AlgSDP: Algebra of Sequential Decision Problems formalised in Agda

Robert Krook Patrik Jansson

2020-01-06, WG2.1 \#79 in Otterlo, NL

Abstract

Sequential decision problems are a well established concept in decision theory, with the Bellman equation as a popular choice for describing them. Botta, Jansson, Ionescu have formalised the notion of such problems in Idris (presented by Jansson at \#75 Uruguay, by Botta at \#77 Brandenburg). Here we focus on an Algebra of SDPs (in Agda): combinators for building more complex SDPs from simpler ones.

AlgSDP by example in one slide
A 1D-coord. syst. with \mathbb{N} as state and $+1,0$, and -1 as actions.
p:SDProc

AlgSDP by example in one slide

A 1D-coord. syst. with \mathbb{N} as state and $+1,0$, and -1 as actions.
p:SDProc
We define a product to enable reusing p in a 2D setting:

$$
\begin{aligned}
& -\times \text { SDP_ }: S D P r o c ~
\end{aligned} \text { SDProc } \rightarrow \text { SDProc }
$$

AlgSDP by example in one slide

A 1D-coord. syst. with \mathbb{N} as state and $+1,0$, and -1 as actions.

p:SDProc

We define a product to enable reusing p in a 2D setting:

$$
\begin{aligned}
& -\times \text { SDP_ }: S D P r o c ~
\end{aligned} \text { SDProc } \rightarrow \text { SDProc }
$$

Both p and p^{2} use a fixed state space, but we can also handle time dependent processes (for example p^{\prime} of type $S D P r o c T$).

$$
\begin{aligned}
& -\times_{S D P-}^{T}: S D P r o c T \rightarrow S D P r o c T \rightarrow S D P r o c T \\
& \text { embed }: S D P r o c \rightarrow S D P r o c T \\
& p^{2^{\prime}}=p^{\prime} \times \times_{S D P}^{T}(\text { embed } p) \\
& p^{3}=p^{2} \times \times_{S D P} p
\end{aligned}
$$

AlgSDP by example in one slide

A 1D-coord. syst. with \mathbb{N} as state and $+1,0$, and -1 as actions.

p:SDProc

We define a product to enable reusing p in a 2D setting:

$$
\begin{aligned}
& -\times \text { SDP_ }: S D P r o c ~
\end{aligned} \text { SDProc } \rightarrow \text { SDProc }
$$

Both p and p^{2} use a fixed state space, but we can also handle time dependent processes (for example p^{\prime} of type SDProcT).

$$
\begin{aligned}
& -\times_{S D P-}^{T}: S D P r o c T \rightarrow S D P r o c T \rightarrow S D P r o c T \\
& \text { embed }: S D P r o c \rightarrow S D P r o c T \\
& p^{2^{\prime}}=p^{\prime} \times \times_{S D P}^{T}(\text { embed } p) \\
& p^{3}=p^{2} \times \times_{S D P} p
\end{aligned}
$$

Final example: a process that moves either in 3D or in 2D.

$$
\begin{aligned}
& -\uplus_{S D P-}^{T}: S D P r o c T \rightarrow \text { SDProc } T \rightarrow \text { SDProc } T \\
& \text { game }=p^{2^{\prime}} \uplus_{S D P}^{T}\left(\text { embed } p^{3}\right)
\end{aligned}
$$

You could think of this as choosing a map in a game.

Example: 1-dimensional coordinate system

$$
\begin{aligned}
& 1 d \text {-state }: \text { Set } \\
& 1 d \text {-state }=\mathbb{N}
\end{aligned}
$$

Example: 1-dimensional coordinate system

1d-state : Set
1d-state $=\mathbb{N}$
data 1d-control : 1d-state \rightarrow Set where Right : $\{n: 1 d$-state $\} \rightarrow 1 d$-control n Stay : $\{n: 1 d$-state $\} \rightarrow 1 d$-control n Left : $\{n: 1 d$-state $\} \rightarrow 1 d$-control (suc n)

