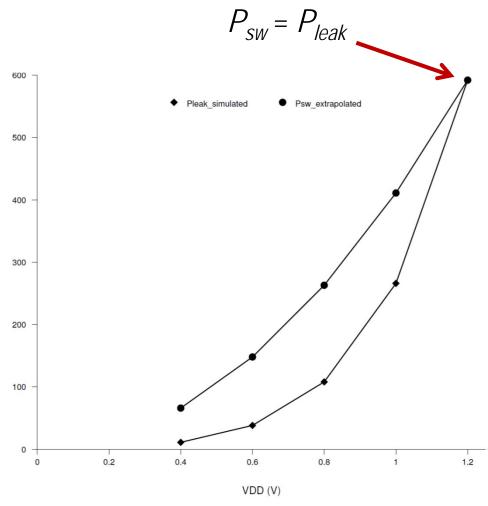
Energy-Aware Computing: Low-Power Circuit Techniques

Per Larsson-Edefors


Computer Science and Engineering Chalmers University of Technology

Energy-Aware Computing: Low-Power Circuit Techniques, 2017

Two Mechanisms of Power Dissipation

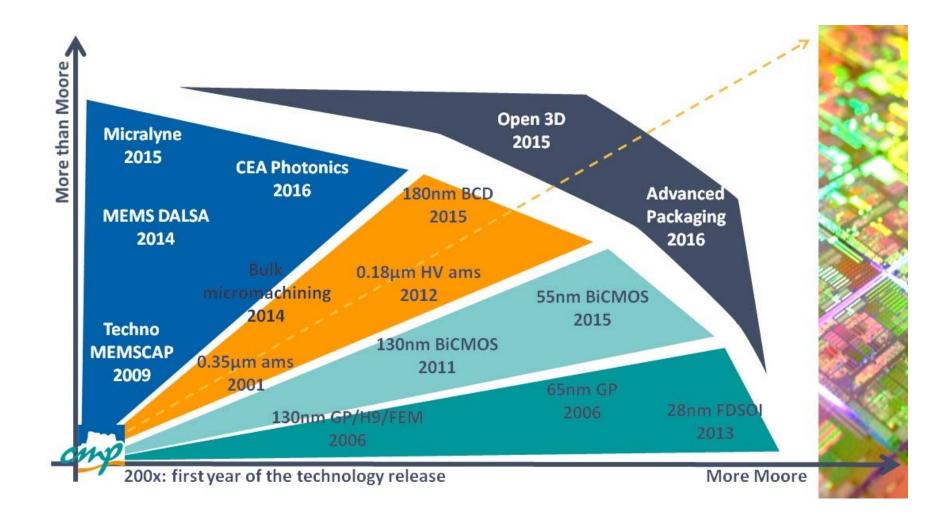
Pleak (nW)

- In previous lectures, we've seen two distinct mechanisms causing power to be dissipated:
 - Dynamic switching.
 - Static subthreshold.
- Important to note that <u>both</u> mechanisms benefit more than linearly from reduced V_{DD}.

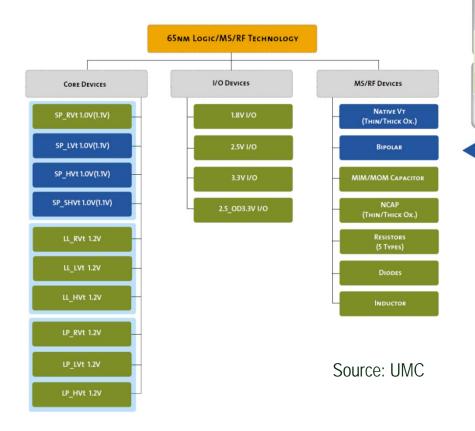
 P_{leak} simulated, P_{sw} extrapolated from 1.2 V.

Common Low-Power Circuit Techniques

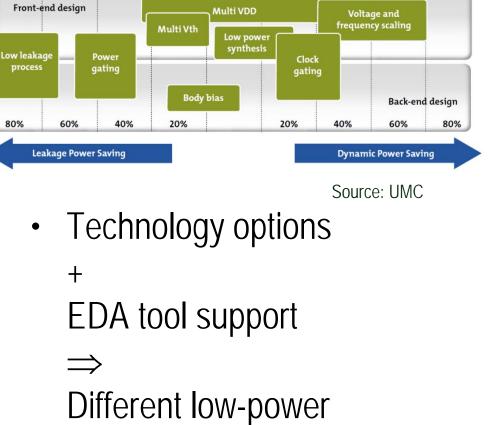
- Body biasing
- Multi- V_T
- Multi-V_{DD}
- DVFS
- Clock gating
- Power gating
- But beside the above techniques, designers always strive to make systems power efficient at all levels, e.g., by
 - minimizing switched capacitance.
 - balancing IC technology used and performance needs.


