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Abstract

The traditional notions of strong and weak normalization refer to properties of a binary reduction
relation. In this paper we explore an alternative approach to normalization, where we bypass the
reduction relation and instead focus on the normalization function, that is, the function which
maps a term into its normal form. We work in an intuitionistic metalanguage, and characterize a
normalization function as an algorithm which picks a canonical representative from the equivalence
class of convertible terms. Hence we also get a decision algorithm for convertibility.

Such a normalization function can be constructed by building an appropriate model and a function
“quote” which inverts the interpretation function. The normalization function is then obtained by
composing the quote function with the interpretation function. We also discuss how to get a simple
proof of the property that constructors are one-to-one, which usually is obtained as a corollary of
Church-Rosser and normalization in the traditional sense.

We illustrate this approach by showing how a glueing model (closely related to the glueing con-
struction used in category theory) gives rise to a normalization algorithm for a combinatory formula-
tion of Gddel System T. We then show how the method extends in a straightforward way when we add
cartesian products and disjoint unions (full intuitionistic propositional logic under a Curry-Howard
interpretation) and transfinite inductive types such as the Brouwer ordinals.

1 Introduction

There is a striking analogy between computing a program and assigning semantics to it. This analogy
is for instance reflected in the similarity between the equations defining the denotational semantics of a
language and the rules of evaluation in an environment machine [16, 28, 21].

In this paper we use this analogy to give a semantical treatment of normalization by building a non-
standard model, and a function quote which maps a semantic object to a normal term representing it.
The normalization function nf is then obtained by composing quote with the interpretation function
[ ], which maps a term into its non-standard meaning. This approach to normalization bypasses the
binary reduction relation and its traditional properties of strong and weak normalization and Church-
Rosser. Instead of these properties we shall use that a term is convertible to the term returned by the
normalization function

a conv nf a

and that the normalization function maps convertible terms to equal terms
a conv a’ — nf a = nf @

It follows that the normalization function picks a representative (a normal form) from each equivalence
class of convertible terms
a conv a' < nf a = nf o

and hence can be used to decide convertibility by comparing normal forms. Note that this notion of
normal form does not refer to a reduction relation and is not necessarily a normal form in the traditional
sense.



Our starting point was the reading of two early papers by Martin-Lof, where he introduced this
approach in the context of a general discussion of intuitionistic abstractions on the meta level and the
notion of definitional equality [18]. He also proved normalization for intuitionistic type theory [19] in this
way. While analyzing these ideas, we realized that there was a close connection to the work by Berger
and Schwichtenberg [5]. They showed how to get a normalization algorithm (returning long normal
forms) for the simply typed Apn-calculus by inverting an interpretation function.

Here we develop this approach for a small functional programming language based on typed combi-
natory logic. First we study a combinatory version of Godel System T in section 2. We give its syntax
and standard semantics. Then we show how to derive a normalization algorithm by enriching the stan-
dard semantics of function types with a syntactic component, which keeps track of normal forms. We
then show how to prove that this algorithm yields a decision algorithm for equality by constructing a
glueing model, similar to the model used by Lafont [14] in his work on deriving the categorical abstract
machine from a proof of termination for a categorical combinator language. Furthermore we show how
metamathematical properties, such as consistency and that constructors are one-to-one can be derived.
Finally, we show how our glueing construction can be modified to give a proof of weak normalization in
the traditional sense and how Church-Rosser then follows as a corollary.

In section 3 we show how our method extends in a straightforward way when finite disjoint unions
and cartesian products are added to the language. By the Curry-Howard identification of proposition
and types we thus get a model-based proof of normalization for full intuitionistic propositional logic.

In section 4 we show how to extend our method to transfinite inductive types by giving the example
of Brouwer ordinals.

It was essential to us (and to Martin-Lof [18]) to think in terms of an intuitionistic metalanguage when
developing these ideas. We also wished to show in detail that Martin-Lof’s intuitionistic type theory
was adequate as a formal metalanguage for this task and implemented our constructions using ALF —
an implementation of Martin-Lof type theory [1]. In section 5 we discuss issues which relate specifically
to the metalanguage and its implementation. Following suggestions from the referees we have rewritten
section 2-4, which were originally derived from a formal ALF-development, in a more informal style to
make them accessible to readers unfamiliar with Martin-Lof type theory.

In section 6 we discuss related work.

2 Godel System T

2.1 Syntax

We begin by defining the set Type of types inductively. This set is built up by the following two rules
e if A, B € Type then A = B € Type,
e N € Type.

