
ProgrmaYerification in a l~gical Theory of Constructions

Peter Dybjer

Programming Methodology Group, CTH, S-412 96 G~teborg, Sweden

Abstract: The logical theory of constructions is a simple theory which
combines functional programs and intuitionistic predicate calculus.
Here we propose that it is a practical alternative to other construc-
tive programming logics, such as Martin-LSf's type theory. Its main
advantage is that it admits reasoning directly about general recur-
sion, while maintaining that all typed programs terminate. We illus-
trate the use of this theory by verifying the general recursive sub-
tractive division program.

I. Introduction

The intuitionistic theory of types presented in Martin-L~f (1982) is intended to

be a formalisation of constructive mathematics. Suitably interpreted it may

also be used as a formal system for reasoning about terminating functional pro-

grams. It is thus a logic of total correctness. It has been used by several

authors, for example NordstrSm (1981).

Martin-L~f's type theory is a general framework for introducing types and

justifying proof rules for judgements of the four forms A type, A = B, a E A,

and a ~ b e A, by appealing to the semantics given in N~rtin-L~f (1982). It is

in particular possible to interpret propositions as types so that the judgement

a e A is read as "a is a proof object for the proposition A". The proof rules

at the end of Martin-LSf (1982) are given with this reading in mind. We refer

to this specific collection of rules of type theory as TT79 so as to keep the

distinction between this and the general framework of type theory clear.

When using TT79 as a programming logic and thus giving a e A the reading "a

is a program for the task (specification) i" two problems appear: the absence of

proof rules for general recursion; and the sometimes unavoidable presence of

unwanted constructions in the synthesised programs.

The first problem can be tackled without extending TT79. As Smith (1983)

demonstrated one can synthesise programs which use primitive recursion of higher

type which compute the same functions and behave in a similar way as the desired

general recursive programs. This can be done for large classes of general

recursive programs, for example the ones which are provably total in first-order

arithmetic.

335

Another possible way of coping with general recursion was suggested by Paul-

son (1984) who added a rule of well-founded induction to TT79.

The second problem appears in the following context. Consider the introduc-

tion rule for the Z-type:

a ~ A b ~ B(a)
<a,b> ~ (~x E A)~(x)"

The Z-type is used to interpret existential propositions: we wish to show that

there exists a program of type A, which satisfies a property B (more precisely,

the property interpreted as the following family of types: B(x) type (x ~ A)).

To do this we construct a program a ~ A and a proof-object b ~ B(a). But usu-

ally we are only interested in the program a, and not in the particular proof-

object b which we have constructed to show that a satisfies the desired property

B. Therefore NordstrSm and Petersson (1983) suggested introducing a new type

former, the subset type former, which can be used to interpret existential pro-

positions. It has the following introduction rule:

a E A b ~ B(a)

Thus both problems can be dealt with in a more or less satisfactory way, but

the underlying principle of identifying programs and proof-objects is in ques-

tion.

Therefore we shall look at an alternative formalisation of constructive

mathematics: the logical theory of constructions, abbreviated LTC, which was

formulated by Smith (1978) and which has its origins in first-order theories of

combinators in which Aczel (1977) interpreted early versions of Martin-LSf's

type theory. An extended version of LTC was formulated by Smith (1984). The

extensions are needed to interpret the whole of TT79, including universes, in

LTC. They are not needed for the example we present here, however.

LTC has the same basic collection of programs as TT79 (see appendix) (this

excludes those programs of the extended LTC which encode propositions and those

of TT79 which encode types), but is not based on the identifications of proposi-

tions and types and of programs and proof-objects. Instead it is based on ordi-

nary intuitionistic first-order predicate calculus. Its basic predicates are

the convertibility relation a = b and the natural number predicate N(a). It has

a small and simple collection of inference rules.

One reason for chosing LTC, and not some other theory which combines func-

tional programs and predicate calculus, is that its relation to TT79 is clear:

Smith (1984) has shown how to translate TT79 into it, and we thereby knew that

each program derivation in TT79 can be translated into a program derivation in

336

LTC. So we know that LTC is at least as strong as TT79. Still, it could o f

course be the case that program proofs are generally shorter or more natural in

TT79. However, we believe the opposite since we can reason about general recur-

sion directly, as we show below, and since we do not identify programs and

proof-objects.

