
A Functional Programming Approach

to the Specification and Verification

of Concurrent Systems

Peter Dybjer ∗ Herbert Sander *

Abstract

Networks of communicating processes can be viewed as networks of stream transformers
and programmed in a lazy functional language. In this way the correctness of concurrent
systems can be reduced to the correctness of functional programs. In this paper such correct-
ness is proved formally in the µ-calculus extended with recursion equations for functional
programs. The µ-calculus is chosen since it allows the definition of properties by least
fixed points (induction) as well as by greatest fixed point (coinduction) and since greatest
fixed points are useful for formalizing properties, such as fairness, of infinitely proceeding
programs. Moreover, non-deterministic processes are represented as incompletely specified
deterministic processes, that is, as properies of stream transformers. The method is illus-
trated by proving the correctness of the alternating bit protocol. The µ-calculus has been
implemented in Paulson’s Isabelle system and the correctness of the protocol has been proved
mechanically.

1 What is a specification of a concurrent system?

Let us first recall what we mean by a specification of a single program. In ‘external’ logic a
specification is a property of a program. (Recently there has been much interest in ‘integrated’
programming logics, such as Martin-Löf’s type theory. See Dybjer [?] for a discussion about
external versus integrated programming logics.) Usually, such a specification is divided into an
input condition P and an input-output relation R. The specification then has the form

Spec f ≡ ∀x ∈ P.xR (f x).

Can this notion of specification be generalised to concurrent systems in a natural way? The
idea is to model a system as a Kahn-network or, if there are non-deterministic agents, as an
incompletely specified Kahn-network.

Consider a system which satisfies the following criteria:

• The topology of the system is fixed. Input and output channels are determined. Streams
of messages are communicated between the agents.

• Agents are separated into those which we wish to program and those which are predeter-
mined. The latter kind may be non-deterministic.

∗Preliminary version of a paper which appeared in Formal Aspects of Computing Volume 1 Number 4, 1989,

pp 303-319

Authors’ address: Programming Methodology Group, Department of Computer Sciences, Chalmers University

of Technology and University of Göteborg, S-412 96 Göteborg, Sweden. Electronic mail: peterd@cs.chalmers.se,

herbert@cs.chalmers.se.

1



• The purpose of the system is to realise a certain relation R between inputs and outputs,
provided that the inputs satisfy certain conditions P , and the predetermined agents satisfy
certain other conditions Q.

Let h be the stream transformers associated with the agents (the vector notation indicates
that there may be several agents), let is be the input streams, and let js be the output streams.
Then, since the topology is fixed, there are network transfer functions trans (one for each output
channel) such that

js = trans h is.

Note that these functions trans are Kahn-network analogues of function application and that
they only depend on the topology of the network.

By our second assumption, agents (and thus stream transformers) are separated into those
which we wish to program and those which are predetermined. If we use f for the former and
g for the latter, we can rewrite the equation:

js = trans f g is.

By our third assumption, the intended behaviour of the network is specified by the input
conditions P , by the conditions on the predetermined agents Q, and by the input-output relation
R. Thus the specification of our task, that is, to program f , is

Spec f ≡ ∀g ∈ Q.∀is ∈ P.is R (trans f g is).

We have thus shown the analogy between the specification of a concurrent system, which
satisfies the criteria above, and the specification of a single program.

The specification of a communication protocol satisfies our three criteria:

• It has a fixed topology:

input output
is

sender receiver

js

as bs

ds cs

channel

channel

- -
�

�
�

�
�

��3 Q
Q

Q
Q

Q
QQs

�
�

�
�

�
��+Q

Q
Q

Q
Q

QQk��
��

��
��

��
��

��
��

• Two of the four agents (the channels) are predetermined and our task is to program the
other two (the sender and the receiver).

• The purpose of the system is to produce output which is extensionally equal to the input,
provided the input is a stream of data items. In our proof below we assume that the input
stream is infinite. We know that the channels are unreliable transmitters, that is, that
each item is either correctly or erroneously transmitted. We also assume that they are
fair in the sense that for each ‘time’ there is a later ‘time’ when they transmit an item
correctly.

2



Let trans be the network transfer function for the protocol topology. It satisfies

js = trans f1 f2 f3 g1 g2 is ,

where is is the input stream, js the output stream, f1 the function associated with the sender,
f2 and f3 the functions associated with the receiver, and g1 and g2 the functions associated
with the the channels. We can determine js from is by using the following system of equations:

as = f1 is ds ,

bs = g1 as ,

cs = f2 bs ,

ds = g2 cs ,

js = f3 bs .