We use infix right associative notation for = .
We then define the sets of terms T(A) indexed by A € Type. It is inductively generated by the
following rules

e K(A,B) € T(A= B = A)if A B € Type,
¢ S(A,B,C)eET(A=B=C)=> (A= B)=> A= C)if A, B € Type,

app(A, B,c,a) € T(B) if A, B € Type, ¢ € T(A = B) and a € T(A),

0 € T(N),

e s(a) € T(N) if a € T(N),

rec(C,d,e) e T(N=C) if C € Type,d € T(C') and e e T(N = C = ().



We shall use polymorphic notation whenever appropriate for improving readability. For example, we
write K, S, app(ec,a), rec(d,e) for K(A, B), S(A, B,C), app(A, B,c,a), and rec(C,d, e) respectively.

Note that we directly generate the well-typed terms of each type. This is different from the traditional
approach, where one first introduces a set of raw terms and then defines a binary typing relation between
raw terms and types. We discuss this point further in section 6.1.

2.2 Intended semantics
In the intended semantics we interpret a type A as a set [A]:

[A= B] [A] — [B]
[N] = N

The interpretation [a]a € [A] of an object a € T(A) is defined by recursion on the inductive generation
of a:

K] = AzAy.z
[s] AgAfre.g x (f x)
[app(c.a)] = [d] [a]
[o] 0
[s@] = sl
[rec(d,e)] = rec [d] [e]

We work in the intuitionistic metalanguage of Martin-Lof type theory, and our intended semantics can
thus be viewed as an intuitionistic version of the standard (Tarski) set-theoretic semantics of Goédel Sys-
tem T. However, the reader who prefers to look at metalanguage expressions as in informal mathematics
or as in formal set theory should have no problem, since Martin-Lof type theory has a straightforward
“naive” set-theoretic semantic [11].

We point out that there is a close parallel between object language expressions (of Gédel System T)
and metalanguage notations used for their interpretation. We use the convention that object language
expressions are written in teletype and metalanguage expressions in italic. Moreover, we have arbitrarily
chosen to use logical symbols in the object language (=, L, T,V,A) and type forming symbols in the
metalanguage (—, 0,1, +, x).

For example, the set N of natural numbers in the metalanguage are generated inductively by 0 and

s. We have a metalanguage primitive recursion operator
recceC—-(N—-C—-C)—>N->C
defined by

recde() = d

recde (sa) = ea(recdea)

Moreover, we introduce conversion as a family of relations indexed by the types: a convy a' for
A € Type and a,a’ € T(A). (Also here we often omit the index and write a conv a’.) This relation is
inductively generated by the following rules:

a conv a

a conv a’ a’ conv a”’

a conv a’’

a conv b
b conv a



¢ conv ¢ a conv a’

app(¢, a) conv app(¢’, a’)

a conv a’

s(a) conv s(a’)

d conv d’ e conv e’

rec(d,e) conv rec(d’, e)
app(app(K,a),b) conv a

app(app(app(S, 9), f),a) conv app(app(g, a), app(f, a))

app(rec(d, e),0) conv d

app(rec(d, e), s(a)) conv app(app(e, a), app(rec(d, e), a))
Theorem 1 Ifa conv o’ then [a] = [d'].
Proof. By induction on the proof that a conv a’. a
Corollary 2 Gadel System T is equationally consistent, that is, it has no derivation of 0 conv s(0).

Proof. If we assume 0 conv s(0), then we can prove 0 = 1 - a contradiction. ad
However, to prove for example that the constructor s is one-to-one for convertibility we need the
normalization proof.

2.3 Normalization algorithm

The interpretation function into the intended model is not injective and hence cannot be inverted. (The
intended model is a A-algebra and all combinatory algebras are not A-algebras. So there are terms which
are identified in the model but not by convertibility, see Barendregt [3]).

However, if we enrich the interpretation of = to have a syntactic as well as a semantic component:

[A= B] = T(A= B)x([A] = [B])
[N] = N

then the function
quote, € [A] — T(A)

defined by
quote,_p (c,f) = ¢
quotey 0 = 0
quotey (s p) = s(quotey p)

inverts the interpretation function

[14 €T(A) — [A]



defined by

[K] = (K, \p.(app(K, quote p), Aq.p))
[s] = (s,Ap.(app(S, quote p), Aq.(app(app(S, quote p), quote q), Ar.appy (appum p r)(appm q 7))))
[app(c,a)] = appu [c] [a]
[o] = 0
[s@] = s [al
[rec(d,e)] = (rec(quote [d], quote [e]), rec [d] (Azx.Ay.appum (apprm [€] z) y))

where we have used the following application operator in the model:
appm (¢, f)q = fq
The normal form function can then be defined by
nfa = quote [a]
!