Best Design Practice for Power Reductions

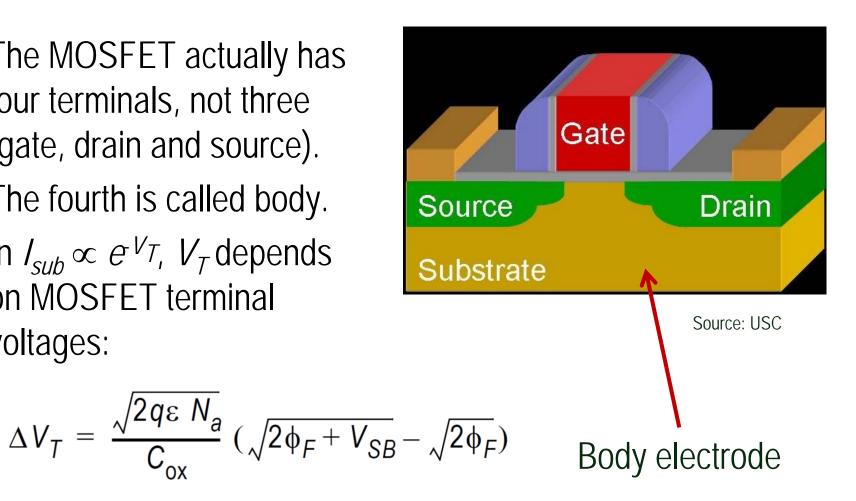
- Priority on P_{SW} (P_{leak} requires more invasive solutions).
- Consider $P_{SW} = f \alpha C V_{DD}^{2}$. Broadly, implementation decisions to reduce P_{SW} via ...
 - f and V_{DD} are system wide and need to be negotiated early on in a project.
 - the switched capacitance (α*C*) can be handled at later implementation stages, at RTL and gate level (slide 18 previous lecture).
- Approximate computing: Inspired by SNR-guided DSP implementation, adjust data precision to application needs.


Technology Flavors

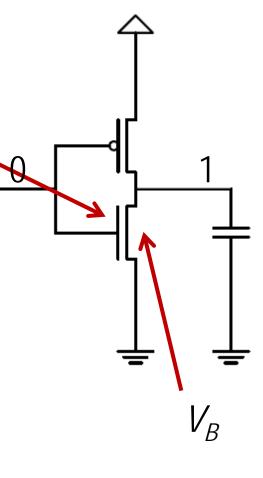
- Select adequate IC technology.
 - Main question: How powerful need the transistors be in terms of current delivery I_{ON} ? Powerful \Rightarrow power dissipating!
- Different flavors:
 - Low power (LP) with higher V_7 s.
 - High performance (in our case, GP) with lower V_7 s and more aggressive design rules.
- Each flavor has got different V_T options:
 - Low V_T (LVT), Standard V_T (SVT), High V_T (HVT).
 - LP_LVT: 0.40-0.49 V.
 - GP_LVT: 0.25-0.36 V (slide 27 of my previous lecture).


Technologies via CMP – our IC Broker

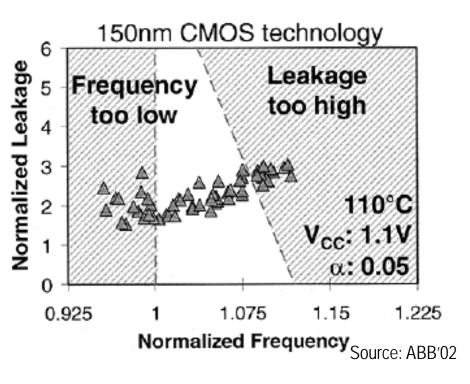
A Smorgasbord of IC Options


LOW POWER DESIGN SUPPORT

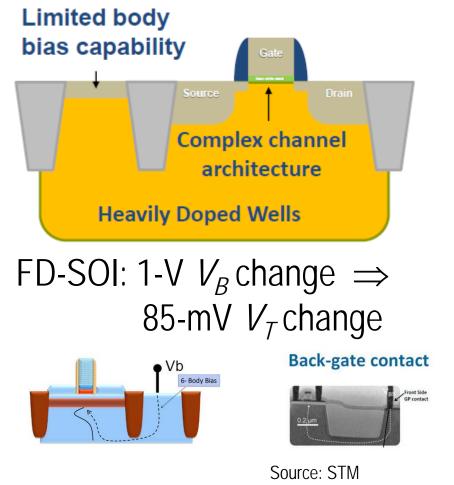
techniques supported.