So the recursion equations for trans are the following:(forall ...)

has f1 f2 f3 g1 g2 is = f1 is (hds f1 f2 f3 g1 g2 is),

hbs f1 f2 f3 g1 g2 is = g1 (has f1 f2 f3 g1 g2 is),

hcs f1 f2 f3 g1 g2 is = f2 (hbs f1 f2 f3 g1 g2 is),

hds f1 f2 f3 g1 g2 is = g2 (hcs f1 f2 f3 g1 g2 is),

trans f1 f2 f3 g1 g2 is = f3 (hbs f1 f2 f3 g1 g2 is).

If we use Inf for the property of being an infinite stream of data, ≈ for the relation of
extensional equality of infinite streams, and Futc for the property of being a fair unreliable
transmission channel, then the specification of our programming task is

Protocol f1 f2 f3 ≡ ∀g1, g2 ∈ Futc.∀is ∈ Inf .is ≈ trans f1 f2 f3 g1 g2 is .

We have thus reduced the protocol problem to a pure functional programming problem.

2 The µ-calculus

The pure µ-calculus is classical predicate calculus extended with a least fixed point operator µ
which is used for defining predicates (and relations) by induction.

In addition to the pure calculus we shall introduce syntax for the terms of the logic. These
terms are functional programs which are built up by application from certain basic combina-
tors. The proper axioms of the theory are rules of conversion (or recursion equations) for the
functional terms.

The following presentation is based on Park

2.1 Syntax

Let P,P ′ range over formulas, X over n-ary relation variables, R,R′,Φ over n-ary relation

terms, x over individual variables, and a, a′ over individual terms. Vector notation x and a is
used for sequences of n variables and terms.

⊥,⊤,¬P,P ∨ P ′, P ∧ P ′,∃x.P, t = t′, R a are formulas.
X,x.P, µX.Φ are n-ary relation terms, provided all occurrences of X in Φ are positive. An

occurrence is positive if it is within the scope of an even number of ¬-signs.

3



x, c, (a a′) are terms, provided c is a combinator. In this paper we use a collection of combi-
nators tailored to the example of the alternating bit protocol. First, we have the constructors

O and L for bits, nil ′ and :: (infix cons) for lists, 〈 , 〉 for pairs, and err and ok for error values.
Then, we have recursively defined functions, such as if , eq , not , hd , tl , ++ (infix append), and
corrupt and several others introduced later for programming the alternating bit protocol.

Remark 1. We do not introduced λ-abstraction for terms. This is because the standard
formulation of the µ-calculus requires that the syntax of terms is first order.

Remark 2. We will only make use of higher order functions in the general discussion. The
proof of the alternating bit protocol uses only first order function. Thus for this particular
purpose we could use a simpler data domain than a whole model of a functional language. Then
there would be one function symbol for each combinator above (and noone for application): for
example O, L, nil ′, err would be nullary, ok would be unary, and cons and 〈 , 〉 would be
binary.

Ordinary syntactic conventions apply regarding parentheses, infix notation, etc. We intro-
duce implication, equivalence, universal quantification, and bounded quantifiers as abbrevia-
tions:

P ⊃ P ′ ≡ ¬P ∨ P ′,
∀x.P ≡ ¬∃x.¬P,
P ≡ P ′ ≡ P ⊃ P ′ ∧ P ′ ⊃ P,
∀x ∈ R.P ≡ ∀x.x ∈ R ⊃ P,
∃x ∈ R.P ≡ ∃x.x ∈ R ∧ P,

We also introduce set notation for relations

a ∈ R ≡ R a ,
{x | P} ≡ x.P ,

{a1, . . . , an} ≡ {x|x = a1 ∨ · · · ∨ x = an} ,
R ∪ R′ ≡ {x | x ∈ R ∨ x ∈ R′} ,

CR ≡ {x|¬x ∈ R} ,
etc.,

and last, but not least, the greatest fixed point operator

νX.Φ ≡ C(µX.C(Φ[CX/X])).

2.2 Axioms and inference rules

First, we have axioms and inference rules of classical predicate calculus with equality.
Then, we have two axiom schemes for the µ-operator. The first one states that µX.Φ is a

prefixed point of the function which maps X to Φ:

Φ[µX.Φ/X] ⊆ µX.Φ.

