& T oW Peter wvm&a,m\w

Per Ks\«..T.Slvlorm.

CONSTRUCTIVE MATHEMATICS AND COMPUTER PROGRAMMING

Per Martin-Lof

University of Stockholm, Stockholm, Sweden

Paper read at the 6-th International Congress for Logic, Method-

ology and Philosophy of Science, Hannover, 22 — 29 August 1979.

During the period of a bit more than thirty years that has
elapsed since the first electronic computers were built, program-
ming languages have developed from various machine codes and
assembly languages, now referred to as low level languages, to
high level languages, like FORTRAN, ALGOL 60 and 68, LISP and
PASCAL., The virtue of a machine code is that a program written
in it can be directly read and executed by the machine, Its weak-
ness is that the structure of the code reflects the structure of
the machine 80 closely as to make it unusable for the instruction
of any other machine and, what is more serious, very difficult
to understand for a human reader, and therefore error prone.

With a high level language, it is the other way round. Its weak-
ness is that a program written in it has to be compiled, that is,
translated into the code of a particular machine, before it can
be executed by it. But one is amply compensated for this by hav-
ing a language in which the thought of the programmer can be
expressed without too much distortion and understood by someone
who knows next to nothing about the structure of the hardware,
but does know some English and mathematics. The distinetion
between low and high level programming langunages is of course
relative to available hardware. It may well be possible to turn
what 1s now regarded as a high level programming language into
machine code by the invention of new hardware.

Parallel to the development from low to high level program-
ming languages, there has been a change in one’s understanding of
the programming activity itself. It used to be looked Aamisv.:ﬁon
as the rather messy job of instructing this or that physically

existing machine, hy cunning tricks, to perform computational

tasks widely surpassing our own physical powers, something that
might appeal to people with a liking for crossword puzzles or
chess problems. But it has grown into the discipline of design-
ing programs for various (numerical as well &s nonnumerical)
computational tasks, programs that have to be written in a for-
mally precise notation so as to admit of automatic execution.
Whether or not machines have been built or compilers have been
written by means of which they can be physically implemented is
of no importance as long as questions of efficiency are ignored,
What matters is merely that it has been laid down precisely how
the programs are to be executed or, what amounts to the same,
that it has been specified how & machine for the execution of the

pregrams would have to function. This change of programming,

which Dijkstra (A Discipline of Programming, Prentice-Hall,
Englewood Cliffs, N. J., 1976, p. 201) has suggested to fix ter-
minologically by switching from computer science to computing
science, would not have been possible without the creation of

high level lansuages of a sufficiently clean logical structurs,

e

It has made programming an activity akin in rigour and beauty

to that of provinz mathematical theorems. (This analogy is
actually exact in a sense which will become clear below.)
While maturing into a science, proxramming has developed

a conceptual machinery of its own in which, besides the notion

of program itself, the notions of data structure and data type

" - -
occupy central positions. Even in FORTRAN, there were two types
of variables, namely integer and floating point variables,

the ﬁ%vw of a variable being determined by its initial letter.

In ALGOL 60, there was added to the two types integer and real

the third type Boolean, and the association of the types with the
variables was made both more practical and logical by means of
type declarations. However, it was only through Hoare’s Notes on
Data Strueturing (0.-J. Dahl, E. W. Dijkstra and C, A. R. Hoare,
Structured Programming, Academic Press, London, 1972, pp. 83-174)
that the notion of type was introduced into programming in a sys-
tematic way. In addition to the three types of ALGOL 60, there now
appeared types defined by enumeration, Cartesian products, dis-
criminated unions, array types, power types and various recursively
defined types. All these new forms of data types were subsequently
incorporated into the programming language PASCAL by Wirth (The
programming language Pascal, Acta Informatica, Vel. 1, 1971,

pp. 35-03). The lett column of the following tvable, which shows
some of the key notions of programming and their mathematical

counterparts, uses notation from ALGOL 60 and PASCAL.

