
Dependent Types in Programming

Peter DybjerChalmers
TYPES summer shoolGiens, 5 September 2002

1

Construtive mathematisand omputer programming{ the original paradigm

Curry-Howard for programming:a :: Aelement belongs to set/typeproof proves propositionprogram satis�es spei�ationMartin-L�of type theory:� a funtional language with dependent types where all programs terminate; 2

� a spei�ation language inluding prediate logi;� a full-sale onstrutive set theory { a \ZF" for onstrutive mathematis!
3

Example: sorting

SortProp = 8xs :: [Nat℄:9ys :: [Nat℄:Sorted ys ^ Perm xs ysProve this proposition!sortProof :: SortPropExtrat a programsortProg :: [Nat℄ -> [Nat℄ 4

with its proof sortProgProof :: 8xs :: [Nat℄:Sorted (sortProg xs) ^Perm xs (sortProg xs)

5

Program extration

Set vs Prop. Distinguish between omputationally relevant and irrelevant partsby using Set/Prop-distintion. The sorting proposition beomes eg�xs :: [Nat℄:fys :: [Nat℄ j Sorted ys ^ Perm xs ysg

One-element types are not omputationally relevant. Eg use that Sorted (andPerm) are deidable:sorted :: [Nat℄ -> BoolSorted :: [Nat℄ -> SetSorted xs = T (sorted xs) 6

whereT :: Bool -> SetT True = Unit = ()T False = Empty

7

Construtive mathematisand omputer programming- what happened?

1979 - The paper \Construtive mathematis and omputer programming".Formation of Cornell and Chalmers type theory groups. Early implementations(NuPRL, GTT system).1984 - The alulus of onstrutions. Logial frameworks. INRIA and Edinburghgroups. Implementations of intensional type theory.1989 - The Logial Framework/TYPES onsortium. Lego, Coq, Alf. Indutivede�nitions, pattern mathing, reords, ... 8

2002 Impressive progress. But dependent type theory has not (yet?)revolutionized programming.

9

The next 700 MLs

Extensions of the Hindley-Milner type system (polymorphi typed lambdaalulus with reursive type and funtion de�nitions):� Equality types in ML.� ML's module system. Haskell's lass system.� Arrays. Sized types. Embedded ML.� Metaprogramming. Meta-ML.� Generi programming. PolyP, Generi Haskell. 10

� Spei�ation language for testing. QuikChek.

11

Dependent types in pratial programming

Dependent types from the point of view of the funtional programmer (ML,Haskell):Cayenne Augustsson 1998.DML Xi 1998, Xi and Pfenning 1999.Series of workshops on DTP: G�oteborg 1999, Ponte de Lima 2000, ShlossDagstuhl 2001, ...

12

What is Cayenne?

Augustsson 1998: \Although dependent types have been used before in proofsystems, e.g., [CH88℄, to our knowledge this is the �rst time that the full powerof dependent types has been integrated into a programming language."� A lazy funtional language with dependent types, similar to Agda, but intendedto be used as a \real" programming language, like Haskell. Unlike Agda it hasprede�ned types Int, String, et.� Intended to be used as a partial type theory with unrestrited reursion in typeand funtion de�nitions.� Type-heking undeidable, but nevertheless pratial. 13

� Compiled by removing types and translating to LML, whih has a ompilerproduing eÆient ode.

14

What is DML?

Xi and Pfenning 1999: \To our knowledge, no previous type system fora general purpose programming language suh as ML has ombined dependenttypes with features inluding datatype delarations, higher-order funtions, generalreursions, let-polymorphism, mutable referenes, and exeptions."� A strit funtional language with dependent types. DML = Dependent ML.� A onservative extension of ML. Translate to ML by removing dependent types.� Deidable type heking is obtained by restriting types to depend on indexexpressions, eg arithmeti expressions, with deidable onstraint solving.
15

Plan

1. Haskell lasses and dependent reords.2. Dependently typed datastrutures.3. Testing and dependent types.4. Generi programming and universal algebra.5. Metaprogramming. Well-typed interpreters and partial evaluators.6. Coping with general reursion.