The second one states that it is the least prefixed point:

(Φ[R/X] ⊆ R) ⊃ (µX.Φ ⊆ R).

We also have an axiom scheme

(x.P ) a ≡ P [a/x].

This completes the description of the pure µ-calculus.

4



From these axioms and rules we can derive two axiom schemes for the ν-operator. The first
one states that νX.Φ is a postfixed point of the function which maps X to Φ:

νX.Φ ⊆ Φ[νX.Φ/X].

The second one states that it is the greatest postfixed point:

(R ⊆ Φ[R/X]) ⊃ (R ⊆ νX.Φ).

This rule is called the rule of coinduction or greatest fixed point induction or Park’s rule.
In addition to the pure µ-calculus we have proper axioms, which are conversion rules or

recursion equations for functional terms. These include

∀d, e. if O de = d,

∀d, e. if Ld e = e,

not O = L,

not L = O,

∀b. eq O b = not b,

∀b. eq Lb = b,

∀a, as . hd (a :: as) = a,

∀a, as . tl (a :: as) = as ,

∀bs. nil ′ + +bs = bs,

∀a, as , bs . (a :: as) + +bs = a :: (as + +bs)

as well as recursion equations for the special combinators needed for programming the alternat-
ing bit protocol. These recursion equations are given when these combinators are introduced
and explained in section 4 and 5.

2.3 Semantics

The semantics of the pure µ-calculus is described in Park [?]. It is an extension of the semantics
of classical predicate calculus with equality. For an interpretation we need a base set, an
assignment of elements of that set to individual variables, and an assignment of n-ary relations
over that set to n-ary relation variables. Then a term denotes an element of the set, a formula
denotes a truth value, and an n-ary relation term denotes an n-ary relation over that set.

We refer the reader to Park [?] for details of the interpretation. We just recall the main point,
namely that µX.Φ denotes the relation which is the least fixed point (is inductively defined by)
the operator which maps a relation Q to the relation denoted by Φ (where the assignment is
extended so that Q is assigned to X). The existence of this least fixed point is ensured by the
monotonicity of this operator, which follows from the syntactic restriction that X may only
occur positively in Φ.

Any base set will give an interpretation of the pure µ-calculus. But here we need to choose
a suitable base set for interpreting our language of functional terms. We need to interpret the
combinators as elements of this set and binary application as a binary function over that set,
in such a way that the conversion rules are satisfied.

We obtain this from a model of an untyped functional programming language (an un-
typed enriched λ-calculus), which gives us a base set, an interpretation of application and
λ-abstraction, an interpretation of a fixed point combinator Y , and an interpretation construc-
tors and selectors for bits, lists, pairs, and error values. The recursively defined functions can
then be defined in terms of these constructions.

5



For example, the model would provide us with an interpretation of the constructors nil ′ and
:: for lists and the selector listcases , such that the conversion rules

listcases nil ′ d e = d

, listcases (a :: as) d e = e a as

are satisfied. Infix ++ (append) can then be defined by

++ ≡ Y (λf.λas , bs.listcases as nil ′ (λa, as ′.a :: (f as bs))).

Then the conversion rules for ++ can be derived.
Note that we have chosen the conversion rules in such a way that it is clear that the recur-

sively defined functions can be defined in terms of the standard combinators in this manner.
Remark. We explained the interpretation of our combinator language in terms of an inter-

pretation of the λ-calculus, which includes the interpretation of λ. It would thus be natural to
allow λ in the formal language as well. Our sole reason for not doing so here is our wish to stay
inside the standard framework of the µ-calculus.

The construction of such a set is part of the standard modelling of untyped functional pro-
gramming languages (enriched untyped λ-calculi). Such a model will provide an interpretation
of the binary application operator as a binary function on the base set and of the constructors
and selectors (for bits, lists, pairs, and error values, for example) as elements of the base set. It
will also provide an interpretation of the fixed point combinator as an element of the base set.
To interpret the recursively defined functions

3 The specification of a protocol

In section 2 we arrived at the following form for the specification of a communication protocol:

Protocol f1 f2 f3 ≡ ∀g1, g2 ∈ Futc.∀is ∈ Inf .is ≈ transf1 f2 f3 g1 g2 is .