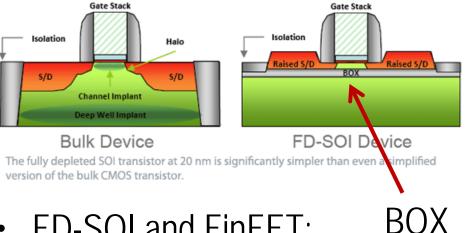

The MOSFET Body Terminal

- The MOSFET actually has four terminals, not three (gate, drain and source).
- The fourth is called body.
- In $I_{sub} \propto e^{-V_T}$, V_T depends on MOSFET terminal voltages:

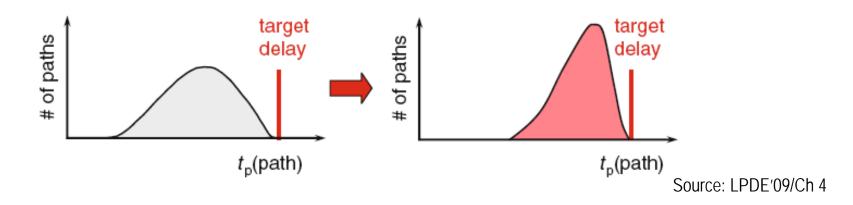

Low-Power Technique 1: Body Biasing

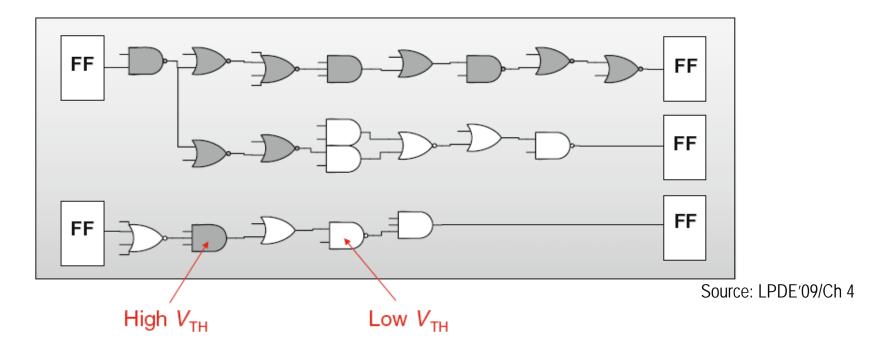
- In an NMOSFET, V_T decreases with an increasing body voltage (V_B).
 - For FinFETs from previous lecture, back biasing does not work well.
 - For Fully Depleted-Silicon on Insulator (FD-SOI), thin BOX (buried oxide) allows for back bias control.


Reverse and Forward Body Biasing

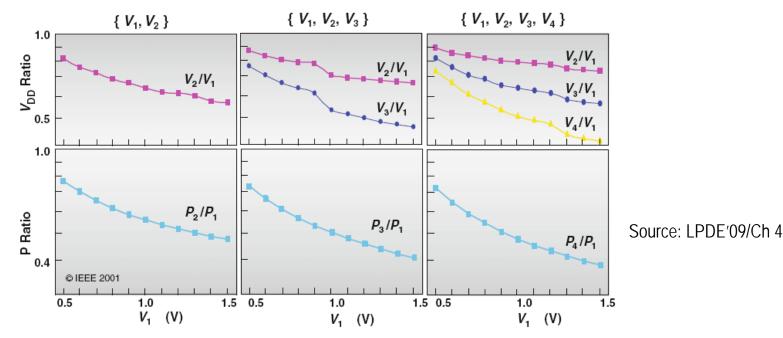

- Reverse body biasing (RBB):
 V_B < 0 V (NMOSFET)
 ⇒ V_T increases.
 ⇒ leakage decreases.
- Forward body biasing (FBB):
 V_B > 0 V (NMOSFET)
 ⇒ V_T decreases.
 ⇒ higher speed.

- Remember variations?
- Body bias allows for tuning at fab: Performance and power binning...


Fully Depleted-Silicon on Insulator (FD-SOI)

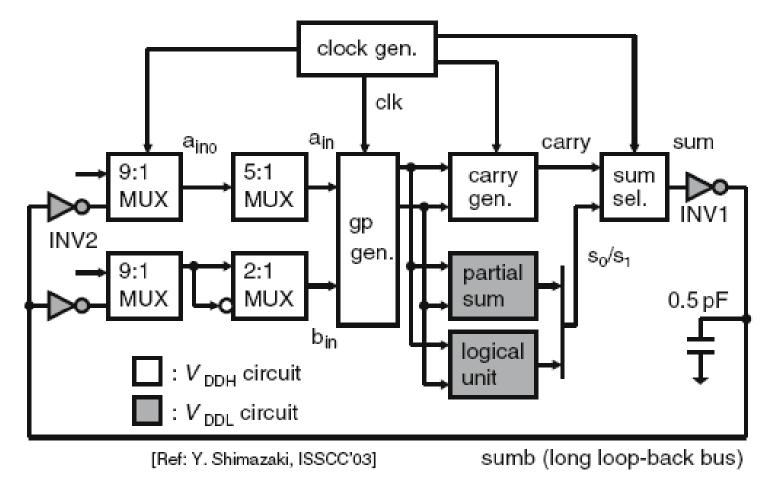

- FD-SOI and FinFET; ^b
 the main alternatives for scaled CMOS:
 - FD-SOI mainly for low power; good body bias control.
 - FinFET mainly for high speed; limited leakage control.