Example: 1-dimensional coordinate system

1d-state : Set
$1 d$-state $=\mathbb{N}$
data 1d-control : 1d-state \rightarrow Set where Right : $\{n: 1 d$-state $\} \rightarrow 1 d$-control n Stay : $\{n: 1 d$-state $\} \rightarrow 1 d$-control n Left : $\{n: 1 d$-state $\} \rightarrow 1 d$-control (suc n)

Example: 1-dimensional coordinate system

1d-state : Set
$1 d$-state $=\mathbb{N}$
data 1d-control : 1d-state \rightarrow Set where
Right : $\{n: 1 d$-state $\} \rightarrow 1 d$-control n
Stay : $\{n: 1 d$-state $\} \rightarrow 1 d$-control n
Left : $\{n: 1 d$-state $\} \rightarrow 1 d$-control (suc n)

Example: 1-dimensional coordinate system

1d-state : Set
$1 d$-state $=\mathbb{N}$
data 1d-control : 1d-state \rightarrow Set where
Right : $\{n: 1 d$-state $\} \rightarrow 1 d$-control n
Stay : $\{n: 1 d$-state $\} \rightarrow 1 d$-control n
Left : $\{n: 1 d$-state $\} \rightarrow 1 d$-control (suc n)

Example: 1-dimensional coordinate system

```
1d-state : Set
1d-state = N
```

data 1d-control : 1d-state \rightarrow Set where
Right : $\{n: 1 d$-state $\} \rightarrow 1 d$-control n
Stay : $\{n: 1 d$-state $\} \rightarrow 1 d$-control n
Left : $\{n: 1 d$-state $\} \rightarrow 1 d$-control (suc n)

$$
\begin{aligned}
& 1 d \text {-step : }(x: 1 d \text {-state }) \rightarrow 1 d \text {-control } x \rightarrow 1 d \text {-state } \\
& 1 d \text {-step } x \quad \text { Right }=\text { suc } x \\
& 1 d \text {-step } x \quad \text { Stay }=x \\
& 1 d \text {-step }(\text { suc } x) \text { Left }=x
\end{aligned}
$$

Sequential Decision Process

record SDProc : Set1 where

constructor SDP
field
State : Set

Sequential Decision Process

record SDProc : Set1 where
constructor SDP
field
State : Set
Control : State \rightarrow Set

Sequential Decision Process

record SDProc : Set1 where
constructor SDP
field
State : Set
Control : State \rightarrow Set
step $:(x:$ State $) \rightarrow$ Control $x \rightarrow$ State

Sequential Decision Process

record SDProc : Set1 where constructor SDP field

State : Set
Control : State \rightarrow Set
step $:(x:$ State $) \rightarrow$ Control $x \rightarrow$ State
Our example:

```
1d-sys : SDProc
\(1 d\)-sys \(=\) SDP 1d-state 1d-control 1d-step
```


Sequential Decision Problem

In a sequential decision problem there is also a fourth field reward:
record SDProb: Set1 where constructor SDP field

```
State : Set
Control : State }->\mathrm{ Set
step :(x : State) }->\mathrm{ Control x }->\mathrm{ State
reward :(x:State) }->\mathrm{ Control }x->\mathrm{ Val
```

(where Val is often \mathbb{R}).

- The Seq. Dec. Problem is: find a sequence of controls that maximises the sum of rewards.
- Or, in more realistic settings with uncertainty, finding a sequence of policies which maximises the expected reward.
- Rewards, and problems, are not the focus of this talk but are mentioned for completeness.

Policy

In general:

> Policy : $(S:$ Set $) \rightarrow((s: S) \rightarrow$ Set $) \rightarrow$ Set
> Policy $S C=(s: S) \rightarrow C s$

Policy

In general:

$$
\begin{aligned}
& \text { Policy : }(S: \text { Set }) \rightarrow((s: S) \rightarrow \text { Set }) \rightarrow \text { Set } \\
& \text { Policy } S C=(s: S) \rightarrow C s
\end{aligned}
$$

Specialised:

$$
\begin{aligned}
1 d \text {-Policy } & \text { Set } \\
1 d \text {-Policy } & =\text { Policy 1d-state 1d-control } \\
-- & =(x: 1 d \text {-state }) \rightarrow 1 d \text {-control } x
\end{aligned}
$$