The predicates Inf , ≈, and Futc can be defined as greatest fixed points in the following way.
as ∈ Inf is true provided as is an infinite stream of data. Let D be a unary predicate such

that D a is true provided a is a data item. (We do not specify it further.) Then we define

Inf ≡ νX.D ::X,

where :: is used as a map on unary predicates:

as ∈ (P ::Q) ≡ ∃a, as ′.a ∈ P ∧ as ′ ∈ Q ∧ as = a ::as ′.

as ≈ bs is true provided as and bs are extensionally equal infinite streams. We define

≈ ≡ νX. =::X,

where = is the convertibility relation and :: is used as a map on binary relations:

as (R ::S) bs ≡ ∃a, as ′, b, bs ′.aR b ∧ as ′ S bs ′ ∧ as = a ::as ′ ∧ bs = b ::bs ′.

Note the similarity between this definition and the definition of bisimulation equivalence in CCS
[].

Futc g is true provided g is a fair unreliable transmission channel. We express this formally
by introducing an auxiliary function corrupt of two arguments: an oracle stream (of bits) and

6



a stream of messages. The bits in the oracle stream determine whether a message is corrupted
or not. We have the following recursion equations:

∀os , x, xs . corrupt (O ::os) (x ::xs) = err ::corrupt os xs ,

∀os , x, xs . corrupt (L ::os) (x ::xs) = (ok x) ::corrupt os xs.

These channels are non-deterministic in the sense that we do not know in advance when messages
are corrupted. By using oracles we isolate this non-determinism, and the fairness of a channel
is reduced to the fairness (or more properly, the L-fairness) of an oracle:

Futc g ≡ ∃os ∈ Fair .g = corrupt os ,

where
Fair ≡ νX.append 0∗LX.

As :: before append is used as a map on unary predicates here. 0∗L is a unary predicate
such that 0∗Lal is true provided al is a list of zero or more O’s followed by a final L. It can be
defined either as a least fixed point

0∗L ≡ µX.{L ::nil ′} ∪ O ::X.

4 The alternating bit protocol and its correctness proof

We shall now program the alternating bit protocol in our lazy functional language by writing
down the recursion equations for some new constants. Our programs differ only marginally from
the corresponding programs written in Miranda, in appendix A. The sender is programmed by
the two mutually recursive functions abpsend and await . The receiver is programmed by the
two functions abpack , which sends acknowledgement bits, and abpout , which produces output.
The functions satisfy the following recursion equations:

∀b, i, is , ds . abpsend b (i :: is) ds = 〈i, b〉 ::await b i is ds ,

∀b, b0, i, is , ds . await b i is ((ok b0) ::ds) = if (eq b b0) (abpsend (not b) is ds) (〈i, b〉 ::await b i is ds),

∀b, i, is , ds . await b i is (err ::ds) = 〈i, b〉 ::await b i is ds ,

∀b, b0, i, bs . abpack b ((ok 〈i, b0〉) ::bs) = if (eq b b0) (b ::abpack (not b) bs) ((not b) ::abpack b bs),

∀b, bs. abpack b (err ::bs) = (not b) ::abpack b bs ,

∀b, b0, i, bs . abpout b ((ok 〈i, b0〉) ::bs) = if (eq b b0) (i ::abpout (not b) bs) (abpout b bs),

∀b, bs. abpout b (err ::bs) = abpout b bs.

Formally, the alternating bit protocol gives two implementations - one for each possible start
bit b ∈ Bit ≡ {O,L}. We shall prove the correctness of both implementations simultaneously,
that is, the theorem

∀b ∈ Bit.Protocol (abpsend b) (abpack b) (abpout b).

If we unfold the definition of Protocol and introduce the auxiliary program

abptrans b os0 os1 is ≡ trans (abpsend b) (abpack b)
(abpout b) (corrupt os0 ) (corrupt os1 ) is ,

7



then we can rewrite the correctness theorem as

∀b ∈ Bit.∀os0 , os1 ∈ Fair .∀is ∈ Inf .is ≈ abptrans b os0 os1 is .