Delay Distribution of Logic

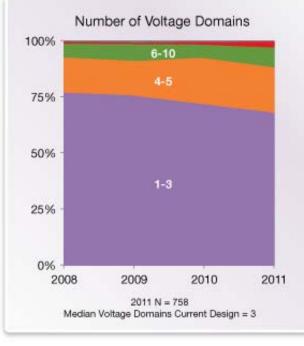

- Logic paths exhibit different delays.
- Critical paths must satisfy clock rate constraint \Rightarrow implementation must ensure gates are fast enough.
- But what about the fast paths ... can their intrinsic speed be converted to power reductions?

Low-Power Technique 2: Multi- V_T

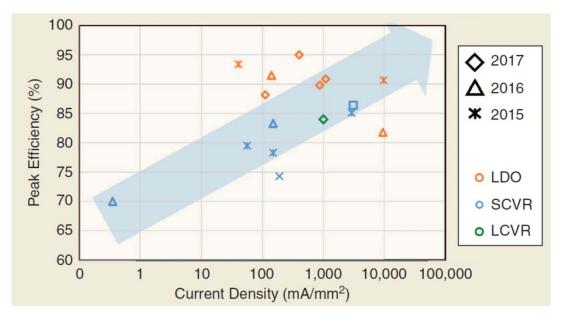
• Assign slow transistors to fast paths (makes these slower) \Rightarrow use transistors with high $V_T \Rightarrow$ P_{leak} is reduced (but P_{sw} more or less unchanged).


Match V_{DD} to Performance Need

- First order delay $\propto 1/V_{DD}$ and $P_{sw} \propto V_{DD}^{2}$:
 - Reduce V_{DD} for circuits that are not timing critical \Rightarrow both P_{sw} and P_{leak} are reduced.
 - Optimal number of V_{DD} levels? Consider infrastructure overheads like voltage generation.


Energy-Aware Computing: Low-Power Circuit Techniques, 2017

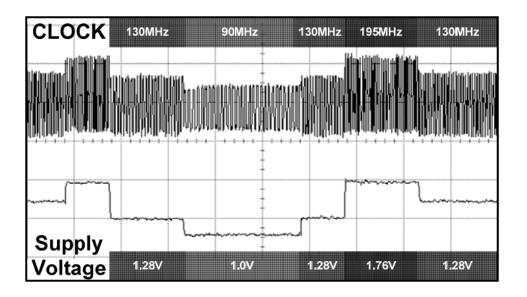
Low-Power Technique 3: Multi-*V*_{DD}


Dual- V_{DD} ALU example from LPDE'09/Ch 4

System-on-Chips (SoCs) with Several V_{DD} s

Steadily improving on-chip voltage converters.

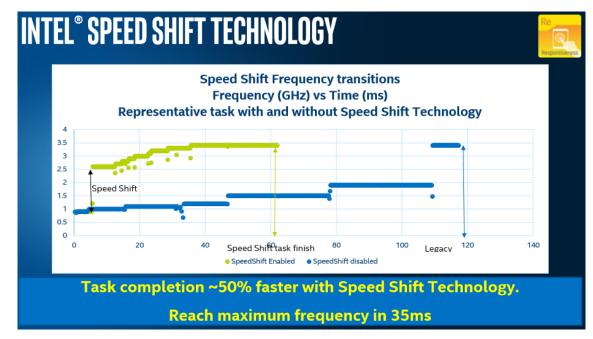
Source: IEEE SOLID-STATE CIRCUITS MAGAZINE


SoC Implementation Challenges

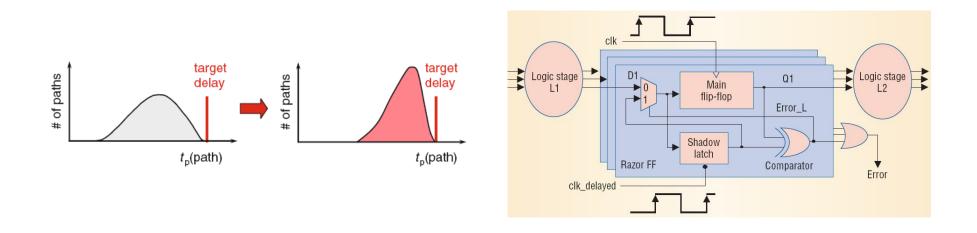
- Multiple V_{DD} s
 - makes implementation and verification more complex.
 - requires different voltages; how are they generated?
 - requires voltage-level conversions between domains, which creates an overhead.
- What about synchronization and timing between blocks?
 - Domains may have different clock rates.
 - Domains may have varying clock rates.

Planning Supply Voltages

- Overall, use minimal V_{DD} to limit power dissipation.
 - High performance \Rightarrow low V_{T} .
 - Low standby power \Rightarrow high V_{T} .
- To simplify integration, logic and memory should operate under the same V_{DD} . However, logic and memory have very different V_{DD} V_T tradeoffs:
 - Unused SRAM portions are leaking \Rightarrow ought to use high V_T + low V_{DD} to reduce standby power (otherwise very significant in huge memories).
 - However, due to read disturb and write failures, high V_T + low V_{DD} spells big problems for SRAM cells.