Programming Mathematics
program, procedure, algorithm function
input argument
output, result value
X = e X = e

composition of functions

definition by cases

if B then mH else mw

while B do S definition by recursion

data structure element, objeot

data type set, type

nnl.llllll\- ——

value of & data type element of a set, object of
a type

a : A a & A

l-l-.l\\l

integer Z

real R

Boolean Ao, mw

(egs wver o) {egr wies o}

array (I] of T ol 1>

record mun eum 8,1 em end eH,X em

record case s : ﬁcp, omv of T, + Ty

ey Am»" epvm Cy: ﬁmw" amv end

set of T {o, %, v~ {o, 4}

As can be seen from this table, or from recent programming
texts with their little snippets of set theory prefaced to the
corresponding programming language cconstructions, the whole con-
ceptual apparatus of programming mirrors that of modern mathe-
matics (set theory, that is, not geometry) and yet is supposed
to be different from it. How come? ‘The reason for this curious
situnation is, I think, that the mathematical notions have grad-
ually received an interpretation, the interpretation which we
refer to as classical, which makes them unusable for programming.
Fortunately, I do not need to enter the philosophical debate as to

whether the c¢lassical interpretation of the primitive logical

5.

and mathematical notions (proposition, truth, set, element, func-
tion ete.,) is sufficiently clear, because this much is at least
clear, that if a function is defined as a binary relation satis-
fying the usual existence and unicity conditions, whereby clas-
sical reasoning 1s allowed in the existence proof, or a set of
ordered pairs satisfying the corresponding conditions, then a
function cannot be the same kind of thing as a computer program,
Similarly, if a set is understood in Zermelo’s way as a member
of the cumulative hierarchy, then a set cannot be the same kind
of thing as a data type.

Now, it is the contention of the intuitionists (or con-

structivists, I shall use these terms synonymously) that the
basic mathematical notions, sbove all the notion of functign,
o:mﬂd to be interpreted in such a way that the cleavage between
mathematics, classical mathematics, that is, and programming
that we are witnessing at_present disappears. In the case of the
mathematical notions of function and sB8et, it is not so much a
question of providing them with new meanings as of restoring old
enes, whereas the logical notions of proposdition, proof, truth
etec, are given genuinely new interpretations. It was Brouwer

who realized the necessity of so doing: the true source of the

uncomputabl 8 of classical mathematics is not the axiom

of choice (which is valid intuitionistically) but the law of

excluded middle and the law of indirect proof. Had it not been
possible to interpret the logical notions in such a way as to
validate the axiom of choice, the prospects of constructive
mathematics would have been dismal.

The difference, then, between constructive mathematics and

programming does not concern the primitive notions of the one or

the other, because they are essentially the same, but lies in the
programmer’s insistence that his programs be written in a formal
notation so that they can be read and executed by a machine,
whereas, in constructive mathematics as practised by Bishop
(Foundations of Constructive Analysis, MoGraw-Hill, New York,
1967), for example, the computational procedures (programs) are
normally left implicit in the proofs, so that consjiderable fur-
ther work 1s needed to bring them into a form which makes them
fit for mechanical execcution.

What I have just said about the close connection between con-

structive mathematics and programming explains why the intuition-

istic type theory AW: intuitionisgstic theory of types: predicative
part, Logic Colloquium ’73, Edited by H. E. Rose and J. C, Shep-
herdson, North-Holland, Amsterdam, 1975, pp. 73-118), which I bezan
to develop solely with the philosophical motive of clarifying the
syntax and semantics of intuitionistic mathematics, may equally
well be viewed as a programming language. But for a few concluding
remarks, the rest of my talk will be devoted to a fairly complete,
albeit condensed, description of this language, emphasizing its
character of programming language. As such, it resembles ALGOL 68
and PASCAL in its typing facilities, whereas the way the programs
are written and executed makes it more reminiscent of LISP.

The expressions of the theory of types are formed out of

variables
Xy ¥y 2y ...

by means of various forms of expression

Aﬁxp‘...,mzvﬁm»,...,mav.

——

In an expression of such a form, not all of the variables

m— —

e, B
1-? ' m

Thus, for each form of expression, it must be laid down what

Xy9 oeoy X nwmacmooaococnﬁwamww omnrmumwﬁmm

variables become bound in what parts. For examples,

b
M.H dx
a

is a form of expression (Ix){a,b,f) withm = 3 and n = 1 which

binds all free occurrences of the single variable x in the third

part f. And
df
ale)

is a form of expression {(Dx)(a,f) with m = 2 and n = 1 which binds

all free occurrences of the variable X in the second part f.

T~

I shall call an expression, in whatever notation(omsoawomﬁ\b

)
or normal if it is already fully evaluated, which is the same as
A WA VAV g Wl W VY

to say that it has itself as value. Thus, in deecimal arithmetic,

0, 1, ..., 9, 10, 11, ...
are canonical (normal) expressions, whereas
2 1010

M+wm M.mw m 1] umu Ho [. a2

are not. An arbitrarily formed expression need not have a value,

but, if an expression has a value, then that value is necessarily

canonical. This may be expressed by saying that mwmw:mﬁwcs is

idempotent. When you evaluate the value of an expression, you get
that value back.