We first give most of the inference rules of LTC from Smith (1978) but use a

different syntax. Then we introduce the fixed point operator as an abbreviation

and the fixed point property as a derived conversion rule. Finally, we give the

proof of the subtractive integer division program.

2. Inference rules of LTC

We use the same notation for the basic program forms as, for example, NordstrOm,

Peterssvn and Smith (1985). However, we use a left-associative infix * instead

of app for function application. In this notation the inference rules of LTC

given by Smith (1978) are as follows: (The only difference is that we only show

the rules for the constructors true and false instead of for the whole collec-

tion m n and thus only for the selector if_ then _ else instead of for the whole

collection R n. We also use the theory of expressions and arities and the con-

vention of identifying classes and properties by putting a E A ~ A(a) from

Martin-LSf (1983), see appendix.)

Conversion rules

CB: if true then a else a' = a

CB: if false then a else a' ffi a'

CN: r e c (O , a , e) = a

CN: . e c (s (m) , a , e) ffi e (m , ~ e c (m , a , e))

C×: split(<a,b>,e) = e(a,b)

C+: when(inl(a),d,e) = d(a)

C+: when(inv(b),d,e) = e(b)

C=>: k (b) * a = b (a)

Ref lex iv i ty

•l: a =

337

S u b s t i t u t i o n

=E: a = b C(a)
C(b)

R u l e s f o r n a t u r a l numbers

NI: N(O) N(m)

~: ~(,n) c(o)
c(n)

(~(x),C(=))
c(s(<))

Logical roles

P Q
aI:

P&Q

P~Q P~Q
&E: P Q

P Q
VI: PVQ PVQ

VE:

(~) (Q)
P V Q R B

B

(~)

÷I: Q
P+Q

P÷Q P
÷E : Q

FALSE
FE: .p

aE: (]x)B(x)
P

(~(x))
P

(restriction: x must neither occur free in P nor in any assumption on which the

upper occurrence of P depends other than B(x).)

W: ~(x) (v,x) B(x)

(restriction: X must not occur free in any assumption en which B(x) depends.)

338

V~: (Vx)B(x)
S(a)

LTC has no rule of extensionality. This is not very significant. For example,

if we wish to show that two programs f and g which map natural numbers into

natural numbers are extensionally equal as functions on natural numbers, i.e.

f = g ~ N~N in type theory, then we just have to show that

(V x ~ ~) (f * x = g ' x) .

This idea can of course be iterated if the range is of higher type.

3. Types and termination

The intended models of LTC are the Frege structures of Aczel (1980). This

semantics does not give us direct information about termination properties in

the way that the semantics of type theory in ~rtin-LSf (1982) does. In type

theory it is the case that if A is a type and a ~ A, then it is immediately

clear that a has all the termination properties we want (see below). So types

only contain terminating programs in type theory. (Observe that this is dif-

ferent from the types of the functional language ML, which contain non-

terminating programs as well.)

In type theory a type is defined by saying what its canonical elements (pro-

grams whose outermost forms are constructors) are (and when two canonical ele-

ments are equal, but let us forget this here). An element of a type is one

whose value (under =>, see appendix) is a canonical element of the type.

Consider for example the natural numbers. From the above we see that the

following three rules:

-- 0 is a natural number;

-- if a is a natural number, then s(a) is a natural number;

-- if a => b and b is a natural number, then a is a natural number;

are the introductory clauses of an inductive definition of the natural numbers

in type theory. From this definition it is obvious that if a program belongs to

the type of natural numbers, then it terminates both under => and under the full

evaluation relation ==> (which corresponds more closely to what we usually mean

by termination, see appendix).

This kind of argument is valid for other type formers as well and Martin-LSf

has suggested calling a program a, for which a ~ A for some type A in type

theory, hereditarily terminating (w.r.t. A), see the discussion after Martin-LSf

339

(I 984).

We shall now show that we can prove termination in LTC in a similar way.

First define

b ~ BOOL ~ b = t~ue V b = false

q ~ A+B ~ (3~ E A)(q = infix)) V (3Y ~ B)(q = inn(y))

p ~ A×S ~ (~ E A)(~y E S)(p = <x,y>)

f ~ A~B ~ (~ b) ((V , x) (x E A . b (x) ~ S) ~ f = ~ (b))

f g (fix g A)B(x) ~ (3b)((Vx)(x ~ A + b(x) ~ B(x)) & f = k(b))

where the bounded quantifiers are defined by:

(~X ~ A)B(x) ~ (~x)(A(x) & B(X))

(Vx E n)B(x) ~ (Vx)(n(x) ÷ S(x)).