Low-Power Technique 4: DVFS

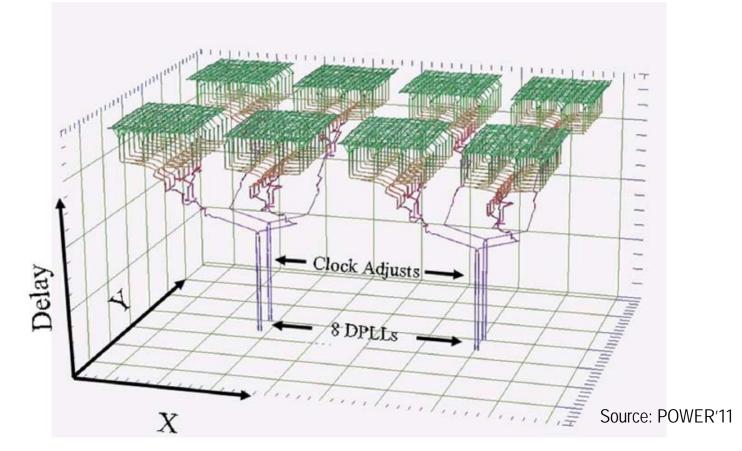
 Timing slack can be used for power reductions:
 Dynamic Voltage and Frequency Scaling (DVFS).


Read more in CATPE'08/Ch 3

Faster DVFS State Transitions

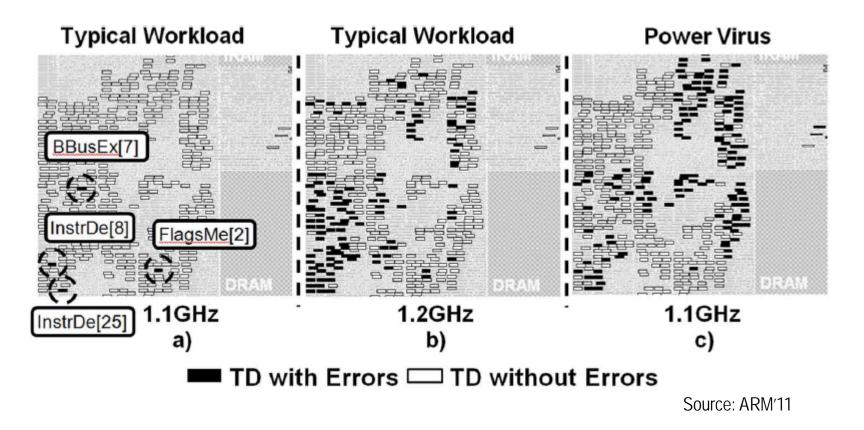
- Conventional DVFS: Predefined performance states, controlled by $OS \Rightarrow$ slow transitions.
- Intel's Speed Shift succeeded Speed Step in 2015: CPU handles transitions (faster); OS to relinquish (some) control.
 - Main gain is performance, not so much power dissipation.

Circuit Adaptation for DVFS

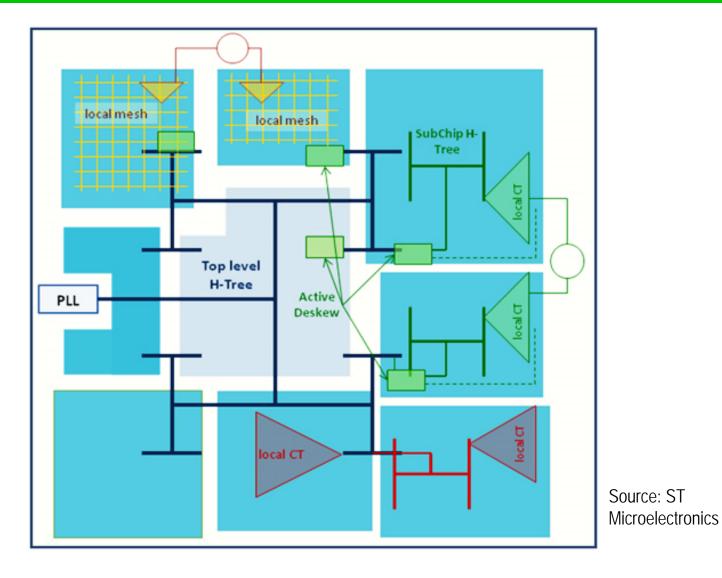

- Aggressive V_{DD} reduction would cause timing violations and, thus, computation errors.
- Solution: Implement a feedback system that regulates speed, in the process also handling variations.