In the theory of types, it depends only on the outermost

form of an expression whether it is canonical or not. Thus there
are certain forms of expression, which I shall call canonical
forms, such that an expression of one of those forms has jitself
as value, and there are other, noncanonical forms for which it

is laid down in some other way how an expression of such a form
is evaluated. What I call canonical and noncanonical forms of t&\&ﬁ%ﬁ
expression correspond to the constructors and selectors, respec-
tively, of Landin (The mechanical evaluation of expressions,
Computer Journal, Vol. 6, 1964, pp. 308-320). In the context of
programming, they might also aptly be called mmmw and program
forms, respectively. The table below displays the primitive forms
of expression used in the theory of types, the canonical ones to
the left and the nencanonical ones to the right. New primitive

forms of expression may of course be added when there is need

of them.
Canonical Noncanonical

(TTx € A)B, (Ax)b e(a) (Fx)(c,4)

(Zx € A)B, (a,b) (Ex,y)(c,d)

A+ B, i{a), j(b) (Dx,y)(c,d,e)

I(A,a,b), r J(e,d)

N, :oﬁou

N, 0, mHAo,aov

Ng» 0Op, 1, Ry(c,eg,e,) if Hem Jon
: : Wt .

N, 0, ar (Rx,y)}(ec,d,e) wha'le .

Aﬂﬂmb.vm‘ sup(a,b) A.H_H_U:NVAO‘QV

The conventions as to what variables become bound in what
parts are as follows. Free occurrences of x in B become bound in
(MMx € A)B, (Zx € A)B and (Wx € A)B., Free occurrences of x in b
become bound in (Ax)b. Free occurrences of x and y in d become
bound in (Ex,y)(c,d). Free occurrences of x in d and y in e
become bound in (Dx,y)(ec,d,e). Free occurrences of x and y in e
become bound in (Rx,y)(e¢,d,e). And, finally, free occurrences
of x, v and z in d become bound in {Tx,y,z)(ec,d).

Expressions of the various forms displayed in the table are

evaluated according to the following rules. I use

dﬁme-. -‘m:\NHi. ..oN:v

to denote the result of simultaneously substituting the expres-

fl.ﬂ.!jhh.\h:\hir-s\nrnh £
..., a_ for ﬂ:m><mﬂwmvwmm X

sions a
n

ceey Xp in the expres-

1’ 1?
sion b. Substitution is the process whereby & program is supplied
with its input data, which need not necessarily be in evaluated
form,

An expression of canonical form has itself as value. This
has already been intimated. A (6)

To execute c{a), first execute c¢. If you get { Ax)b as
result, then continue by executing UNWMMW. Thus ¢(a) has value d

it ¢ has value (A x)b and b(a/x) has value d.

To execute (Ex,y)(c,d), first execute c¢. If you get (a,b)

(D — ¢} .
s N =3 /N = ba/x) => &
C @ (»x) b a

10.

as result, then continue by executing d(a,b/x,y). Thus (Ex,y)(c,d)
has value e if ¢ has value {a,b) and d(a,b/x,y) has value e.

To execute (Dx,y)(c,d,e), first execute c. If you get i{a)
as result, then continue by executing d(a/x). If, on the other
hand, you get j{b) as result of executing c, then eontinue by
executing e(b/y) instead. Thus {(Dx,y)(c,d,e) has value f if
either ¢ has value i{a) and d(a/x) has value f, or ¢ has value
j(b) and e(b/y) has value f.

To execute J(c,d), first execute ¢, If you get r as result,
then continue by executing d, Thus J{c¢,d) has value o if ¢ has
value r and d has value e.

To execute maAo,oo,...,o), first execute ¢. If you get m

n-1 n

as result for some m = 0, ..., n-1, then continue by executing o

Thus msﬁo,oo_...,oslH has value d if ¢ has value m and c_ has

) n
value d for some m = 0, ..., n-1. In particular, wvoV has no

value, It corresponds to the statement

abort

introduced by Dijkstra (A Discipline of Programming, p. 26). The

pair of forms 0, and mpﬁo,oov together operate in exactly the

1
same way as the pair of forms r and uﬁo.gv_ To have them both in
the language constitutes a redundancy. mmﬁo.oououv corresponds to

the usual conditional statement

if B then mH clse mm

and mbﬁo,oo....,odsuv for arbitrary n = 0, 1, ... to the state-

ment

with e do AOH" mH. ceey € mﬁww

11.
introduced by Hoare (Notes on Data Structuring, p. 113) and real-
ized by Wirth in PASCAL as the case statement

fe,: S;; ...; €z end,
case € 0 13 P Ch m:

To execute (Rx,y)(e¢,d,e), first execute c¢. If you get 0 as
result, then continue by executing d. If, on the other hand, you
get a' as result, then continue by executing e(a,(Rx,y)(a,d,e)/x,y)
instead, Thus (Rx,y)(oc,d,e) has value f 1f either ¢ has value O
and 4 has value f, or ¢ has value a' and e(a,(Rx,y)(a,d,e)/x,y)
has value f. The closest analogue of the recursion form
(Rx,y)(c,d,e) in traditional programming languages is the re-

petitive statement form
while B do S.

