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Computing Circuits Draw Current
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Power = Current * Voltage
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(Average) Current Drawn per Cycle
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* Average current?
* Consider the

iInstantaneous current
throughout one cycle...

» ...then take the average.

Page 4



type n - BxB-bit mult

:

Energy-Aware Computing: Technology and Circuits, 2017

PEF R

:

§

§

:

B

’ I:)avg

Power and Energy Dissipated per Cycle

* P.o= s " Voo,

avg  avg
where V; is the

supply voltage of
the system.

* Energylcycle:

E.=Pag ™ T,
where T Is
the clock period.

and E_ will both
be used in this lecture.
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Varying Power and Energy Dissipation

+ P, andE...

avg

— depend on
what is being
computed.

— vary from cycle
to cycle.
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Power Measurements vs the TDP Metric
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Source: EPM'14

Source: Scythe (Kozuti Cooler)

* Power dissipation varies over time. Yet, the TDP (Thermal
Design Power) defines certain Watt limit for CPU cooling.

— Peak power is allowed to exceed TDP, but to what extent?
« Which benchmarks to establish the TDP value?
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Typical Energy/Cycle

* Find typical energy/cycle:

— Run system for
many cycles.

— Use statistically relevant
benchmarks.

* By associating the typical
energy/cycle with
different hardware units,
energy metrics can be
used at software level.
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Parameter Energy (p])
Integer Operations 17.93
Floating Point Operations 29.39
Branch 154.22
Local store 47.99
Local load 39.82
Pipeline Stalls 53.65
Shared memory stores 581.72
Shared memory loads 2054.67
NOP 17.07
Idle Cycle 23.59
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Technology and Circuits

Source: Concept Engineering

* Physical implementation impacts power dissipation.
— Fabrication process technology (left).
— Circuit implementation (right).
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Technology: Wires and Transistors

CPU Transistor Counts 1971-2008 & Moore’s Law
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Field-Effect Transistors (FETS)

The FET; the work horse of all digital systems

Traditional Planar Transistor

High-k
Dielectric

Source: tek.no
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22 nm Tri-Gate Transistor
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Field-Effect Transistor Basics

» Voltage is applied on gate.

* Electric field regulates
channel properties.

* Threshold voltage, V-
(or V) is the gate voltage
required to create a
conducting channel.
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Source

Substrate

Channel

Source: USC

Body electrode
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The CMOS Technique

. | The CMOS inverter
* Terminology:

_ MOSEET = Metal Oxide Vo
Semiconductor FET.

— CMOS = Complementary MOS.

« CMOS is the foundation for all 0 Ai 1
digital circulits.

— Key property: Gate isolated from
channel = “no” current flows
through gate insulator.
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Contrast to BJTs and Analog Circuits
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* Analog circuits: biasing required = transistors are always on.
» Bipolar transistors: current flows into base; no isolation.

- FLASHWEBHOST.COM
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Dynamic and Static Power Dissipation

* Dynamic power:
— Switching power, Py, VDD
— Switching logic levels, i.e., computation.
— Charge and discharge, Q. ]
o Static power: 0_ ]
— Leakage power, P,

— Mainly due to subthreshold current, I ;. ﬂlsub C Vip

— Caused by small-size effects, i.e.,
advanced FETs are never fully off. = =
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Switching Power Dissipation, P,

T * |nput transition 150 =
A{ Q output node 0—1,

requiring charge Q = C V,
from the power supply.

4' C .« Later, input0—>1=
l Q output node falls,
draining the charge
to the ground.
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While P, Mostly Depends on Vi ...

* After one full transition,
T the energy of the charge
has been converted into heat:
Ai_ P, = E/T=(QVpp)T=
AI i = (CVpp V) 1.
* This gives us this famous expression
l P, =faCVyp
= = where o represents switching/cycle.

* To reduce switching power,
focus on the supply voltage.
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... All Tricks Are Necessary

» We want to reduce
Py, =faC Vg2
* Aside from Vp, there are
several implementation
best design practices:
— Reduce signal activity (o),
e.g., by eliminating glitches.
— Reduce nodal capacitance
(C), by optimizing layout of
transistors and wires.

Energy-Aware Computing: Technology and Circuits, 2017 Page 18



Impact of Speed (f) on Power and Energy

<[+ Generally, reducing speed f saves power.
€ 13 » During implementation, “weaker” circuits can
be used. But then f can never be raised.
T = Use of weaker circuits means lower capacitance C.
s — Mainly this impacts power dissipation;
00 energy/cycle does not change significantly.
:
2 o0 par(iveic)
R R
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Scaling Supply Voltage for Reduced P,

* S0 Vppis decreased to save switching power.
» Since performance deteriorates rapidly

as Vp approaches V-,

V- has to be decreased as well.

—~ 1.6
N »

20 nm CMO
gate delay (n
S
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Source; SSD’'13
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Voltage Scaling Issues

V44 — Vy, determines the
performance (High Id)
and cannot be too small.

\olt

AVy: Vg variation

> AV,
Margin for V,, variation
IS necessary

| I

Subthreshold leakage current limit

Year

Source: H. lwai, Technology Scaling and Roadmap, IEDM'08/Short Course
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CMOS Stability Reduces with Vg,

* (Classic advantage of CMOS: T‘
High 15\ /loee €Nsures
stable digital operation. 0 i

* Because of scaling, - L
eakage increases = 7
orr INCreases. B

* Degrading |y /loe ratio limits
now far Vp can be scaled;
especially serious for SRAMSs.