If A is a property which can be written down using only N, BOOL, +, x 9, Z, ~,

then call A an LTC-type. From the definitions we can derive inference rules for

the LTC-types and the bowuded quantifiers.

Our intention is to show that if A is an LTC-type and we can prove a ~ A in

LTC, then a has all the termination properties we want. TO do this, we show

that if A' is the type in the sense of type theory which corresponds to A (for

example, N' is the type of natural numbers as defined above; BOOL' is the type

which has the canonical elements true and false; etc.), then a ~ A is provable

in LTC impl%es that a E A' is provable in type theory. This justifies saying

that if a c A is provable in LTC, then a is hereditarily terminating w.r.t.A.

Smith's translation of types of TT79 into LTC is essentially translating A'

into A as defined above. Moreover, programs are translated into themselves

(which is why we write a E A' instead of a' a A'). Smith showed by induction on

the length of the derivation in TT79 that, if we can prove a ~ A' in TT79, then

we can prove a E A in LTC. The reverse implication, which we need here, does

unfortunately not hold (consider the case where a uses general recursion). So

we need to appeal directly to the semantics of type theory in order to get the

following theorem.

Theorem: Let A he an LTC-type and let A' be the corresponding type in the

sense of type theory. Then we can prove a ~ A in LTC iff we can prove a ~ A' by

appealing to the semantics of A' in type theory.

340

Proof: The proof is by induction on the structure of A. We show only one

base case, A ~ N, and one step ease, A - B~C, here.

A - N: Assume a E N'. This can be deduced by finitely many applications of

the three rules for forming natural numbers in type theory above. Since a => b

implies that a = b in LTC, a corresponding deduction can be carried out in LTC

by using the rule of substitution instead of the third rule.

For the converse, assume a e N. We prove that this implies a E N' by giving

LTC a domain interpretation as follows: a program a is interpreted as the filter

~a~ of formal neighbourhoods as in Martin-LSf (1983D); a = b is interpreted as

[a~ and ~b~ are equal filters; N is interpreted as the set of principal

filters ~N~ = {tO,~s(O),~s2(O),..}; logical constants are interpreted as them-

selves. The rules of LTC are valid under this interpretation. Martin-LSf

(19830) showed the validity of the conversion rules, for example. Thus a E ?V

implies ~a~ ~ ~N~, and from the definition of principal filters we see that

~a~ = ten(o) implies a => S(al) , a I ~> s(a2) an_ I => a(an) , a n => O.

Thus a ~ N'.

A = B~C: The induction hypothesis is that the theorem is proved for B and C.

Assume f E (B~C)'. Then for some b, f => X(b) and x E B' implies b(x) ~ C'.

Thus f = k(b) in LTC, and x e B implies x e B' implies b(x) c C' implies x ~ C

(by applying the induction hypothesis twice). Hence f c B~C by the definition

of B~C.

For the converse, assume f e B~C, Then for some b, f ~ X(b) and x c B implies

b(x) ~ C. By appealing to the domain interpretation again, we have that

~f~ = ~k(b)~ and hence for some d, f ~> k(d) and ~d~ ~ ~b~. It follows that

x e B' implies x E B implies b(m) ~ C implies d(x) E C implies d(x) ~ C' (by

applying the induction hypothesis twice). Hence f g (B~C)'. []

4. Verifyimg a general recursive program im LTC

The main reason for looking at LTC is that it can be used for reasoning about

general recursion. So we define the fixed point operator in the usual way:

fix(f) = ((Ax)f(x*x))*((Xx)f(x*x)).

We can thus derive the conversion rule:

Cfix: fix(f) ~ /(fix(f)).

We wish to verify the following subtractive division program:

341

div(i,j) ~ divh*i*j

divh ~ fix((g)(ki)(kj)if lt(i,j) then 0 else e(g*(i-j)*j))

What we wish to show is that div satisfies the division property, i.e.,

(Vi ~ N)(~j ~ N)(j > 0 * DIV(i,j,div(i,j)))

where

DIV(i,j,q) =_ (~ e N)(r < j & i ~ j×q+r) & q E N

i < j - lt(i,j) ~ true

j>i:-i<j

i ~ j ~ It(i,j) -- false.