To execute (Tx,y,z){c,d), first execute c, If you get
sup(a,b) as result, then continue by executing d(a,b,(A v)
(Tx,y,z)(b(v),d)/x,y,2). Thus (Tx,y,z)(c,d) has value e if ¢ has
value sup{a,b) and d(a,b,(Av){(Tx,y,z)(b(v),d)/x,y,z) has value o.
The transfinite recursion form (Tx,y,z){(c,d) has not yet found
any applications in programming. It has, as far as I know, no
counterpart in other programming languages.

The traditional way of evaluating an arithmetical expression
is to evaluate the parts of the expression before the expression

itself is evaluated, as shown in the following example.

Thus, traditionally, expressions are evaluated from within, which

in programming has come to be known as the applicative order of

evaluation, When expressions are evaluated in this way, it is

obvious that an expression cannoit have a value unless all its
parts have values. Moreover, as was expliclitly stated as a prin-
ciple by Frege, the value (Ger. Bedeutung) of an expression
depends only on the values of its parts. In other words, if a
part of an expresasion is replaced by one which has the same value,
the value of the whole expression is left unaffected,

When variable binding forms of expression are introduced,
as they are in the theory of types, it is no longer possible,
in general, to evaluate the expressions from within. To evaluate
(A x)b, for example, we would first have to evaluate b. But b can-
not be evaluated, in gzeneral, until a value has been assigned to

the variable x. In the theory of types, this difficulty has been

overcome hy reversing the order of evaluation: instead of eval-

uating the expressions from within, they are evaluated from with-

Sut, This is known as head reduction in combinatory logic and

»

normal order or lazy evaluation in programming. For example,

(A x)b is simply assigned itself as value. The term lazy is
appropriate since only as few computation steps are performed as
are absolutely necessary to bring an expression into canonical

form. However, what turns out to be of no significance, it is no

longer the case that an expression cannot have a value unless all

e

its parts have values, For example, &' has itself as value even

if a has no value. What is significant, though, is that the prin-

ciple of Frege'’'s referred to above, namely that the value of an

expression depends only on the values of its parts, is irretriev-

13.

ably lost. To make the language work in spite of this loss has

been one of the most serious difficulties in the design of the

theory of types.

So far, I have merely displayed a:m\WmHMocm forms of expres-

sion used in the theory of types and explained how expressions,

composed out of those forms are n<m~:mnmn:w$:m inferential or,
S ——

as one says in combinatory logic, illative part of the language

consists of rules for making judgments of the four forms

A is a type,

A and B are equal types,

a is an object of type A,

a and b are equal objeets of type A,

abbreviated

A type,

o
[
&
M
S

respectively. A judgment of any one of these forms is in general
hypothetical, that is, made under assumptions or, to use the
terminology of AUTOMATH (N. G. de Bruijn, The mathematical lan-
guage AUTOMATH, its usage, and some of its extensions, Symposium
on Automatic Demonstration, Lecture Notes in Mathematics, Vol, 125,

Springer-Verlag, Berlin, 1970, pp. 29-61), in a context

14,

Humkf, c ey H=m>:.
In such a context, it is always the case that >H is a type, ...,
>: is a type under the preceding assumptions HH.m >H, e e ey
m.P::A. When there is need to indicate explicitly the as-

sumptions of a hypothetical judgment, it will be written

A type ANHmbuq caey k:mf;v,

T
u

mAHHmPH_ ey NﬁmPSV.
mm.»?Jmf.x:mff
a=>b €A ?Hmf_ Ceey kum>:v.

These, then, are the full forms of judgment of the theory of
types,

The first form of judgment admits not only the readings
A is a type (set),
A is a proposition,

but also, and this is the reading which i3 most natural when the

language is thougzht of as a pregramming languacge,
A is a problem (task).
Correlatively, the third form nf judgment may be read not only
a is an object of type (element of the set) A,
a is a proof of the proposition A,

but also

15.

a is a program for the problem {task) A.