Read more in CATPE'08/Ch 3.5

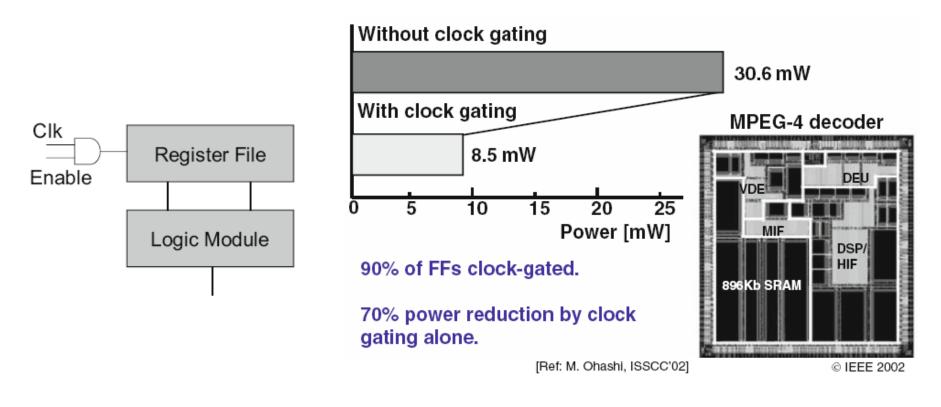
Energy-Aware Computing: Low-Power Circuit Techniques, 2017


Example on Variations

Clock arrival times are hard to synchronize. Such static variations are handled as a side effect.

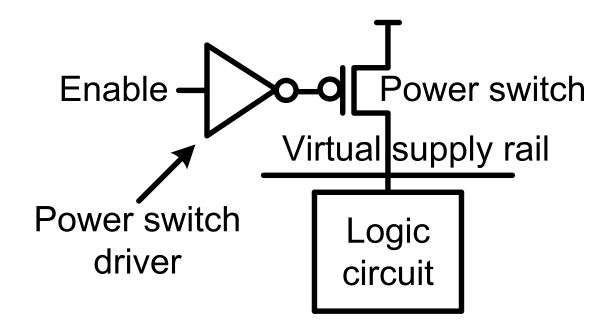


Detection of Timing Failures

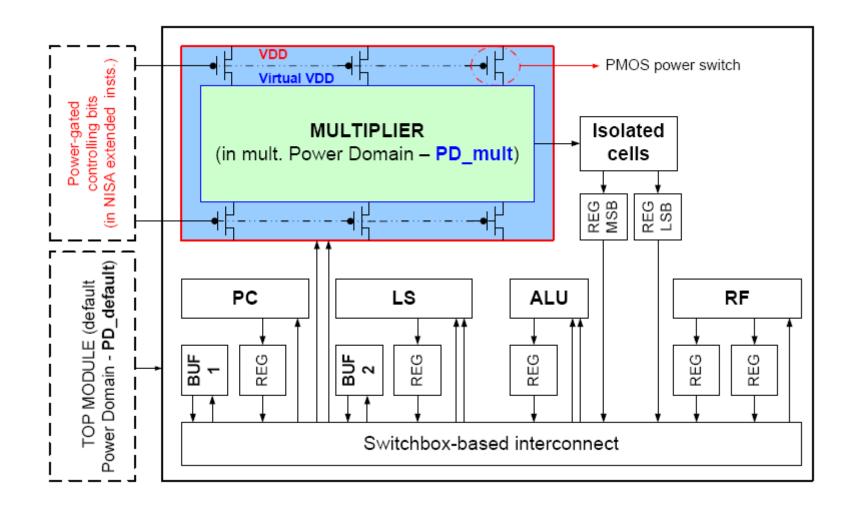

• High clock rates or extremely compute-intensive code can expose timing issues.