16

Notation - logial framework

Inspired by Haskell, Cayenne, Agda. 17

here otherx :: a x : aa -> b (a)b(x :: a) -> b (x:a)b, �x:a.bf f()nx -> e �x.e, (x)e(a,b) a�b(x::a,b) �x:a.b(x::a,y::b) sig{x:a,y:b}r.x, r.y fst, snd(,d), (x=,y=d) strut{x=,y=d}() N1;1, UnitBool N2;2Set #, *, PropT :: Bool -> Set Lift 18

Notation - datatypes

19

here otherNat :: Set data Nat = ZeroZero :: Nat | Su NatSu :: Nat -> Nat[a℄ List aVet a n an[℄ Nilx : xs x.xs, Cons x xsxs ++ ys append xs ysBT a BinaryTree aBST a BinarySearhTree aIsBST t T (isBST t)(==) eq 20

Also argument hiding, overloading, Haskell (-) notation for in�x operations, et.
21

1. Haskell lasses and dependent reords
22

The Eq-lass in Haskell

lass Eq a where(==) :: a -> a -> Boolinstane Eq Bool where(==) = eqBoolwhereeqBool :: Bool -> Bool -> Boolis de�ned byeqBool True True = True 23

eqBool False False = TrueeqBool _ _ = False

24

Eq with reords

Haskell's lass delaration orresponds toEq :: Set -> SetEq a = a -> a -> BoolIf we want to speify the name (==) of the operation we an instead use a reordtype:Eq a = ((==) :: a -> a -> Bool)(This is the Eq \lass" in Cayenne.)The instane delaration orresponds to 25

eqBool :: Eq Boolor, as a reord with one �eld,((==) = eqBool)) :: Eq Bool

26

Overloading via lasses

Wadler's original purpose of Haskell-lasses was to have a systemati approahto overloading. Having de�ned an instane Eq a we an simply use(==) :: a -> a -> Boolfor the equality on a.This is not aptured by our dependent reords. Ifr :: Eq ais a reord, we have to writer.(==) :: a -> a -> Bool 27

I will however in some future examples assume that we an hide the r alsowhen we work in dependent type theory.

28

Eq with properties

The Eq-reord with properties (deidable setoids = \datoids"):Eq a = ((==) :: a -> a -> Bool,ref :: (x :: a)-> T (x == x),sym :: (x,y :: a)-> T (x == y)-> T (y == x),tra :: (x,y,z :: a)-> T (x == y) -> T (y == z)-> T (x == z)) 29

Deriving equality

What about writing a funtioneq :: (a :: Set) -> Eq a ?In total type theory this means that we should de�ne a deidable equality for alla :: Set. But equality is not deidable for all sets! However, we ould haveeq :: (a :: EqSet) -> Eq awhere EqSet is a universe of sets for whih we an \derive" deidable equality (fML's equality types). This leads us towards \generi programming" { more later.
30

Sublasses

Reords are �rst-lass itizens in dependent type theory. This helps us modelsome further lass-related language onstruts.In Haskell Ord is a sublass of Eq. A simpli�ed version:lass Eq a => Ord a where(<) :: a -> a -> BoolIn dependent type theory this orresponds toOrd a = (r :: Eq a,(<) :: r.a -> r.a -> Bool) 31

List equality

In Haskell:instane Eq a => Eq [a℄ where[℄ == [℄ = True[℄ == (y:ys) = False(x:xs) == [℄ = False(x:xs) == (y:ys) = x == y && xs == ysIn dependent type theory we writelistEq :: (a :: Set) -> Eq a -> Eq [a℄ie essentially a funtion 32

listEq :: (a :: Set) -> (a -> a -> Bool)-> [a℄ -> [a℄ -> BoollistEq f [℄ [℄ = TruelistEq f [℄ (y:ys) = FalselistEq f (x:xs) [℄ = FalselistEq f (x:xs) (y:ys) = f x y && listEq xs ys

33

2. Dependently typed datastrutures
34

The zip-funtion

Haskell library funtionzip :: [a℄ -> [b℄ -> [(a,b)℄zip [℄ [℄ = [℄zip (x:xs) (y:ys) = (x,y) : zip xs yszip _ _ = [℄exeptional ases when lists are of unequal length.

