoint union of two sets
	Propositional equality
	Finite sets
	Consistency
	Natural numbers
	Lists
	Wellorderings
	Universes