The equivalence of the first two readings is the by now wellknown

correspondence between propositions and types discovered by

cﬂwﬁ%ﬁoosdwsmnoH%romwo.<oH.H.ZQWH:smowumnn‘>Bmamﬂama.Hmmm‘
I||-II|.||.|I-

PP . uum:upmv and Howard Ae:m formulae-as-types notion of construc-
tion, H@mwv, whereas the transition from the second to the third

is Kolmogorov’s interpretation (Zur Deutung der intuitionistischen

Logik, Mathematische Zeitschrift, Vol. 35, 1932, pp. 58-65) of

propositions as problems or tasks (Ger. Aufgabe).
e

The four forms of judgment used in the theory of types

should be compared with the three forms of judgment used (al-
though usually net so called) in standard presentations of first

order predicate calculus, whether classical or intuitionistic,

namely
A is a formula, A Lawﬂ
A is true, Ja€A
a is an individual term. o € INDIVIDVALS

INoVMd 7o TYPE

The first of these corresponds to the form A is a type (proposi-
tion), the second is obtained from the form a is an object of
type (a proof of the proposition) A by suppressing a, and the
third is again obtained from the form a is an object of type A,
this time by choosing for A the type of individuals.

In explaining what a judgment of one of the above four forms
means, I shall first limit myself to assumption free judgments,

Once it has been explained what meanings they carry, the explana-

16,

tions can readily be extended so as to cover hypothetical judg-
ments as well.,

A canonical type A is defined by prescribing how a canonical

object of type A is formed asg well as how two equal canonical ob-

jects of type A are formed. There is no limitation on this pre-

scription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as
well as equal canonical objects of a certain type are called the
introduction rules for that type, we may thus say with Gentzen
(Untersuchungen iiber das logische Schliessen, Mathematische Zeit-
schrift, Vol. 39, 1934, pp. 176-210, 405-431) that a canonical
type (proposition}) is defined by its introduction rules. For non-

canonical A, a judgment of the form
A is a type

means that A has a canonical type as value.

T

Two canonical types A and B are equal if a canonical object
of type A is also a canonical object of type B and, moreover,
equal canonical objects of type A are also equal canonical objects
of type B, and vice versa, For arbitrary (not necessarily canon-

ical) types A and B, a judgment of the form
A =B

means that A and B have equal canonical types as values, This
finishes the explanations of what a type is and what it means for
two types to be equal.

Let A be a type. Remember that this means that A denotes a

.

[

canonical type, that is, has a canonical type as value. Then a

Judgment of the form
acaA

means that a has a canonical object of the canonical type denoted
by A as value. 0f course, this explanation is not comprehensible
unless we know that A has a canonical type as value as well as
what a canonical object of that type is. But we do know this
because of the presupposition that A is & type: it 1s part of
the definition of a canonical type how a canonical object of that
type is formed, and hence we cannot know a canonical type without
knowing what a canonical object of that type is.

Let A be a type and a2 and b objects of type A. Then a judg-

ment of the form
a=be&A

means that a and b have equal canonical objects of the canonical
Ak D AL valint of A
type WEmoted—By-A as values. This explanation makes sense since

A was presupposed to be a type, that is, to have a canonical type
as value, and it is part of the definition of a c¢anonical type
how equal canonical objects of that type are formed,.

These meaning explanations are extended to hypothetical judg-
ments by an induction on the number of assumptions. Let it be
given as premises for all of the following four explanations that

X, €A, oey X mm>= is a context, that is, that A, is a type,

1

.ery A_is a type under the assumptions X, mwbp_ ceey X

n mb.s

n-1 -1-

By induction hypothesis, we know what this means.

A judgment of the form

means that

provided

a, € >=Amp“...,m:tH\Hw.....M=-~V,
and, moreover,
>Amu.....w:\ku,....M:v = >Aca_....d:\HH“...,N=v

provided

(=2

a, = b € >:AmH,....m=|»\NH‘...,N:tuu.

Thus it is in the nature of a family of types (propositional func-

tion) to be extensional in the sense just described.

e

Suppose that A and B are types under the assumptions

X, € A

1%:mbs. Then

Hu
A =B ANHm>H, c ey N=m>zv

means that

_Pﬁm.u.a...um.ﬂ.\uhu.m-..uvnsg = wﬁmﬁ¢..‘qm3\mu—.u..-ﬂxwuv

19.

provided

a, mm>:ﬁmw.....m:a»\xu,...uxzupv.