Since ≈ is defined as a greatest fixed point νX. = :: X, we can prove the theorem by
coinduction. In CCS jargon: we prove that input and output are in the largest bisimulation ≈
by finding another bisimulation R which they are in. We use the relation R defined by

is R js ≡ is ∈ Inf ∧ ∃b ∈ Bit.∃os0 , os1 ∈ Fair .∃as , bs , cs , ds .ıAbp b is os0 os1 as bs cs ds js,

where ıAbp is an abbreviation for the recursion equations of the alternating bit protocol:

ıAbp b is os0 os1 as bs cs ds js ≡ as = abpsend b is ds ∧

bs = corrupt os0 as ∧

cs = abpack b bs ∧

ds = corrupt os1 cs ∧

js = abpout b bs.

If we assume that b ∈ Bit, os0 , os1 ∈ Fair and is ∈ Inf , then the rule of coinduction states
that we can prove

is ≈ abptrans b os0 os1 is

from the major premise
is R (abptrans b os0 os1 is)

and the minor premise
∀is, js .is R js ⊃ is (=::R) js .

The major premise follows from the fact that abptrans satisfies the recursion equations for
the alternating bit protocol.

The proof of the minor premise uses two lemmas. The first lemma states that given a start
state (of the alternating bit protocol) we will arrive at a state, where the message has been
received by the receiver, but where the acknowledgement has not been received by the sender.
The second lemma states that given a state of the latter kind we will arrive at a new start state,
which is identical to the old start state except that the bit has alternated and the first item in
the input stream has been removed.

To formalize this argument we need to introduce a new abbreviation ıAbp′ for the recursion
equations for the state where the message has been received by the receiver, but where the
acknowledgement has not been received by the sender:

ıAbp′ b i is ′ os0 ′ os1 ′ as ′ bs ′ cs ′ ds ′ js ′ ≡ ds ′ = corrupt os1 ′ cs ′ ∧

as ′ = await b i is ′ ds ′ ∧

bs ′ = corrupt os0 ′ as ′ ∧

cs ′ = abpack b bs ′ ∧

js ′ = abpout b bs ′.

(Note that ds ′ and os1 ′ have been evaluated one time less than the other streams.)
To prove that R is a bisimulation, we assume

is R js .

8



Hence, is ∈ Inf and by unfolding the definition of Inf we conclude that there are i ∈ ıData
and is ′ ∈ Inf , such that

is = i :: is ′.

Moreover, there are b ∈ Bit, os0 , os1 ∈ Fair , and as , bs , cs , ds , such that

ıAbp b is os0 os1 as bs cs ds js .

Hence, by lemma 1, there are os0 ′, os1 ′ ∈ Fair , and as ′, bs ′, cs ′, ds ′, js ′, such that

ıAbp′ b i is ′ os0 ′ os1 ′ as ′ bs ′ cs ′ ds ′ js ′

and
js = i :: js ′.

Then, by lemma 2, there are os0 ′′, os1 ′′ ∈ Fair , and as ′′, bs ′′, cs ′′, ds ′′, such that

ıAbp (notb) is ′ os0 ′′ os1 ′′ as ′′ bs ′′ cs ′′ ds ′′ js ′.

Hence
is ′ R mjs′.

and
is (=:: R) js .

It remains to prove the two lemmas.
Lemma 1: Assume that b ∈ Bit, i ∈ ıData, is ′ ∈ Inf , os0 , os1 ∈ Fair , and as , bs, cs , ds ,

such that
ıAbp b (i :: is ′) os0 os1 as bs cs ds js.

Then there are os0 ′, os1 ′ ∈ Fair , as ′, bs ′, cs ′, ds ′, js ′, such that

ıAbp′ b i is ′ os0 ′ os1 ′ as ′ bs ′ cs ′ ds ′ js ′

and
js = i :: js ′.

To prove this we note that os0 ∈ Fair , and hence there are ol0 ∈ 0∗L and os0 ′ ∈ Fair , such
that

os0 = ol0 + +os0 ′.

We proceed by induction on ol0 ∈ 0∗L.
The base case is when ol0 = L ::nil ′. We deduce successively:

as = 〈i, b〉 ::as ′, where as ′ = await b i is ′ ds ;
bs = (ok 〈i, b〉) ::bs ′, where bs ′ = corrupt os0 ′ as ′;
cs = b :: cs ′, where cs ′ = abpack (not b) bs ′;
js = i :: js ′, where js ′ = abpout (not b) bs ′.

Let also ds ′ = ds and os1 ′ = os1 ∈ Fair . Hence

ds ′ = corrupt os1 cs = corrupt os1 ′ (b ::bs ′).