Theorem 3 Ifa conv a’ then nfa = nfd’.

Proof. We can check the equalities

[app(app(K,a),b)] = [a]
[app(app(app(S,9), f),a)]l = [app(app(y, a),app(f; a))]
[app(rec(d,e),0)]] = d
[app(rec(d,e),s(a))] = [app(app(e,a),app(rec(d,e), a))]
by pure equational reasoning. It hence follows that [a] = [a’] whenever a conv @', by induction on the
proof that a conv a’, and hence that nf @ = nf @’ whenever a conv a’. O

2.4 The normalization algorithm in ML

As pointed out to us by Thorsten Altenkirch, this program can be translated into SML [22], and provides
then a concise and elegant implementation of combinatory reduction.

s | k | ap of tm¥tm;
v_arr of tm*(vl->vl);

datatype tm
datatype vl

fun term_part (v_arr (M,_)) = M;
fun val_ap (v_arr (_,f),x) = f x;

fun eval s =
v_arr (s,fn x => v_arr (ap(s,term_part x),
fn y => v_arr (ap (ap (s,term_part x),term_part y),
fn z => val_ap (val_ap (x,z),
val_ap (y,2)))))
| eval k = v_arr (k,fn x => v_arr (ap(k,term_part x),
fn y => x))
| eval (ap(x,y)) = val_ap (eval x,eval y);

fun norm t = term_part (eval t);

2.5 Normalization proof

Theorem 4 a conv nf a, that is, quote is a section of [ ].



Proof. We use initial algebra semantics to structure our proof. A model of Godel System T is a
typed combinatory algebra extended with operations for interpreting 0, s, and rec, such that the two
equations for primitive recursion are satisfied. The syntactic algebra of terms T(A) under convertibility
conv, is an initial model. The non-standard model described in 2.3 is another model. The interpretation
function [ J4 : T(A) — [A] is the unique homomorphism from the initial model into the non-standard
model. If we could prove that quotey, : [A] — T(A) also is a homomorphism, then it would follow that
nfy : T(A) — T(A), which is the composition of [ J4 and quote,, is also a homomorphism. Hence it
must be equal to the identity homomorphism, and hence a conv nf a.

But quote does not preserve application. However, we can construct a submodel of the non-standard
model, such that the restriction of quote, to this submodel is a homomorphism. We call this the glued
submodel, since it 1s closely related to the glueing construction in category theory, see section 2.6 and
Lafont [14].

In the submodel we require that a value p € [A] satisfies the property Gla p defined by induction on
the type A:

e Gla=p q holds iff for all p € [A] if Gla p then

1. Glg(appm ¢ p) and
2. app(quote ¢, quote p) conv (quote appyr ¢ p)

o Gly nforallne N.

Lemma 5 For all a € T(A) Gla [a]. Hence, the submodel of glued values indeed is a model of Gddel
System T.

Proof: By induction on a. We show the cases for K and rec. The other cases are similar or trivial.
Case K. We wish to prove

Gla=p=a (K, Ap.(app(K, quote p), Aqg.p))
But this is immediate by unfolding the definition of Gls=p= 4 and using
app(app(K, quote p), quote ¢) conv quote p
Case rec. We wish to prove
Glyoc: (rec(quote [d], quote [e]), rec [4] (e Ay-appar (appur [€] 2) 1))

from the induction hypotheses Gl¢ [d] and Gly_ oo ¢ [e].
So let GIn n and prove by induction on n that

1. Gl¢ (rec [d] (Ax.Ay.appyr (appus [e] =) y) n) and

2. app(rec(quote [d], quote [e]), quote n) conv (quote (rec [d] (Az.Ay.appm (appum [e] ) y) n))
The base case n = 0 is clear:

1. follows from the induction hypothesis, and

2. app(rec(quote [d], quote [e]),0) conv (quote [d])

The induction step n = s m follows because

1. follows from the induction hypotheses, and

2.

app(rec(quote [d], quote [e]), quote (s m))

conv app(app(quote [e], quote m), app(rec(quote [d], quote [e]), quote m))

appur (appyr [e] m) (rec [d] (Ax.Xy.appas (appar [e] z) y) m))
rec [d] (Ax.Ay.appar (appum [e] ©) y) (s m))

(

(
conv app(app(quote [e], quote m), quote (rec [d] (Az.Ay.appar (appum [e] ©) y) n))

conv quote (

(

conv quote



Lemma 6 quote is a homomorphism from the algebra of glued values to the term algebra.