From this definition, the extensionality of a family of types

and the evident transitivity of equality between types, it follows
as well that

>Amu.....m:\ww.....wnv = wﬁww.....ws\kﬁ....,wuv

provided

a, =b € >:Amp_...,ms|H\H C e X

1 ::HV.

Let A be & type under the assumptions X, m”>»_ ceey X & >:.

Then
a €A (x, €n, ..., x €A
means that
mﬁmuu...,ms\nu....*xnv = >Amu....»mm\wuu..._knv
provided
ww & >H.

a, € >nﬁmH,....m::H\kHu...,H:IHU,

and, moreover,

mﬁmHuntuem:\HHw--aHSV = mAUHantnudu\RHw.-‘sz

€ >Amu,...‘m:\xm.....xuv

provided

a
n

H

b mm>sﬁmH,...,mslu\xpn..._xz-pv.

Thus, just as in the case of a family of types, it is in the

nature of a function to be extensional in the sense of yielding

equal objects of the range type when equal objects of the domain

types are substituted for the variables of which it is a function,
Let A be & type and a and b objects of type A under the

assunptions X, mwbpw cres X mmbs. Then
wudm>ﬁwsm>p‘ ...,N:mP:v
means that

)

€ >Amp....,m=\xp,.‘.,ksv

mAmH,..._wd\kH‘....Huv = vﬂmp_....ma\muu....w:

provided

21

Again, from this definition, the extensionality of a function
and the transitivity of equality between objects of whatever type,

there follows the stronger property that

wAw».....ms\xp,....xzv = uﬁdu....,az\mp_...,usv

= >Amu.....m=\xﬁ,...,x=v

provided

m.w.u = Hw: m spbﬁmuvn . oouman\NHuno-ukﬂule-

This finishes my explanations of what judgments of the four forms
used in the theory of types mean in the presence of assumptions,
Now to the rules of inference or proof rules, as they are
called in programming. They will be presented in natural deduction
style, suppressing as usual all assumptions other than those that
are discharged by an inference of the particular form under con-
gideration. Moreover, in those rules whose conclusion has one of
the forms a € A and a = b € A, only those premises will be ex-
plicitly shown which have these very same forms., This is in
agreement with the practice of writing, say, the rules of dis-

junction introduction in predicate calculus simply

A true B true

AV B true AV B true

without showing explicitly the premises that A and B are formulas.

For each of the rules of inference, the reader is asked to try

22,

to make the conclusion evident to himself on the presupposition
that he knows the premises., This does not mean that further
verbal explanations are of no help in bringing about an under-
standing of the rules, only that this is not the place for such
detailed explanations, But there are also certain limits to what
verbal explanations can do when it comes to justifying axioms
and rules of inference. In the end, everybedy must understand

for himself.

GENERAL RULES

Reflexivity
agaA A type

a=2ac&caA A=A
Symmetry

a=be&A A =B

b=a¢€aA B =A
Transitivity

a=>b» €A b=c¢c €A A=231 B =C

a=c¢c €A A=2¢C

Equality of types

a €A A =B a=>b&A A =B

a &€B a b &B

23 .

Substitution
(x € A) (x € &)
a €A, ' B type a=¢ &A B=2D
B{a/x) type B(a/x) = D{(e/x)
(x € A) (x €4)
a €A b &B a=c¢&A h=add €8
b(a/x) € B(a/x) b(a/x) = d(e/x) & B(a/x)
Assumption
X €A

CARTESIAN PRODUCT OF A FAMILY OF TYPES

TT-formation

(x €4) (x €A)
A type B type A =2C B =D
(TTx & A)B type (TTx e A)B = (TIx € C)D

“TT-introduction

(x € A) (x € A)
b € B b=degB
(Ax)b € (TTx € A)B (Ax)b = (A x)d € (TTx € A)B
gl essaionratibe=

Ti-elimination

ce (TixgeA)B a€A c =t €(lflxeA)B a=de€a

c(a) € B{a/x) c(a) = £(d) € B(a/x)

ok,

{ -equality
“pp (N (@ b} a) - (la) O AL app(€,X)) = C
(x € A)
a €A b €B c &€ (TTx € A)B
(Ax)p)(a) = b(a/x) €B(a/x) (Ax)(o(x)) = o € (TTx €4)p

S i aad

DISJOINT UNION OF A FAMILY OF TYPES

2. -formation

(x €4) (x €4)
A type B type A=20C B=2D
(Zx € A)B type (Zx €A)B = (Zx € A8

7 —~introduction

a €A b e&B(a/x) a=c¢c&A b=d¢&BsB(a/x)
(a,b) € (Zx €4A)B (a,b) = (e,d) € (2x € A)B
7 ~elimination mx?e«»m_u .
Gertamlabnhinn of projechon.
B _.:amaxﬁotunrlv c\&. X