35

Vetors

Vet :: Set -> Nat -> SetVet a n is the set of lists of length n, ie the set of n-tuples. Then zip gets thetypezip :: (a,b :: Set) -> (n :: Nat)-> Vet a n -> Vet b n-> Vet (a,b) nNote that vetors an be de�ned either indutively (as an \indutive family")Nil :: (a :: Set) -> Vet a ZeroCons :: (a :: Set) -> (n :: Nat) 36

-> a -> Vet a n-> Vet a (Su n)or reursively (using \large elimination")Vet a Zero = ()Vet a (Su n) = (a, Vet a n)

37

Balaned binary trees

Bal a h is the set of balaned binary trees of height h and with a-elementsin the nodes. \Balaned" here means \as in AVL-trees".Bal :: Set -> Nat -> SetEmpty :: (a :: Set)-> Bal a 0BranhE :: (a :: Set) -> (h :: Nat)-> a -> Bal a h -> Bal a h-> Bal a (h+1)BranhL :: (a :: Set) -> (h :: Nat)-> a -> Bal a (h+1) -> Bal a h 38

-> Bal a (h+2)BranhR :: (a :: Set) -> (h :: Nat)-> a -> Bal a h -> Bal a (h+1)-> Bal a (h+2)

39

Binary searh trees

Empty :: (min,max :: Nat) -> T (min < max)-> BST min maxBranh :: (min,max,root :: Nat)-> T (min < root) -> T (root < max)-> BST min root -> BST root max-> BST min maxBranh min max root p q left rightis a binary searh tree with bounds min and max, root root, left and rightsubtrees left and right, and p and q proofs that root is between min and max.binSearh :: (min,max,key :: Nat) 40

-> T (min < key) -> T (key < max)-> BST min max -> Boolinsert :: (min,max,key :: Nat)-> T (min < key) -> T (key < max)-> BST min max-> BST min max

41

Corretness of binary searh

BST min max forget -BT���������binSearh R 	�������
��memberNat ! Boolwhere BT is the set of binary trees with natural numbers in the nodes:Empty :: BTBranh :: Nat -> BT -> BT -> BT 42

andmember :: BT -> Nat -> Boolforget :: (min,max :: Nat) -> BST min max -> BTare the obvious membership and binary searh tree struture forgetting funtions.
43

Corretness of insertionin binary searh trees

BST min max insert key- BST min max

Nat ! Bool
binSearh ? fkeyg [�- Nat ! Bool
binSearh?

([) :: (Nat -> Bool) -> (Nat -> Bool) 44

-> Nat -> Boolf�g :: Nat -> Nat -> Bool

45

The binary searh tree property

isBST :: Nat -> Nat -> BT -> BoolisBST min max Empty = min < maxisBST min max (Branh root left right)= min < root && root < max&& isBST min root left&& isBST root max rightThe dependently typed \integrated" representation is isomorphi to the\external" one:BST min max �= (t :: BT, T (isBST min max t))
46

3. Testing and dependent types

47

Random testing

QuikChek (Claessen and Hughes 2000) is a tool for testing Haskell programsautomatially. The programmer provides a spei�ation of the program, in theform of properties whih funtions should satisfy, and QuikChek then tests thatthe properties hold in a large number of randomly generated ases. Spei�ationsare expressed in Haskell, using ombinators de�ned in the QuikChek library.QuikChek provides ombinators to de�ne properties, observe the distribution oftest data, and de�ne test data generators.