The definition of glued value is such that quote commutes with app. The other cases are also trivial.
It now follows from lemma 5 and 6 that nf is an identity homomorphism as explained above. o

Corollary 7 a conv b iff nf a = nf b.
Proof. nf a = nf b implies a conv b follows from theorem 4. The reverse implication is theorem 3.
O

2.6 Categorical glueing

The glueing construction in category theory builds a new category [15, 23] from a functor T': C — S
with objects arrows

qA

X TA

and arrows pairs (c, f), such that the following square in & commutes:

x 1 74
f Te
Y TB

qB

The Freyd cover is the special case of where § is the category of sets and TA = C(1, A).

We have chosen notation to suggest the connection between our model of glued values for combinatory
logic and the glueing construction: the commuting square in the definition of arrow in the glued category
is reminiscent of the the definition of glued value for a function type.

2.7 Weak normalization revisited

We end this section by reintroducing the relation red of reduction (in zero or more steps) and point out
that the normalization proof in our sense can easily be modified to a proof of weak normalization in the
traditional sense. We modify our glueing model so that instead

o Gla=p q holds iff for all p € [A] if Gla p then

1. Glg(appm ¢ p) and

2. app(quote ¢, quote p) red (quote appy q p)
o Gily nforallne N.

Theorem 8 Weak normalization: a red nf a and nf a is irreducible.

Proof. The proof of a conv nf a is easily modified to a proof that ¢ red nf a.
Tt remains to prove that nf @ is irreducible. But if let Nf(A) C T(A) be the set of irreducible terms,
and we redefine the interpretation so that

[A= B] = Nf(4= B)x ([A] — [B])
then we can verify that quote and nf have the following types

quote, € [A] — Nf(A)
nfy € T(A) - Nf(A)



Corollary 9 Church-Rosser: if a red b and a red b’ then there is ¢ such that b red ¢ and b’ red c.

Proof (due to Peter Hancock, see Martin-Lof [19]). It follows that b conv b’ and hence by theorem
3 that nf b = nf b'. Hence let ¢ = nf b = nf b’ and by theorem 8 b red ¢ and ¥’ red c. O

3 Propositional calculus

3.1 Syntax

We now extend our object language with finite disjoint unions and finite cartesian products, so that
we get full intuitionistic propositional calculus by the Curry-Howard identification of propositions and

types.
The new inductive clauses for Type are:

o | € Type,
e T € Type,
o ANB € Typeif A, B € Type,
e AV B e Typeif A, B € Type.

There are also new term constructors corresponding to the introduction and elimination rules for
propositional calculus

e case0(C) € T(L = C) if C € Type,

o >eT(T),

e inl(A,B,a) € T(AV B) if A, B € Type and a € T(A),

e inr(A,B,b) € T(AV B) if A, B € Type and b € T(B),

o case(A, B,C,d,e)cT(AVB=C)if A,B,CeTypeandd € T(A=C), e € T(B = (),
o <a,b>€ T(AAB)if A,B € Type and a € T(A),b € T(B),

o fst(A,B,c) € T(A) if A, B € Type and ¢ € T(A A B),

e snd(A, B,c) € T(B) if A, B € Type and c € T(A A B).

As before, we adopt polymorphic notation for these constants; for instance inl(a) abbreviates

inl(A, B,a) if A, B € Type and a € T(A).

3.2 Intended semantics

We have the following intended meaning of the new types

[L] = 0

[T1 = 1
[AVB] = [A]+[B]
[AAB] = [Alx[B]

and of the new terms

[case0] = casey

<] = ¢
[inl(a)] = nl [a]

[inr(b)] = inr [B]



[case(d, €)] case [d] [e]

[<a,0>] = ([a], [0])
[£st(c)] = fst [c]
[snd(c)] = snd []

We hope that metalanguage notations are clear. For example,
caseapc € (A—-C)— (B—-C)—>(A+B)—>C
is the function defined by

case de (inla) = da

casede (inra) = eb
Theorem 10 Logical consistency: there is no element (proof) in T(L).