(x € A, y € B)

T, = Ac. mwbﬁ.hﬁ\ Ayl x)
ce (Sxea)B d€Ec((xy)/z) \

" sput’ (Ex,y)(e,d) &€ ¢(c/z)

A..N € A, %me
c=e€c(ZxeA)B d=°* €Cc((x,y)/z)

AMN-%Vﬁolwv = AmNu%VAmqu mOAO\Nu
2. -equality
(x €A, v € B)

a €A b € B(a/x) a e c((x,y)/z)

(éx,y)((a,b),da) = d(a,b/x,y) € C((a,b)/z)

DISJOINT UNION OF TWO TYPES

+ ~Tormation

A type B type A =2¢C B =1D

A + B type A+B=0C+ 0D

+ ~introduction

ag€aA a =¢c &€A
i(a) €A + B i(a) = i(e) € A + B
b & B b=4d &€B
j(b) €A + B j(pv) = j(d) €A + B
+ -elimination
(x €4A) (y € B)

¢c €A+ B dec(i(x)/z) e €cC(j(y)/z)

(Dx,y)(c,d,e} € C(c/z)

(x € A) (y € B)
c=f€E€A+B a=gcecc(i(x)/z) e=he€c(jly)/z)

(Dx,y){(c,d,e) = (Dx,y)(f,g,h) € C(c/z)
+ ~-equality

(x € 4) (y € B)
a €A d € ¢(i(x)/z) e € C(j(y)/=z)
(px,y)(i(a),d,e) = d(a/x) € c(i(a)/z)

(x € A) (y € B)
beB de&c(i(x)/z) e cc(iy)/z)

(Dx,y)(j(v),a,e) = e(v/y) € c(j(b)/2z)

26 .

IDENTITY RELATION

I -formation

A type a &A b&A A=C a=¢€A b =dé&€aA

I(A,a,b) type 1{(A,a,b) = I(C,e,d)
I -introduction

a=b €A a=h €A

r ¢ 1(A,a,b) r =1 € I(A,a,b)

I-elimination

¢ € I(A,a,b)

muﬁvmb

c € I{A,a,b) d € ¢(r/z) c

I

e € I{a,a,b) d =12 €c(r/z)

J(e,d) € c(e/2) J(e,d) = J(e,f) € C(c/z)
I ~equality

a=b €A de€&cc(r/z)

J(r,d) = d € ¢{r/z)

FINIPE TYPES
z:uhOﬂamﬁuou

zw type N =N

z:rﬁuﬁﬂoazoﬁwo:

IH
i

m, € N (m =0, ..., n-1) m m & N (m =0, ..., n-1)

N -—elimination

n
CEN, ¢ mmo?_:\uv (m =0, ..., n-1)
case maﬁo,oo.....ounuv € ¢{c/z)
¢c=d€N, ¢ =4d € OAE:\NV (m =0, ..., n-1)
x:?.oo.....o:-Z = m:?.ao_....g:-pv € C(e/z)
z:nmnzmwwn%
e mo?:\i (m =0, ..., n-1)
{m =0, ..., n-1)

m:ha:,oo....,o:|uv = o mmoﬁas\sv

NATURAL NUMBERS
N-formation
N is a type N =N

N-introduction

0 &N 0 =0€&N
a &N a=Dbe&N
a' € N a'! = bt € N

N-elimination

(x € N, vy €C(x/2))
ceN de&c(o/z) e € C(x'/z)

(Rx,y)(ec,d,e) € C{c/2)

(x €N, y € C(x/2))
c =T &N d=g &c(o/z) e = h € C(x'/z)

AWH.%VAO.QgQV = Aqu%vAH.ﬁ.Ev m.OAO\NV

28,

N-equality

(x &N, ¥y €C(x/z))
d €c(0/z) e &¢C(x'/z)

:wH.u\VAO‘Q.mv = d mOmO\Nv

(x EN, v € ¢(x/2)})
a €N d &€ c(0/z) e € C(x'/z)

(Rx,y)(at',d,e)} = mmm..ﬁmwunwu‘vmm..a.ov\un.uav € OAW_\NV

WELLORDERINGS
W -formation
(x € 4) (x €4)
A type B type A=2¢C B =D
(Wx € A)B type (Wx€A)B = (Wx €C)D
1.3@
W -introduction O S RN
NN dnn\&y%\ﬁ.bv@ . T. ' ﬁn... -
’ ..\l.l«.l\\r\\)/ .mcf_ﬁn\b.uruu \ _/- v
a€A ‘be&Bla/x)>(Wx €A)B ANNANA)

sup(a,b) € (Wx € A)B

a=c&€A b=deB(a/x)>(Wx £4)B

i

sup(a,b) sup{c,d) € (¥ x € A)B

W -elimination
(x €A, yeB>(Wx €A)B, z € (TTv € B)C(y(v)/w))

c € (Wx €A)B d € C(sup(x,y)/w)
(Tx,y,z){c,d) € c(c/w)

29.