Energy-Aware Computing: Technology and Circuits, 2017 Page 22



Subthreshold Current

» Smaller FETs and decreasing Vbs
Vpp (and V;) = increasing | ..

* |, function of semiconductor e N
energy states (quantum mech.). (< V7)

* Three important features:
— Exponential dependence on V. T 7

— Exponential dependence on V;.  sub

» Since V; depends on Vg,
static power strongly kT

= — = 26 mV (room tem
depends on supply voltage! thermal = ( P)

— Temperature matters.
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CMOS Stability - Variability
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Normalized Leakage (I;) Source: "Giga-scale Integration for Tera

Ops Performance”, P. Gelsinger, DAC'04

» V. variations impact leakage exponentially.
— Variability increases with scaling.

* Generally, technology variations have a stronger impact
on designs where Vyand V; are reduced.
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Some Variations Are Random in Nature
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Source: Direct Tunnelling Gate Leakage Variability
in Nano-CMOS Transistors, IEEE TED, 2010.
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lope ISN’t O (Due to Leakage)

03 035
vivas)V)

VDS= 1.2V q( VGS_ VT)

Vis: I ,p o € il
0-06V _I l Isub U

High |- = high static power + stability issues!
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Note That I Strongly Depends on Vg,

6 0.7
v(vds)(V)

» For short channels, V;increases

q(=V7) qVps . .
l T | T with decreasing Vpp,.
sub < © N — Cause: Drain-induced barrier
lowering (DIBL).

— DIBL lower in e.g. FinFETSs.
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Reduce Speed to Save Power?

3.5 -

3.0 T v(in)
s \
When speed goes down, —,, .,
P, decreases while :
= P, Stays constant.
1 E;r: (Params) :1(s)
par(ivvdd)
7 70 princ
A
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Subthreshold/Nearthreshold Computing

| Rooen {Regor | egon” * Lower speed I = lower Py,

;E i ~10X - Py, =faC Vppy?

3 L » and ...reduced speed =

i Bt momee R increased delay slack =

B s Vop can be reduced =

P, dramatically reduced.

= + Also P, is reduced due to

%: .: ....... . -------------- ~50-100X reduced VDD’ but the

- B o« exponentially deteriorating
— i performance makes E,,,
" Supply Voltage. gomeerncic very significant.
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Subthreshold/Nearthreshold Computing

Energy/inst (pJ)
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Source: NTC'10

* Subthreshold/nearthreshold operation is interesting
because it leads to minimal energy/operation!

* Note though that performance is very poor in these regions.
« Some simulations follow for 65nm GP_LVT and LP_LVT.

Energy-Aware Computing: Technology and Circuits, 2017

Page 30



Delay vs Vg,

100 ns —

® P LVT ® GP LVT

LP_LVT is low performance
GP_LVT is high performance

Delay

100 ps —

10 ps T
0.2 0.4 0.6 0.8

VDD (V)
Page 31
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Energy/Operation vs Vg,

® P LVT @® GP LVT

/

LP_LVT has low leakage
GP_LVT has high leakage
- =
GP_LVT curve has a discernible minimum

Energy (fJ)

VDD (V)
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Subthreshold Swing/Slope Factor (S)

s
log Ip VDS>VDSsat

» To efficiently reduce |,
a smaller subthreshold
swing (S) than that of
MOSFETSs is desirable.

— Priority: Good S for low Vps. /! s S > 60 mV/decade
* This, however, requires of for MOSFETs.
radical changes to the 0 v Vee
fundamental transistor ) }
operation. subthreshold

regime
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Limited Subthreshold Swing of FETSs

MOSFET

n (E)

-
i

- SS= 2.3m KT

q

LY
>60mv/dec

—V_=0V,V_=1V

----- V =1V.V_ =1V
GS ’ "ps Source: BTBTFET10

« S (called SS above) >=2.3 * 0.026 = 59.8 mV/decade.
* m=1+4 Cdepletion-layer/ Cgate-oxide
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The FINFET - A “3D Gate” FET
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Source: IBM14nm

FETSs:

Decent S at low V.

But still MOSFETs !

IBM — SOl-based FinFETs
Intel — bulk FINFETs
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Transistor Fin Improvement
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m 1% Generation 14 nm 2™ Generation

22n
Tri-gate Transistor Tri-gate Transistor
Source: Intel14nm
1E-02 ¢
1E-03 -+

1E-04
1E-05 |
1E-06
1E-07 |
1E-08

1E_09 I L ! L ! L I L I L ! L ! L

07 -0I.5 —OI.3 —6.1 0‘.1 OI.3 015 07
VGS (V)

Page 35



Post/Beyond-CMOS - Tunnel-FETs ?

oxide TF ET
S G Y D S G D
[P+  depletedn+ n+| [P+ n+|

—V_0V,V =1V
V=V, V, =1V

_________

Source: BTBTFET'10

* A lower subthreshold swing gives acceptable
lon/lorr ratios at low supply voltages.
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TFET vs CMOS
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Fig. 52. Throughput versus dissipated power density of devices.

The preferred corner is bottom right.

Source: OBCD'13
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TFETs (e.g. HetJFET) are
promising but CMQOS is not

doing that bad...

The challenge is to make

TFETSs that can both have

— subthreshold swings
<< 60mV/decade

— high | currents
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Conclusion

* |Implementation aspects, technology and circulits,
strongly impact power and energy dissipation.

 Several power dissipating mechanisms =
need different low-power techniques (next lecture).

* While reducing V is the most effective way to
reduce power, this also has disadvantages:
— Lower speed, which hurts performance, or
— lower V; to maintain speed; this in turn increases leakage.
— Larger impact of variability in any case.
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