Proof. If we specialize the term interpretation function to L we get a function in T(L) — 0. Hence
assuming that there is an element in T(L) leads to a contradiction. O
This proof can be seen as an internalization of the proof of “simple-minded” consistency in Martin-Lof

[20].

We next extend the definition of conversion with the following rules
app(case(d, ¢),inl(a)) conv app(d,a)
app(case(d, e), inr(h)) conv app(e,b)

fst(<a,b>) conv a
snd(<a,b>) conv b

together with congruence rules for the new term constructors. We can check that these rules are valid
under the intended semantics.

3.3 Normalization algorithm

We can extend the non-standard model in 2.3, which can be used for normalization, by interpreting the
new type formers as in the intended semantics.
We also extend the definition of quote:

quoter () = <>
quote,, g (inl p) = inl(quote, p)
quote,, g (inr ¢) = inr(quotegy q)
quotey,p (p,9) = <quotey p, quotep ¢>

We also need to extend the interpretation function for terms in the enriched model (we omit cases
which are the same as for the intended interpretation).

[case0] = (caseO,casep)

[case(d,e)] = (case(quote [d], quote [e]), case (Az.appy [d] ) (Ay.appar [€] y))

3.4 Normalization proof

We extend the definition of Gl as follows.
o Glt () is true.
o Glavp (inl p) iff Gla p; Glavp (inr q) iff Glp q.
o Glaprp (p,q)iff Gla p and Glp q.

The normalization proof in 2.5 can then be extended without difficulty.



4 Brouwer ordinals

4.1 Syntax

We finally show that the methods extends to tranfinite inductive types by giving the example of Brouwer
ordinals:

Ord & Type.
The new constructors for terms are
e 0€T(0rd),
e sup(h) € T(0rd) if b € T(N = 0rd),

e ordrec(C,d,e) € T(0rd = C) if d € T(C) and e € T((N = 0rd) = (N = C) = C).

4.2 Intended semantics

[ord] = O
[o] = 0
[sup(®)] = sup [8]
[ordrec(d,e)] = ordrec [d] [e]

Here the metalanguage Brouwer ordinals O is the set inductively generated by the rules
e 0€ 0
e supbeOifbe N - 0.
We thus have a recursion operator for ordinals:
ordrecc €C - (N -5 0) =5 (N-C)—=>C)—-0->C
defined by

ordrecde 0 = d
ordrec d e (sup b) = e b (Azx.ordrec d e (b z))

In the object language we have the new conversion rules

app(ordrec(d,e),0) conv d
app(ordrec(d,e),sup(b)) conv app(app(e,b),ordrec(d,e)ob)

together with congruence rules for the new term constructors. Here we have used an auxiliary syntactic
binary composition operator cob € T(A = C) if c € T(B = ('), b € T(A = B)) defined by

cob = app(app(S, app(K, c)),b).

4.3 Normalization algorithm

To extend our normalization algorithm, we introduce a new model Oy, of the Brouwer ordinals. This
model is obtained from the inductive definition of the semantic Brouwer ordinals 0. As for function
spaces in the non-standard model, we introduce a syntactic component as a new argument to the sup-
constructor yielding the following inductive definition of Oy,:

o On € Oum,

o supyy ¢ f €Oy ifceT(N=0rd) and f€ N = Opy.

10



It follows that we have a recursion operator for Opy:
ordrecyy € C' — (T(N=0rd) » (N - O0y) > (N -C)—>C) =0y = C
defined by

d
ec f (Az.ordrecyr d e (f z))

ordrecyr d e Opr

ordrecyr d e (supyr ¢ f)

Now we are ready to extend [ ] and quote:
[oxd] = Om
The quote function has the following new clauses:
quotegrq Opy = O
quoteqgyy (supy ¢ f) = sup(e)

The term interpretation function in the enriched model has the following new clauses:

[o] = Owm,
[sup(d)] = supm (quote [b]) (Az.appar [b] =),
[ordrec(d,€)] (ordrec(quote [d], quote [e]),
ordrecyr [d] (Ax.Ay.Az.appar (appum [€] (2, y)) (ordrec(quote [d], quote [e]) o x, z))

4.4 Normalization proof

We extend the definition of glued value to ordinals. The property Glo of elements of Oy is defined
inductively by the following rules

° Glo OM,;

o Glp (suppr ¢ f) iff c€ TN =0rd), f€ N — Op, and for all pe N,
1. Glo(f p) and
2. app(ec, quote p) conv quote (f p)).