(x €A, yEB>(W¥x&A)B, z € (TTv € B)C(y(v)/w))
c=e c(Wx €A)B d = f & C(sup(x,y)/w)

(rx,y,z)(c,a) = {(Tx,y,z)(e,f) € C{c/w)

W .equality

(x€A, yeB=>(Wx €A)B, z& (liv e B)C(y(v)/w))
a €A b ¢ B(a/x)—>(Wx € A)B d € C(sup(x,y)/w)
(Tx,y,z)(sup(a,b),da) = d(a,b,{ Av)(Tx,y,z)(b(v),d)/x,y,z)
€ C(sup(a,b)/w)

UNIVERSES
c=|woﬂamﬁuo:
cu is a type csnas
cbaunaﬂoasoﬁuoa
(x €4) (x € A)
bmdn wmd: ,Pnomca wubmd:
(TTx € A)B € U, (TTx g€ A)B = (TTxE€ C)D €U
(x € A) (x € A)
bmcb mmc: >uomd: wucrn.au
(Zx e A)B €U (Tx €A)B = (Zx € C)D EVU,
>maz wmnds >uomd: wnumdﬂ
A+ B m.ds A+B=C+D m.du
.Pmc: a & A b €A .Pnom.cz a=c¢cc A b=de&aA

I(A,a,b) € U 1(a,a,b) = I(C,c,d) € U

30.

Ny €U Ng = Ny € U
N, €U, Ny =N €U
NEU, N=NEU,

(x €A) (x €4)
A€V, BEgU, A=CE&U B=D€&U,
(Wx € A)B €U, (Wx €A)B = (Wx €¢C)D €u
U, €U Up = Uy €T,
Uh.1 € Uy Upog =VUp g €Uy

asummpawsmewos

Acy, A=BE€U,
A type A =B

A m_ca A =B m”du
A€ Ung >umuMGEH

An example will demonstrate how the language works. Let

the premises
A type,
B type (x € A),
C type (x €A, y € B)

be given. Make the abbreviation

31.

(Tix € A)B
('J\!i..ll\
A—>B

provided the variable x does not occur free in B. Then
(Tx € A)(Zy € B)C > (2t € (TTx € A)B)(Tix € A)c(£(x)/y)

is a type which, when read as a proposition, expresses the axiom
of choice. I shall construct an object of this type, an object
which may at the same time be interpreted as a proof of the axiom

of choice. Assume

X €4,

z € (TTx € A)(Zy € B)C.
By [l-elimination,

z(x) € (Zy € B)C.

Make the abbreviations

(Ex,y)(e,x), (Bx,y)(e,y).
ful..lll\l.llll\f/!t]J\)!\\
p(e) q{e)

By 2. -elimination,
p(z(x)) € B,
q(z(x)) € c{p(z(x))/y}.
By T]-introduction,
(Ax)p(z(x)) € (TTx € A)B,

and, by [l-equality,

32,

((Ax)p(z(x)))(x) = p(z(x)) € B.
By symmetry,

p(z(x)) = ((Ax)p(z(x)))(x) € B,
and, by substitution,

c(p(z(x))/y) = ¢(((Ax)p(z(x)))(x)/y).

By equality of types,

a(z(x)) € c({({(’Mx)p(z(x)))(x)/y),
and, by TP-introduction,

(Ax)q(z(x)) € (TTx € A)c(((X x)p(2(x)))(x)/y).

By 2. -introduction,

((Ax)p(z(x)),(Ax)q(z(x)))
€ (Zr€ (Txea)B)(TTx € A)c(£(x)/y).

Finally, by Ti-introduction,

(ANz)((hx)p(z(x)),(Ax)q(z(x)))
€ (Mx €A} (Zy €B)c>(Z¢ € (TIx € A)B)(TTx € A)C(£(x)/y).

Thus

(Nz)((Ax)p(2(x)), (A x)q(z(x)))

is the sought for proof of the axiom of choice.
To conclude, relating constructive mathematics to computer

programming seems to me to have a beneficial influence on both