48

From the ICFP programming ontest

Tom Moertel wrote the following ...Lesson 4. Test early, test often.This one I got right. Early on I deided to invest a substantial portion ofmy time on orretness. I bene�ted from Haskell's wiked-powerful type system,whih athes a lot of problems all by itself, and then I used QuikChek, anautomati testing tool, to further automate away the pain of testing. Here area few examples from my log that show how a tool like QuikChek an be yourbest friend in a tight oding orner:

49

Thu 17:13 EDT. QuikChek is revealing that something is going wrong witheither the Parser or my Show instanes. . . .Thu 17:37 EDT. QuikChek to the resue! QuikChek found a test ase thatfalsi�ed my RoundTrip property for Show->Parse->Show, and I was able tohand-feed that ase to my parser to determine the error. . . .Fri 12:19 EDT. My naive optimizer is done. Not so fast, QuikChek spotted aorner ase that auses the optimizer to disard untagged text at the end of adoument. Oops.QuikChek found these problems and more, many that I wouldn't have foundwithout a massive investment in test ases, and it did so quikly and easily. Fromnow on, I'm a QuikChek man!

50

QuikChekable properties

QuikChek an test onditional properties writtenp x ==> q xwherep, q :: D -> Boolare deidable prediates written in Haskell.In dependent type theory:(x :: D) -> T (p x) -> T (q x) 51

The user writes a generator of random D-elements. QuikChek uses this tohek the onditional property for 100 ases, where only ases whih pass p areounted. If a ounterexample is found, QuikChek stops and reports it.
52

Testing binary searh

binSearh :: BT -> Nat -> Boolis a Haskell version of binary searh (now forgetting about bounds).The orretness riterion written in QuikChek's spei�ation language isisBST t ==> binSearh t key == member t keyand in dependent type theory:(t :: BT) -> (key :: Nat) -> T (isBST t)-> T (binSearh t key == member t key)Write a random generator for binary searh trees! 53

Combining QuikChekand dependent type theory

Methodology:� Debug the goal by running QuikChek. (The spei�ation may as often bewrong as the program!)� If suessful re�ne the goal, until you get some subgoal that seems hard toprove. Run QuikChek on this. And so on.Hayashi used testing when doing proofs in his PX system already in the 1980-ies.Other bene�t of ombining QuikChek and dependent type theory: 54

� Prove surjetivity (\overage") properties of generators of random elements.
55

4. Generi programming and universal algebra
56

Generi equality

Reall that we said that we would like a funtioneq :: (a :: EqSet) -> a -> a -> Boolinside our language, whih derives an equality for eah set in EqSet - a universeof \equality sets" (like ML's equality types).We ould even derive the equality with properties:eq :: (a :: EqSet)-> ((==) :: a -> a -> Bool,ref :: (x :: a)-> T (x == x), 57

sym :: (x,y :: a)-> T (x == y)-> T (y == x),tra :: (x,y,z :: a)-> T (x == y) -> T (y == z)-> T (x == z))

58

Generi map

Another motivating example of generi programming.map :: (a -> b) -> [a℄ -> [b℄is one of the most basi funtions for list programming. But we have an analogousfuntion for binary trees:mapBT :: (a -> b) -> BT a -> BT bIn general we an de�ne a generi mapmap :: (a -> b) -> D a -> D bwhere 59

D :: Set -> Setis a unary datatype onstrutor. However, we annot de�ne map for an arbitrarysuh D, but only ones whih are drawn from a suitable universe of \regular"datatypes.

60

Regular datatypes in PolyP

PolyP (Jansson and Jeuring, 1996 -) as in \polytypi" (= generi)programming, is an extension of Haskell.Polytypi funtions are de�ned by indution on a universe of odes for \regulardatastrutures". These are unary type onstrutors of the formDX = �Y:FXYwhere F is a \pattern funtor" built up from variables and onstants by sum,produt, and omposition. Eg the type of lists of X's is a regular datastruturede�ned by [X℄ = �Y:() + (X;Y) 61

The funtionality of PolyP an be simulated in dependent type theory.
62

Generi programmingand universal algebra

We onsider term algebras T� for one-sorted signatures �.A signature is just a list of arities:Sig = [Nat℄andT :: Sig -> Settakes a signature and returns its term algebra.Some signatures and their term algebras: 63

[℄ Empty[0,0℄ Bool[0,1℄ Nat[0,1,1℄ [Bool℄[0,2℄ BT ()

64

A generi size funtion

How to programsize :: (Sigma :: Sig) -> T Sigma -> Natby indution on Sig?