The normalization proof in 2.5 extends.

5 Constructors are one-to-one
Theorem 11 If s(a) conv s(b) then a conv b.

Proof. Since nf is a homomorphism, the constructor s commutes with the normalization function:
nf (s(a)) conv s(nf a). Even more, by definition of quotey, the constructor s commutes with the
normalization function up to equality of terms. Indeed,

nf (s(a)) = quote [s(a)]
= quote (s [a])
= s(quote [a])
= s(nfa).

Let us assume that a, b € T(N) satisfy s(a) conv s(b). Hence,

nf (s(a)) = nf (s(t))

11



since conversion implies identity of normal forms. Hence,
s(nf a) = s(nf b)

by commutation of nf and s, and finally

nf(a) = nf(h)
(The constructor s is one-to-one for the equality of the meta-language!) From this follows
a conv b
because any term is convertible to its normal form. O

Theorem 12 If sup(b) conv sup(b’) then b conv b'.

Proof. What is crucial is that the constructor sup commutes with normalization up to syntactic
equality:

nf (sup(b)) = quote [sup(d)]
quote (supy (quote [b]) (Az.appuyr [b] )

sup(quote [b])
= sup(nfb).

O
The usual way of proving the fact that constructors are one-to-one for conversion is to rely on the
Church-Rosser’s property.

6 The role of an intuitionistic metalanguage

Why do we emphasize that we work in an intuitionistic metalanguage? The reason is of course conceptual
rather than formal. Indeed, we have presented the technical development in an informal mathematical
style readily understandable from a classical as well as an intuitionistic point of view.

The most fundamental fact is that intuitionistically a function is the same as an algorithm, so a
normalization function is as good as step-by-step-reduction for representing a mechanical procedure.
Furthermore, intuitionistically a proof that each term has a normal form is a function which given a
term returns a normal term (and a proof that the returned term is a normal form). This is one way
of deriving a normalization function: by extracting the computational content of a normalization proof.
This is based on the Brouwer-Heyting-Kolmogorov-interpretation of proofs in intuitionistic logic and of
the Curry-Howard isomorphism between propositions and types.

The reader is referred to Martin-Lof [18] for further discussion of the role of the intuitionistic meta-
language. We started our investigations while trying to answer the question: what is an elegant approach
to normalization provided Martin-Lof’s intuitionistic type theory is used as a metalanguage? We also
wished to experiment with computer-assisted proofs using the proof assistant ALF [1] for intuitionstic
type theory and hoped that formalization would throw light on for example the following statement [18]:

The transition to intuitionistic abstractions on the metalevel is both essential and non-
trivial. Essential, because in what seems to me to be the most fruitful notion of model,
the interpretation of the convertibility relation conv, is standard, that is, it is interpreted
as definitional equality =gy in the model, and definitional equality is a notion which is
unmentionable within the classical set theoretic framework.

Below we shall discuss some aspects of the formalization which were specifically guided by the struc-
ture of Martin-Lof type theory: the representation of syntax, different notions of equality, and the
representation of algebraic notions in type theory.

The reader is referred to the following books and papers on Martin-Lof type theory: Martin-Lof [20]
and Nordstrom, Petersson, and Smith [25] for general information, Dybjer [12] on inductive definitions
in type theory, and to Coquand [7] on definition by pattern-matching in type theory.

12



6.1 Non-standard syntax

Our presentation of the syntax of typed combinatory logic was non-standard in its use of dependent
types. In this way, each subterm is decorated with its type. An alternative presentation would have been
to define first a set of raw terms Raw, with an untyped conversion relation ¢ conv #’, as done usually in
combinatory logic [13], and then to introduce a typing relation ¢ ¢ A between raw terms ¢ € Raw and
types A € Type. It is direct to define a map strip, € T(A) — Raw which strips a typed term from its
type decorations. The following proposition is then proved by induction:

Proposition 13 If a € T(A), then strip a ¢ A. Furthermore, if ' € T(A) and a convy d, then
strip a conv strip a’.

This alternative presentation with raw terms is actually the one we have used informally, when
choosing a polymorphic notation to represent our terms. A natural question is then: if we use a raw
expression ¢ to represent an expression of a given type a € T(A), are we sure that this expression does
represent such a term in an unambiguous way? It is first easy to prove by induction:

Proposition 14 Ift € Raw is such thatt ¢ A, then there exists a € T(A) such that strip a = 1.