We have proved
ıAbp′ b i is ′ os0 ′ os1 ′ as ′ bs ′ cs ′ ds ′ js ′

9



and
js = i :: js ′.

The induction step is to go from a proof for ol0
t to a proof for ol0 = 0 ::ol0

t.
We deduce successively:

as = 〈i, b〉 ::as t, where as t = await b i is ′ ds ;
bs = err ::bs t, where bst = corrupt os0 t as t

and os0 t = ol0 + +os0 ′;
cs = (not b) :: cst, where cst = abpack b bs t;
ds = e :: ds t, where ds t = corrupt os1 t cst

and e = err or e = ok (not b)
and os1 t = tl os1 .

It follows that

as t = abpsend b (i :: is ′) ds t

and

js = abpout b bst.

Hence
ıAbp b (i :: is ′) os0 t os1 t as t bs t cst ds t js.

Since os0 t, os1 t ∈ Fair , we can use the induction hypothesis to conclude that there are
os0 ′, os1 ′ ∈ Fair , and as ′, bs ′, cs ′, ds ′, js ′, such that

ıAbp′ b i is ′ os0 ′ os1 ′ as ′ bs ′ cs ′ ds ′ js ′

and
js = i :: js ′.

The proof of lemma 1 is thus complete.
Lemma 2: Assume that b ∈ Bit, i ∈ ıData, is ′ ∈ Inf , os0 ′, os1 ′ ∈ Fair , and as ′, bs ′, cs ′, ds ′, js ′,

such that
ıAbp′ b i is ′ os0 ′ os1 ′ as ′ bs ′ cs ′ ds ′ js ′.

Then there are os0 ′′, os1 ′′ ∈ Fair , as ′′, bs ′′, cs ′′, ds ′′, such that

ıAbp (not b) is ′′ os0 ′′ os1 ′′ as ′′ bs ′′ cs ′′ ds ′′ js ′.

To prove this we note that os1 ′ ∈ Fair , and hence there are ol1 ∈ 0∗L and os1 ′′, such that

os1 ′ = ol1 + +os1 ′′.

We proceed by induction on ol1 ∈ 0∗L.
The base case is when ol1 = L ::nil ′. So os1 ′ = L ::os1 ′′. By evaluating we deduce:

ds ′ = (ok b) ::ds ′′, where ds ′′ = corrupt os1 ′′ cs ′.

Let also as ′′ = as ′, bs ′′ = bs ′, cs ′′ = cs ′, and os0 ′′ = os0 ′. Hence

as ′′ = as ′ = await b i is ′ ds ′ = abpsend (not b) is ′ ds ′′,

bs ′′ = bs ′ = corrupt os0 ′ as ′ = corruptos0 ′′ as ′′,

cs ′′ = cs ′ = abpack (not b) bs ′ = abpack (not b) bs ′′,

ds ′′ = corrupt os1 ′′ cs ′′,

js ′ = abpout b bs ′′.

10



We have proved
ıAbp (not b) is ′ os0 ′′ os1 ′′ as ′′ bs ′′ cs ′′ ds ′′ js ′.

The induction step is to go from a proof for ol1
t to a proof for ol1 = 0 ::ol1

t.
By evaluating we deduce successively:

ds ′ = err :: ds t, where ds t = corrupt os1 t cs ′

and os1 t = ol1
t + +os1 ′′,

as ′ = 〈i, b〉 ::as t, where as t = await b i is ′ ds t;
bs ′ = e ::bs t, where bs t = corrupt ol1

t as t

ande = ok〈i, b〉 or e = err

andos0 t = tl os0 ′;
cs ′ = (not b) :: cs t, where cs t = abpack (not b) bs t.

It follows that

ds t = corrupt os1 t ((not b) :: cst).

Hence
ıAbp′ b i is ′ os0 t os1 t as t bst cst ds t js ′.

Since os0 t, os1 t ∈ Fair , we can use the induction hypothesis to conclude that there are
os0 ′′, os1 ′′ ∈ Fair , as ′′, bs ′′, cs ′′, ds ′′, such that

ıAbp (not b) is ′′ os0 ′′ os1 ′′ as ′′ bs ′′ cs ′′ ds ′′ js ′.

The proof of lemma 2 is thus complete.
Obviously, to get a formal proof we have to fill in still more details. We have checked such

a formal proof mechanically in Paulson’s Isabelle system [?].

References

11