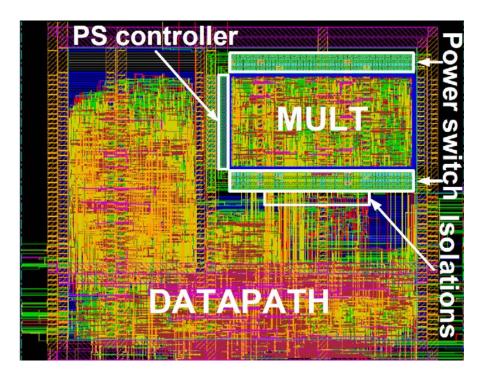
Clock Tree Design

Low-Power Technique 5: Clock Gating

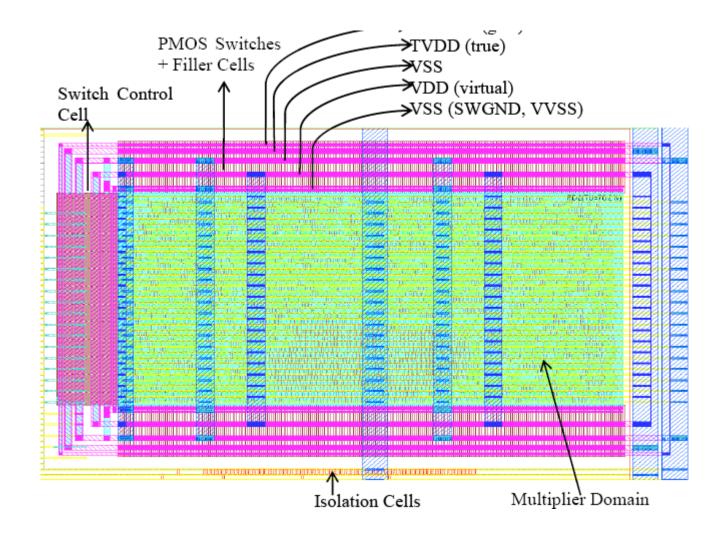

Source: LPDE'09/Ch 8

Recap: Low-Power Techniques


- Body biasing
- Multi- V_T
- Multi- V_{DD}
- DVFS
- Clock gating
- Power gating


Low-Power Technique 6: Power Gating

Power Gating of Execution Unit



Power Gating after Place&Route

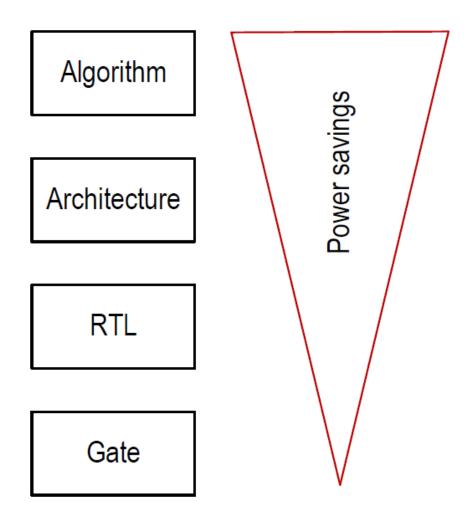
- Need IC cell library support to implement power gating:
 - Level shifters, isolation
 level shifters, isolation cells,
 always-on buffers and
 inverters, retention cells,
 and power switches.
- EDA tool must support transition control:
 - Trade off between rush current and wake-up time.

Power Gating Impacts Area Significantly

Identify Multiply Activity

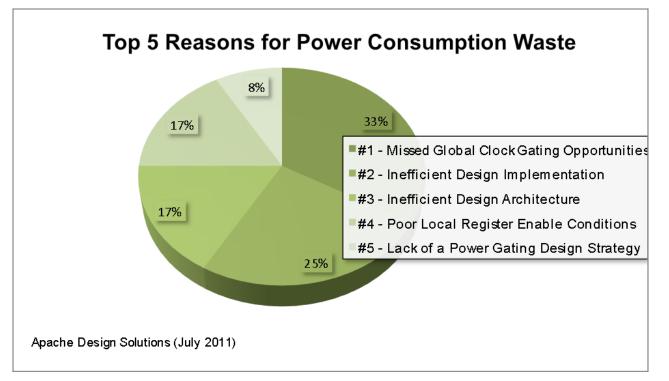
132	19 0000000AE42400000340101880 20 00000F040000000000039003E0 21 000000000000000000000000029000	-	000057 000058 000013	[PCGetPC,PCJumpSA 13,RegRead2 [LSWrite LSW 4 Alu Rslt [RegRead1 R5,RegRead2 R4]
	22 0EC000000080000002000F8000	-	000014	[MultRegWrite,Mult Regbank_Out2
	23 000C00040000C000000005800000 24 0000000AA0000000000003900040	-	000015 000016	[PCJumpDA Regbank_Out1,LSRead LSW_4 [LSWrite LSW 4 Ls Read Mult LSW
	25 000000000000000000000000000000000000	-	000059	[PCImm (Just 2),RegRead2 R16]
132	26 00000000E400000000080088001	-	000060 •	[PCImm (Just 2),RegRead1 R17,ALUOpc
				•
			•	
	37 00000000AE424000000340101880	-		[PCGetPC,PCJumpSA 13,RegRead2 R6
133	38 000000F0400000000000039003E0	-	000058	[LSWrite LSW 4 Alu Rslt
133	38 000000F0400000000000039003E0 39 000000000000000000000029000	-	000058 000013	[LSWrite LSW 4 Alu Rslt [RegRead1 R5,RegRead2 R4]
133 133 134	38 000000F0400000000000039003E0 39 000000000000000000000000000000000000	-	000058 000013 000014	[LSWrite LSW 4 Alu Rslt [RegRead1 R5,RegRead2 R4] [MultRegWrite,Mult Regbank_Out2
133 133 134 134	38 000000F04000000000000039003E0 39 000000000000000000000000000000000000	-	000058 000013 000014 000015	[LSWrite LSW 4 Alu Rslt [RegRead1 R5,RegRead2 R4] [MultRegWrite,Mult Regbank_Out2 [PCJumpDA Regbank_Out1,LSRead LSW_4
133 133 134 134 134	38 000000F0400000000000039003E0 39 000000000000000000000029000 40 0EC00000000800000002000F8000 41 000C00040000C0000000005800000 42 0000000AA00000000000003900040	-	000058 000013 000014 000015 000016	[LSWrite LSW 4 Alu Rslt [RegRead1 R5,RegRead2 R4] [MultRegWrite,Mult Regbank_Out2 [PCJumpDA Regbank_Out1,LSRead LSW_4 [LSWrite LSW 4 Ls Read Mult LSW
133 134 134 134 134	38 000000F04000000000000039003E0 39 000000000000000000000000000000000000		000058 000013 000014 000015	[LSWrite LSW 4 Alu Rslt [RegRead1 R5,RegRead2 R4] [MultRegWrite,Mult Regbank_Out2 [PCJumpDA Regbank_Out1,LSRead LSW_4