(See appendix for the undefined forms.) Observe that we need to make the termi-

nation condition of div(i,j) explicit by requiring div(i,j) E N (the second con-

junction of the DIV-proposition).

The proof below uses the derived rule of well-founded induction on natural

numbers :

((vy ~ ~)(y < x. a(y)))
n E ~ C(x)

W~: C(n)

This rule is easily derived from ordinary induction on natural numbers.

In the proof below we write

Ass: A

Con: B

to represent the hypothetical proof of the conclusion B from the assumption A,

and use indentation to indicate that the intermediate inferences depend on the

assumption A. The proof is completely formal except that we have not derived

all the basic arithmetic facts that we use from first principles. The parts

where such derivations would be filled in, if we were to make the proof com-

pletely formal, are indicated by dots. Otherwise we indicate in the left margin

which proof rule has been used. Note that VI VI and ~#NE refer to the derived

introduction and elimination rules for the bounded quantifiers V a e N.

342

Ass: i ~ N
Ass: j e N

Ass: j > 0
Ass: (Vi' ~ N)(i' < i ÷ DIV(i',j,div(i',j)))

Ass" i < j

NI 0 e N

=E div(i,j) ~ N

i'- jxdiv(i,j)+i
&I i < j & i = jxdiv(i,j)+i
BI (3r)(. < j & i = jxdiv(i,j)+r)
&I Con: D]Y(i,j,div(i,j))

Ass: i ~j

~NE i-j < i + DIV(i-j,j,div(i-j,j))

i'j < i
+E DIV(i-j, j, div(i-j, j))
&E div(i-j,j) ~ N
NI s(div(i-j,j)) ~ N

: E div(i,j) E N
&E (~)(n < j & i-j = jxdiv(i-j,j)+n)

Ass: r < j & i-j = jxdiv(i-j,j)+r
&E . < j
&E i-j = jxdiv(i-j,j)+.

"i'- jxs(div(i-j,j)+r
=E i = jxdiv(i,j)+n
&I n < j & i = jxdiv(i,j)+r
~I Con:(~n)(n < j & i = jxdiv(i,j)+n)
3E (~r)(n < j & i = jxdiv(i,j)+r)
&I Con: DIV(i,j,div(i,j))
..E Con: DIV(i,j,div(i,j))
WE Con: DIV(i,j,div(i,j))
÷I Con: j > 0 ÷ DIV(i,j,div(i,j))
VNI Con: (~j ~ N)(j > 0 ÷ DIV(i,j,div(i,j)))
VNI (Vi ~ N)(Vj ~ N)(j > 0 ÷ DIV(i,j,div(i,j))).

In order to show how the fixed point rule is used, we shall fill in the details

of the second omitted proof fragment, i.e. prove that the following inference

is valid:

ieN j~N i<~
div(i,ji ' ~ 0

or after replacing div and < by their definiens:

i E N j ~ N lt(i,j) = tnue
f~x(~)*i*j = 0

where

S4S

x(g) ~ (k i) (k j) i f l t (i , j) then 0 else s (g * (i - j) * j) .

The proof of this is as follows:

Ass: i ¢ N, j ¢ N, lt(i,j) = true
CB if t~ue then 0 else s(fix(x)*(i-j)*j) ~ 0
=E if lt(i,j) then 0 else s(fix(x)*(i-j)*j) = 0
C+ x(fix(x))*i = (kj)if It(i~j) then 0 else s(fix(x)*(i-j)*j)
C* x(fix(x))*i*j = if lt(i,j) then 0 else s(fix(x)*(i-j)*j)
~E x (f i x (x)) * i * j = 0
Cfix x (f i x (x)) = f i x (T)
=E Con: fix(~)*i*j = O.

This is part of the base case. Let us also show the corresponding part of the

induction step:

i ~ N j ~ N i ~ j
~ i v (i , j) = s (d i v (i - j , j) ' ~

or after replacing div and ~ by their definiens:

i ¢ N ~ c N It(i,j) ~ false
...... fix(~)*i*j = s(fix(x)*(~-j)*j) "

The proof of this is as follows:

ASS: i ~ N, j ~ N, lt(i,j) ~ false
CB i~ false then 0 else s(fix(~)*(i-j)*j) ~ s(fix(~)*(i-j)*j)
~E if It(i,j) then 0 else s(fix(x)*(i-j)*j) = s(fix(~)*(i-j)*j)
C÷ x(fix(~))*i ~ (~°)if It(i,j) then 0 else s(~x(~)*(i-j)*j)
C+ x(fix(~))*i*j ~ if It(i~j) then 0 else s(fix(x)*(i-j)*j)
=E x (f i x (~)) * i * j - s (f i x (~) * (i - j) * j)
Cfix x (f i x (x)) = f i x (x)
=E Con: f i x (~)*i*j = s (f i x (~)*(i - j) * j) .