The problem now is that, for a given ¢ ¢ A, there can be several such term a that corresponds to t.
For instance K 0 I is a term of type N which has several possible type decorations. This is a typical
coherence problem, needed in general to justify an overloaded notation. The following proposition solves
this coherence problem, but only for the pure system of typed combinators without rec.

Proposition 15 Ifa,a’ € T(A) are such that strip a = strip d’, then a convy d'.

Proof: We don’t know any direct proof of this proposition. The following indirect argument is due to
Streicher [29]. First, we prove unicity of a typed decoration of a raw term ¢ € A for ¢ in normal form. The
proposition results then from the normalisation theorem and the fact that strip preserves conversion.
O

This proposition does not hold for the system with rec. Indeed, it is then possible to exhibit raw
terms that have non convertible decorations, as shown by Salvesen [27]. Tt is thus important to work
with decorated terms in this case.

6.2 On equality in the metalanguage

The quotation [18] in the introduction of this section argues that in an intuitionistic notion of model it
is most fruitful to interpret equality (conversion) in the object language as definitional equality in the
model. This requirement is satisfied for our formalized models. Both the intended model in 2.2 and the
non-standard model in 2.3 satisfy the following remarkable definitional equalities:

[app(app(K;a),b)] = [d]
[app(app(app(S, ), f),a)] = [app(app(y;a) app(f, a))]

The metalanguage expressions on both sides have the same normal form. As a consequence, the ALF-
proofs that equality in the object language is mapped to equality in the metalanguage (theorems 1 and
3) are essentially done automatically by ALF’s normalization procedure.

However, when we represent the fact that the interpretation function maps equal terms in the object
language to equal elements in the model as a formal proposition in type theory, we have to replace
definitional equality by ‘intensional’ propositional equality 7:

A Type,z : T(A), 2" : T(A),z conv 2’ I I(z,2)

The proof of this proposition is by induction on the proof of @ conv a’ and is almost immediately
mechanizable, since each case of the induction is immediately reduced to a proof of reflexivity by ALF’s
normalization.

However, 1t 1s not the case that the judgement

A:Type,z:T(A),z' : T(A),z conv 'z =2

about definitional equality is valid, since z and z’ are different normal forms.
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6.3 Representing algebraic notions in type theory

When representing an algebraic structure in type theory it is often the case that the appropriate notion
of carrier is not that of a set but a set with an equivalence relation. For example, a monoid in type
theory is given by a set M, an equivalence relation F, a unit element e, and a multiplication operation *
respecting the equivalence relation E, together with proofs that * is associative (with respect to E) and
that e is a left and right unit of * (with respect to £).

Similarly, a typed combinatory algebra in type theory is given by a family of sets M (A) with equivalence
relations F(A) indexed by types A; families of elements indexed by types Kar(A, B) and Sy (A, B, C)
and an application operation appas (A, B) respecting the equivalence relation; together with proofs of the
combinatory axioms (formulated with respect to the equivalence relation).

Algebraic structures can be formalized as contezts in type theory [9, 21], that is, as lists of variables
and types of the form [z1 : a1,..., 2, : a,]. We have dependent types so that a type of a variable may
depend on earlier variables. The notion of a typed combinatory algebra can hence be formalized as the
following context:

(M (A : Type)Set;
Ky (A, B : Type)M (A = B = A);
Sm (A, B,C :Type)M((A=>B=C)= (A= B)=>A=C);
appv : (A, B : Type; M(A = B); M(A))M(B)
E (A : Type; M(A); M (A))Set;
refg (A : Type;a: M(A))E(a,a);
symg (A : Type;a,b: M(A); E(a,b))E(b,a);
transg (A :Type;a,d’,a" : M(A); E(a,d’); E(d’,a"))E(a,d");
appcong (A, B : Type;c,c’ : M(A = B);a,a’ : M(A); E(c,c'); E(a,a’))E(appy (¢, a), appar(c’, a'));
Kprazxiom (A, B : Type;a: M(A);b: M(B))E(appu (appuy (Knr,a),b), a);
Spyraziom (A,B,C :Type;g : M(A=B=0C)));f: M(A= B);a: M(A))

E(appum (appy (appar (S, 9), f), a), appar(appar (9, a), appar(f, a)))]

Here we have used the type-theoretic notation for dependent function types: (z : a)f[z] is the set of
functions f which maps an object @ : a to an object f(a) : fla]. Set is the type of sets in the type-theoretic
sense, so (A : Type)Set is the type of Type-indexed families of sets.