65

Generi formation, introdution, elimination, and equalityrules

Use the well-know initial algebra diagram:
F�T� Intro� - T�

F�C
F0�(iter�d) ? d -C
iter�d?

T :: Sig -> Set 66

Intro :: (Sigma :: Sig)-> F Sigma (T Sigma) -> T Sigmaiter :: (Sigma :: Sig) -> (C :: Set)-> (F Sigma C -> C) -> T Sigma -> Citer Sigma d (Intro Sigma x)= d (F' Sigma (T Sigma) C (iter Sigma d) x)

67

The pattern funtor

Objet and arrow partsF :: Sig -> Set -> SetF' :: (Sigma :: Sig) -> (X,Y :: Set)-> (X -> Y)-> F Sigma X -> F Sigma Yare de�ned by F[n1;:::;nm℄X = Xn1 + � � �+XnmF0[n1;:::;nm℄XY f = fn1 + � � �+ fnm 68

Remark. It is possible to modify the elimination rule to aount for generiprimitive reursion rather than just iteration.

69

Generi dependent type theory

It is possible to enode a large lass of indutive types (inluding the T�)using well-orderings, but to derive the rules we need extensional type theory (seeDybjer 1997).A generi formulation of dependent type theory with indutive-reursivede�nitions was given by Dybjer and Setzer 1999 and for indexed indutive-reursive de�nitions by Dybjer and Setzer 2001.The rules for initial algebras an be derived in this theory. In fat, theDybjer-Setzer axiomatization is obtained by onsidering a more general universeof signatures and a modi�ed initial algebra diagram.

70

Generi size

A speial ase of the initial algebra diagram. Let � = [n1; : : : ; nm℄.

Tn1� + � � �+ Tnm� Intro� -T�

Natn1 + � � �+ Natnm

sizen1� + � � �+ sizenm� ? step� - Nat
size�?

where step�(Ini(x1; : : : ; xni)) = 1 + x1 + � � �+ xni 71

an be de�ned by indution on �.

72

5. Metaprogramming.Well-typed interpretersand partial evaluators

73

A well-typed interpreter

Consider a small typed programming language based on ombinators. Withdependent types we an formalize this objet language as a type-indexed familyof terms.Ty :: SetTe :: Ty -> SetSome typesNAT :: Ty(=>) :: Ty -> Ty -> Ty

74

Some terms

(�) :: (A,B :: Ty)-> Te (A => B) -> Te A -> Te BK :: (A,B :: Ty)-> Te (A => B => A)S :: (A,B,C :: Ty)-> Te ((A => B => C)=> (A => B) => A => C)ZERO :: Te NATSUCC :: Te (NAT => NAT)ITER :: (C :: Ty)-> Te ((C => C) => C => NAT => C)We hide type arguments and write eg f � rather than (�) A B f a. 75

Semantis = interpretation

Interpretation of types:Eval :: Ty -> SetEval NAT = NatEval (A => B) = Eval A -> Eval BInterpretation of terms:eval :: (A :: Ty) -> Te A -> Eval Aeval (f �) = eval f (eval)eval K = k = \x y -> x 76

eval S = s = \x y z -> (x z) y zeval ZERO = Zeroeval SUCC = Sueval ITER = iteras usual hiding the type argument. iter is the iteratoriter :: (C :: Set) -> (C -> C) -> C -> Nat -> C

77

Partial evaluation

Consider the funtionpower :: Nat -> Nat -> Natpower m n = iter (mult m) 1 nmult m n = iter (add m) 0 nadd m n = iter Su m nwhere we have hidden the �rst argument Nat of iter.