5. Conclusion

Our intention has been to present a system of proof rules for reasoning about

functional programs which is close in spirit to TT79, but which is simpler and,

at least in some respects, more convenient to use.

We have already explained the differences between TT79 and LTC, let us sum-

marise the similarities:

-- They are both theories about the same collection of functional programs.

These functional programs are evaluated in normal order.

-- They both contain natural deduction proof rules for intuitlonistic first-

order predicate calculus. These rules are expressed differently though. In

LTC they are expressed directly, whereas in TT79 they are expressed via the

interpretation of propositions as types.

- - They are both logics of total correctness and use the fact that a ~ A

implies that a terminates. They are not intended to be used for reasoning

about programs which compute partial functions. (This could presumably be

done indirectly, for example through codings of domain theory.)

We have only discussed the relationship between LTC and Martin-LSf's type

theory here. We hope that this discussion will be relevant also when trying to

understand similar aspects of other logics for reasoning about functional pro-

grams, such as Constable's (1982) intensional version of type theory, Coquand

and Huet's (1984) impredicative theory of constructions, Manna and Waldinger's

(1980) deductive synthesis (compare for example their proof of the general

recursive subtractive division program) and Cartwright and McCarthy's (1979)

first-order programming logic. Also Scott's, and Milner, Morris and Newey's

(1975) LCF must be mentioned here, even though it is different in important

respects: it is a logic for reasoning about partial as well as total objects and

contains proof rules for inequality as well as for equality.

Finally, a word about synthesis versus verification. It may seem that LTC

does not support synthesis of a program from its specification in the same way

as TT79 or deductive synthesis (both of these identify specifications and propo-

sitions and derive programs from the proofs of the propositions). In the proof

above the program was given before the proof and it may seem that this must

necessarily be the case. But no, given the specification, there is no reason

why we have to know the structure of the program until we wish to apply an

inference rule which appeals to this structure. If ~e thus decide on the struc-

ture of the program only when we are forced to do so, then we could carry out a

process which is similar to that which we could carry out in TT79 or deductive

synthesis.

References

P. Aczel, The strength of Martin-LSf's type theory with one universe, P~ocee~:~-

ings of the Symposium on Mathematical Logic, 0ulu, 1974, Report No 2,

Department of Philosophy, University of Helsinki (1977) 1-32.

P. Aczel, Frege structures and the notions of proposition, truth and set, in

The Kleene Symposi~ (North-Holland, 1980) 31-59.

R. Cartwright and J. McCarthy, First order programming logic, in Conference

Record oJ" the 6th Annual ACM Symposi~ on P~ineiples of P.ognwnming

Zang~jes, San Antonio (1979).

345

R. Constable, intensional analysis of functions and types, internal report

CSR-||8-82, Department of Computer Science, University of Edinburgh

(I 982).

T. Coquand and G. Huet, A theory of constructions, preliminary version

presented at the International Symposium on Semantics of Data Types,

Sophia-Antipolis (I 984).

Z. Manna and R. Waldinger, A deductive approach to program synthesis, ACM

TOPLAS, 2 (I)(1980) 92-121.

P. Martin-L~f, Constructive mathematics and computer programming, in Logic,

Methodology and Philosophy of Science VI, 1979 (North-Holland, 1982)

153-I 75. Also in Mathematical Logic and P~og~ing Languages,

(Prentice-Hall, 1984).

P. Martin-L~f, unpublished notes from a series of lectures given in Siena

(I 983).

P. Martin-L~f, The domain interpretation of type theory, unpublished notes from

a lecture given at the Workshop on Semantics of Programming Languages,

C~ teborg (198~D).

R. Milner, L. Morris, M. Newey, A logic for computable functions with reflexive

and polymorphic types, in P.oceedings Conference on Proving and

Im~oVing Programs, Arc-et-Senans (I 975).

B. NordstrSm, Programming in constructive set theory: some examples, in

Proceedings of the 1981 Conference on Functional Languages and Com-

puter Architecture, Portsmouth, N.H. (1981) 141-154.