Limited Mult Utilization Allows for Savings


Benchmark: EEMBC Autocorrelation								
<u> </u>	10,000,000,000fs	20,000,000,000fs	30,000,000,000fs	40,000,000,000fs	50,000,000,000fs			
 Limited multiply activity, early in application ⇒ multiplier can be power gated since it becomes idle. Trade off: Static power reductions during idle vs power overhead for power gating. 								
Benchma	rk: EEMBC FF		0000fs 300.00	0,000,000fs 4	400,000,000,000fs			
· · · ·	1.00,000,000,000							
		[More extensiv	ve multiply ac	ctivity.			

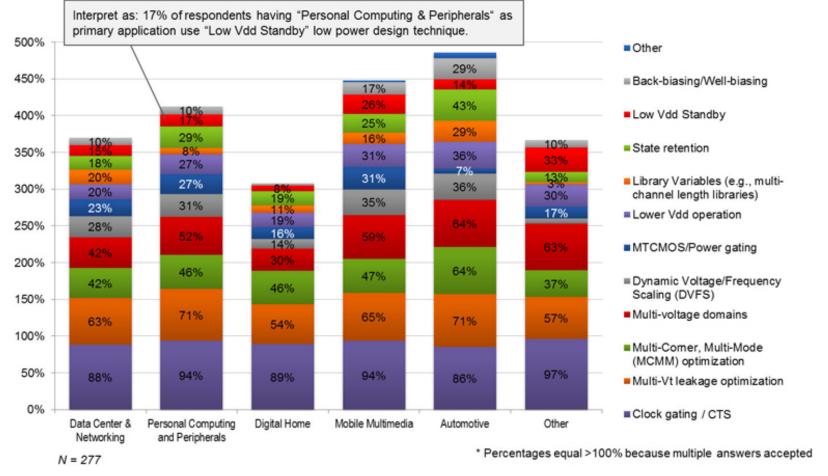
Low-Power Options – Pros and Cons

Power-reduction	Power Benefit	Timing Penalty	Area Penalty	Methodology Impact				
Technique				Architecture	Design	Verification	Implementation	
Multi-Vt Optimization	Medium	Little	Little	Low	Low	None	Low	
Clock Gating	Medium	Little	Little	Low	Low	None	Low	
Multi-supply Voltage	Large	Some	Little	High	Medium	Low	Medium	
Power Shut-off	HUGE	Some	Some	High	High	High	High	
Dynamic and Adaptive Voltage Frequency Scaling	Large	Some	Some	High	High	High	High	
Substrate Biasing	Large	Some	Some	Medium	None	None	High	


Source: Cadence

Power Reductions in Design Flow

- Early design decisions yield higher power reductions than late decisions.
 - Decisions based on holistic view even better.
 - Co-optimization across levels is complex; depends on EDA tool support.
- System architects should be aware of what lowpower techniques exist.


Missed Opportunities?

- Low-power techniques clearly exist. But how do we make use of them in complex systems?
- Designer's competence + IP/cell infrastructure + EDA tools.

Industry View on Low-Power Techniques

Low Power Techniques Used Across Market Applications

Source: Synopsys, Inc. Global User Survey, 2011

Energy-Aware Computing: Low-Power Circuit Techniques, 2017

Conclusion

- Reducing circuit power dissipation is done by using best design practices and by employing a few well known low-power techniques.
- Support from EDA (CAD) tools and IC technology (cell libraries) is essential to handle low-power design in an efficient manner.
- Common to all techniques is that reducing V_{DD} is effective for reducing power.

References

- **ABB'02:** "Adaptive Body Bias for Reducing Impacts of Die-to-Die and Within-Die Parameter Variations on Microprocessor Frequency and Leakage", J. Tschanz et al., IEEE JSSC, Nov. 2002.
- **ARM'11**: "A Power-Efficient 32 bit ARM Processor Using Timing-Error Detection and Correction for Transient-Error Tolerance and Adaptation to PVT Variation", D. Bull et al., IEEE JSSC, 2011.
- **CATPE'08:** "Computer Architecture Techniques for Power-Efficiency", S. Kaxiras and M. Martonosi, Morgan & Claypool, 2008.
- LPDE'09: "Low Power Design Essentials", J. Rabaey, Springer, 2009.
- **POWER'11:** "POWER7[™], a Highly Parallel, Scalable Multi-Core High End Server Processor", D. F. Wendel et al., IEEE JSSC, 2011.
- And many local Chalmers papers.