78

Stati and dynami arguments

In partial evaluation we distinguish between binding-times, that is,stati arguments, whih are known, anddynami arguments, whih are not knownat speialization time. If m is dynami and n is stati in power m n then we anspeialize and simplify the de�nition. Eg n = 3power m 3 = iter (mult m) 1 3= mult m (mult m (mult m 1)= mult m (mult m m) 79

The simpli�ed program is alled the residual program.

80

2-level lambda alulus

In 2-level lambda alulus types and terms are given binding-time annotations.Eg the type Nat exists in both a stati version Nat and a dynami version Nat.The funtion power with a �rst dynami and a seond stati argument thusgets the type: powerDS :: Nat -> Nat -> NatpowerDS m n = iter (mult m) ($ 1) nwhere $:: Nat -> Nattransforms a stati number into the orresponding dynami one.
81

Binding-times

There are four di�erent versions of power depending on the binding-times ofthe arguments: powerDS :: Nat -> Nat -> Nat

powerSD :: Nat -> Nat -> Nat

powerDD :: Nat -> Nat -> Nat

powerSS :: Nat -> Nat -> Nat 82

Binding-times again

With dependent types and the orrespondenesdynami objet languagestati meta languageto get types for \generating extensions" orresponding to the binding timeannotations:powerDS :: Nat -> Te (NAT => NAT)powerSD :: Nat -> Te (NAT => NAT)powerDD :: Te (NAT => NAT => NAT) 83

powerSS :: Nat -> Nat -> NatNote the analogy between the binding-time annotated types and the dependenttypes, exept that powerDS exhanges the order of its arguments, beause astati argument is always given before a dynami one.

84

Terms-in-ontext

Combinatory logi is not quite suitable for partial evaluation, and we want towork in lambda alulus instead. Therefore we need to formalize terms-in-ontext.We use a name-free approah withTe :: [Ty℄ -> Ty -> Setso that Te [A1,...,An℄ A is the set of terms of type A, where the variables (deBruijn indies) have the types A1,...,An.Pure typed lambda terms are then generated by the following rules:(�) :: (As :: [Ty℄) -> (A,B :: Ty)-> Te As (A => B) -> Te As A -> Te As B 85

LAM :: (As :: [Ty℄) -> (A,B :: Ty)-> Te (A:As) B -> Te As (A => B)VAR :: (As :: [Ty℄) -> (A :: Ty)-> Member A As -> Te As AWe hide ontext and type arguments.

86

A well-typed interpreterfor typed lambda terms

The interpretation of types is as before, but now we need to interpret ontextstoo:Eval :: [Ty℄ -> SetEval [℄ = ()Eval (A:As) = (Eval A, Eval As)Interpretation of terms:eval :: (As :: [Ty℄) -> (A :: Ty)-> Eval As -> Eval A 87

eval (f �) as = eval f as (eval as)eval (LAM e) as = \x -> eval e (x,as)eval (VAR n) as = proj n asagain hiding the ontext and type arguments.

88

Partially evaluating power again

When we speialize power with a stati seond argument n we get the term\x -> iter (mult x) 1 n :: Nat -> Natwhih we want to simplify by using that iter is a stati operation.The orresponding objet language term is:LAM (ITER � (MULT � (VAR X0)) � ($ 1) � ($ n)):: Te [℄ (NAT => NAT)where$:: (As :: [Ty℄) -> Nat -> Te As NAT 89

is the injetion of a metalanguage natural number into the objet language:$ Zero = ZERO$ (Su n) = SUCC ($ n)

90

Some typings

In the termLAM (ITER � (MULT � (VAR X0)) � ($ 1) � ($ n)):: Te [℄ (NAT => NAT)we use the following instanes:ITER :: Te [NAT℄((NAT => NAT) => NAT => NAT => NAT)MULT :: Te [NAT℄ (NAT => NAT => NAT)X0 :: Member NAT [NAT℄