B. ~ordstrSm and K. Petersson, Types and specifications, in Information Pro-

cessing 83 (North-Holland, 1983) 915-920.

B. NordstrSm, K. Petersson, J. Smith, An Introduction to ~rtin-L~f's ~pe

Theory, in preparation (1985).

L. Paulson, Constructing recursion operators in intuitionistic type theory,

technical report n0.57, University of Cambridge Computer Laboratory

(I 984).

J. Smith, On the relation between a type theoretic and a logical formulation of

the theory of constructions, Ph.D. thesis, Department of Mathematics,

University of GSteborg (1978).

346

J. Smith,

J. Smith,

The identification of propositions and types in Martin-LSf's type

theory: a programming example, in Foundations of Computation Theory,

LNCS 158 (Springer-Verlag, 1983) 445-456.

An interpretation of Martin-LSf's type theory in a type-free theory

of propositions, Journal of Symbolic Logic 49 (3) (1984) 730-753.

S47

Appendix A.

Expressions, arities and definitional equality: (see Martin-LSf (1 983) for a

full account).

Amities are built up from the ground arity (), and in general have the form

(a I ... an) where n is a natural number and a I , an are arities. Each

expression e has a certain arity a, which we write

e - a.

Expressions are built up from constants and variables by means of application

and abstraction. Assume that we have the constant (or variable) f - (a I ... a n)

and the expressions e~ - al, ... , e n - a n . Then we can form the appZ~at~on

f (e I e n) - () .

Moreover, assume that we have the expression e - () and the variables

x I - al, ... , x n - a n . Then we can form the o~stmaction

(x I , x n) e - (a I . . . an).
(We may also use certain syntactic conventions, such as infix and mixfix nota-

tion and writing (hx)e for k((x)e), (~x)e for ~((x)e), etc.)

Certain expressions are definit~o~lly equal written ~, for example,

((~1' " ' " ~) ~) (~l ~) ~ ~[~1 ~ I~1 ' " ' " ~] "

Abbreviations can be introduced by stating that certain expressions are defini-

tionally equal. If we have the expression e - () and the variables

x I - al, ... , x n - an, then we can introduce the constant c - (a I ... a n) by

c(x I , Xn) ~ e.

In this paper we are concerned with the following program forms which are

common to LTC and TT79:

348

Comstructors:

true - ()

false - ()

0 - ()

s - (())

< , ~- (()())

inl - (())

inn - (())

_ ((())).

Selectors:

if_ then_ else _ -

~ee - (()()(()()))
split - (()(()()))

when . (()(())(()))

* (()()).

(()()())

We use the following abbreviations:

m+n = n e o (n , m , (n ' , y) s (y))

m×n ~ r e c (n , o , (n' , y)y+n)

m-n -- nee(n,m,(n' ,y)p(y))
p(n) =_ r e e (n , O , (n ' , y) n ')

It(m,n) - nee(n,false,(n',y)on(y,eq(m,n')))

eq(m,n) - eqi(n)~m

eqi(n) - nee(n, (bin)zero(m), (n' ,y) (hm)nee(m,false, (m' ,z)y~m °))

zero(n) =_ .ee(n, true , (n ' ,y)false)

on(a,b) - if a then true else b.

Computation rules:

b ~> true a -> e
if b then a else a' ~> e

b -> false a' => e
i~" b then a else a' ~> e

n ~> 0 a ~> c
neeCn,a,e) ~> e

349

n .> s(m) e (m ,vec (m ,a , e)) => c
vec(n,a,e) .> c

,~,,,=> <a,b> e(a,~,b) E> c
split(p,e) -> c

q => i n l (a) d(a) => c
when(q,d ,e) *> c

,,~,,,,-> inv (b) e(b) ~> c
when(q ,d ,e) => c

.> ~(b) b(a) -> c

f * a => c

Moreover , a c a n o n i c a l program (one the o u t e r m o s t form o f which i s a c o n s t r u c t o r)

has itself as value.

The computation rules define a certain value relation =>. This is not the

usual one (to fully evaluated for~ in the terminology of NordstrSm, Petersson

and Smith (1985)), which we denote ==> and which is obtained from -> by con-

tinuing to evaluate the parts of arity () of a canonical program. For example,

s(o)+s(o) -> 8(8(0).0)

but

a(o).s(o) - - > s(s(o)).