Typed combinatory algebras where E is propositional identity I are especially interesting and simple.
We call them strict to suggest that a distinction reminiscent of that between a strict and non-strict
notion in category theory. In the context formalizing the notion of a strict combinatory algebra we can
omit several components:

(M (A : Type)Set;
Ky @ (A B:Type)M(A = B = A);
Su (A4, B,C:Type)M((A=B=C)= (A= B)=>A=C);
appuy (A, B : Type; M(A = B); M(A))M(B)
Kyraziom (A, B : Type;a : M(A);b: M(B))I(appm (appy (Kar, a),b), a);
(A, B,C :Type;g: M(A= B =C)));f: M(A= B);a: M(A))

I(appn (appu (appar (S, 9), f), a), appur (appar (g, a), appar (f, a)))]

Symaziom

A particular instance of an algebraic notion (a particular monoid, a particular typed combinatory
algebra, etc.) can be formalized as an ezplicit substitution, that is, as an assignment {21 :=ay;...2, =
a,} of constants to variables in the appropriate context.

For example, the intended model described in 2.2 is a strict combinatory algebra formalized by the
following explicit substitution:

{M = T
Ky = Az )y
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Su = AgAfAz.gw (f 2);

appM = appuM;
Kyaziom = ref;
Spariom = ref}

where ref is the proof of reflexivity, compare the discussion in 6.2.

Furthermore, we can formally define and instantiate the notions of homomorphism of models and of
an initial model inside type theory. In particular we can build the glued model of section 2.5. Note also
that this construction can be performed on any model, and not only the term model. In this way we can
define abstractly the normalization function over any initial algebra.

7 Related work

Lafont [14] used glueing for proving termination and coherence theorems for categorical combinators.
These results were then used to derive the evaluation mechanism of the categorical abstract machine.
There is a close connection between his construction and our glueing construction (and the term “quote”
is Lafont’s). The fundamental difference between his work and ours is in our application to normalization
and its corollaries. The difference in attitude and goals can be illustrated by the following remark, where
he argues that the semantic component of his interpretation cannot directly be used for computing: ‘Mais
les waleurs abstraites de A — B, avec leur composante fonctionelle, ne semblent guére “mechanisable” ’
[14][page 18]. In contrast to this, we make use of the fact that these abstract values, when represented
in our intuitionistic metalanguage, are indeed mechanizable. But, of course, the implementation of this
metalanguage may still make use of an environment machine.

It is interesting to compare this situation with the following comments [17]: ‘Of course, the fact that
there is a not necessarily mechanical procedure for computing every function in the present theory of
types does not require any proof at all for us, intelligent beings, who can understand the meaning of the
types and the terms and recognize that the axioms and rules of inference of the theory are consonant
with the intuitionistic notion of function according to which a function is the same as a rule or method.’

Related to this discussion is the following question: what kind of strategy (call-by-value, call-by-
name, etc.) does the normalization algorithm extracted from these semantical arguments follow? The
answer is simple: it is exactly the strategy used at the meta-level.

The technique in this paper can easily be generalized to typed A-calculus with weak reduction, where
no reduction under A is allowed. For details we refer to the preliminary version of the present paper [8].

Berger and Schwichtenberg [5] showed how to obtain an algorithm which returns long n-normal forms
for simply typed A-calculus by inverting an interpretation function into the standard model. Berger [4]
also showed how this function can be obtained from a standard normalization proof by using a modified
realizability model for program extraction.

Catarina Coquand [6] constructed a similar algorithm which returns long 7-normal forms for a version
of the simply typed A-calculus. Her approach is more algebraic than Berger and Schwichtenberg’s.
Another difference is that she inverts the interpretation function into a Kripke model. This proof has
also been given a categorical reconstruction by Altenkirch, Hofmann, and Streicher [2].

Similar techniques as ours have also been considered for other purposes than normalization. Pfen-
ning and Lee [26] considered a notion of metacircularity for the polymorphic A-calculus and defined an
‘approximately metacircular interpreter’ similar to our ‘intended semantics’. Mogensen [24] considered
similar notions for the untyped A-calculus intended to be used as a foundation for partial evaluation. He
defined a self-interpreter similar to our intended semantics and a self-reducer similar to our normalizer.
Both these papers use higher-order abstract syntax for representing A-terms, whereas we use a concrete
representation. A related use of glueing is de Vrijer’s [10] method for getting an exact estimate of the
height of the reduction tree of a term.
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