91

Exeuting a stati operation

The fat that iter is a stati operation here is expressed by the fat that forall n :: Nat the objet language term obtained by exeutingiter (\t -> MULT � (VAR X0) � t) ($ 1) nhas the same semantis asITER � (MULT � (VAR X0)) � ($ 1) � ($ n)For n = 2:iter (\t -> MULT � (VAR X0) � t) ($ 1) 2= MULT � (VAR X0) � (MULT � (VAR X0) � ($ 1)) 92

This term an be further simpli�ed to the semantially equal termMULT � (VAR X0) � (VAR X0) :: Te [Nat℄ NatThis is the residual program (normal form).

93

6. Coping with general reursion

94

Reursion in type theory

Total type theory. Reursion in Martin-L�of type theory is primitive (strutural)reursion. General reursive algorithms are not diretly typable in total typetheory. This is one of the main obstales to making total type theory aprogramming language.Partial type theory. There is a version of Martin-L�of type theory with generalreursion (Martin-L�of's domain interpretation of type theory 1983, Palmgren1991). Cayenne an be said to be an implementation of partial type theory.Partial type theory allows non-terminating omputations and does not supportthe Curry-Howard orrespondene.We want both logi and general reursion. How? There are many suggestions.95

We shall look at a method for generating speial purpose aessibility prediatesfor general reursive de�nitions (Bove 1999 and Bove and Capretta 2001).
96

Quiksort in Haskell

qSort :: [Nat℄ -> [Nat℄qSort [℄ = [℄qSort (x : xs)= qSort (filter (< x) xs)++ x : qSort (filter (>= x) xs)(A more eÆient version whih partitions xs in one pass an easily be written.)
97

Quiksort in total type theory

We an de�ne a termination prediate for quiksort:D :: [Nat℄ -> SetC0 :: D [℄C1 :: (x :: Nat) -> (xs :: [Nat℄)-> D (filter (< x) xs)-> D (filter (>= x) xs)-> D (x : xs)Quiksort an then be represented as a funtion of two arguments: a list and aproof that quiksort terminates for this list. 98

qSort :: (xs :: [Nat℄) -> D xs -> [Nat℄qSort [℄ C0 = [℄qSort (x : xs) (C1 x xs p q)= qSort (filter (< x) xs) p++ x : qSort (filter (>= x) xs) q

99

Termination of quiksort

Quiksort terminates for all lists:qSortTerm :: (xs :: [Nat℄) -> D xsHene\xs -> qSort xs (qSortTerm xs):: [Nat℄ -> [Nat℄

100

Treesort

treeSort = buildBST . preorderbuildBST :: [Nat℄ -> BSTpreorder :: BST -> [Nat℄This is essentially the same algorithm as funtional quiksort, but it isstruturally reursive!(C. MBride)The idea of strong funtional programming!(D. Turner)

101

MCarthy's 91-funtion in Haskell

The Bove-Capretta method is appliable to nested reursion as well.Haskell ode for MCarthy's 91-funtion:f91 :: Nat -> Natf91 n = if n > 100 then n - 10else f91 (f91 (n + 11))

102

MCarthy's 91-funtionin total type theory

We get a simultaneous indutive-reursive de�nition of the terminationprediate and the strutural reursive version of f91:D :: Nat -> Setf91 :: (n :: Nat) -> D n -> NatC0 :: (n :: Nat) -> T (n > 100) -> D nC1 :: (n :: Nat) -> T (n <= 100)-> (p :: D (n + 11))-> D (f91 (n + 11) p)-> D n 103

f91 n (C0 n r) = n - 10f91 n (C1 n r p q)= f91 (f91 (n + 11) p) q

104

Summary

� Dependent types for ML/Haskell style programming:{ lasses, modules{ arrays, sized types, simple datatype invariants{ generi programming{ metaprogramming� Corretness in the short term:{ modest use of dependent types (eg a la DML){ ombining testing and dependent types� General reursion and dependent types. 105