Policy

Specialised:

$$
\begin{aligned}
1 d \text {-Policy : } & \text { Set } \\
1 d \text {-Policy } & =\text { Policy 1d-state } 1 d \text {-control } \\
-- & =(x: 1 d \text {-state }) \rightarrow 1 d \text {-control } x
\end{aligned}
$$

Example policies:

$$
\begin{aligned}
& \begin{array}{l}
\text { right stay tryleft : } 1 d \text {-Policy } \\
\text { right - } \\
\text { stay }- \\
\text { sight } \\
\text { tryleft zero } \\
\text { tryleft (suc s) }
\end{array}=\text { Stay } \\
& \text { Left }
\end{aligned}
$$

Policy

Example policies:

$$
\begin{aligned}
& \begin{array}{ll}
\text { right stay tryleft } & \text { : 1d-Policy } \\
\text { right }- & =\text { Right } \\
\text { stay - } & =\text { Stay } \\
\text { tryleft zero } & =\text { Stay } \\
\text { tryleft (suc s) } & =\text { Left }
\end{array}
\end{aligned}
$$

A family of policies (to move towards a particular goal coordinate):

$$
\begin{aligned}
& \text { towards : } \mathbb{N} \rightarrow \text { 1d-Policy } \\
& \text { towards goal } n \text { with compare } n \text { goal } \\
& \text {... | less _ _ }=\text { Right } \\
& \text {... | equal_ } \quad=\text { Stay } \\
& \text {... | greater _ _ = Left }
\end{aligned}
$$

Back to Processes - now with abbreviations

record SDProc : Set1 where constructor SDP field State : Set

Control : Con State step : Step State Control

Con : Set \rightarrow Set $_{1}$
Con $S=S \rightarrow$ Set
Step : (S:Set) \rightarrow Con $S \rightarrow$ Set
Step S C $=(s: S) \rightarrow C s \rightarrow S$
Policy : $(S: S e t) \rightarrow((s: S) \rightarrow$ Set $) \rightarrow$ Set
Policy S C $=(s: S) \rightarrow C s$

Trajectory

Here $\#_{\mathrm{st}}, \#_{\mathrm{c}}, \#_{\mathrm{sf}}$ extract the different components of an SDP.

$$
\begin{aligned}
& \text { trajectory }:(p: \text { SDProc }) \rightarrow\{n: \mathbb{N}\} \rightarrow \\
& \rightarrow \quad \operatorname{Vec}\left(\text { Policy }\left(\#_{\text {st }} p\right)\left(\#_{\mathrm{c}} p\right)\right) n \\
& \rightarrow \#_{\text {st }} p \rightarrow \operatorname{Vec}\left(\#_{\mathrm{st}} p\right) n \\
& \text { trajectory sys }[] \quad x_{0}=[] \\
& \text { trajectory sys }(p:: p s) x_{0}=x_{1}:: \text { trajectory sys } p s x_{1} \\
& \text { where } x_{1}: \# \text { st sys } \\
& x_{1}=\left(\#_{\text {sf }} \text { sys }\right) x_{0}\left(p x_{0}\right)
\end{aligned}
$$

Example:

$$
\begin{aligned}
\text { pseq } & =\text { tryleft }:: \text { tryleft }:: \text { right }:: \text { stay }:: \text { right }::[] \\
\text { test } 1 & =\text { trajectory } 1 d-\text { sys pseq } 0 \\
-- & =0:: 0:: 1:: 1:: 2::[]
\end{aligned}
$$

In an applied setting many trajectories would be computed to explore the system behaviour.

The Product of SDPs

${ }_{-} \times_{\text {SDP_ }}:$ SDProc \rightarrow SDProc \rightarrow SDProc
$\left(S D P S_{1} C_{1} s f_{1}\right) \times_{S D P}\left(S D P S_{2} C_{2} s f_{2}\right)$

$$
=\operatorname{SDP}\left(S_{1} \times S_{2}\right)\left(C_{1} \times{ }_{C} C_{2}\right)\left(s f_{1} \times_{s f} s f_{2}\right)
$$

The Product of SDPs

${ }_{-} \times_{\text {SD_ }}:$ SDProc \rightarrow SDProc \rightarrow SDProc
$\left(S D P S_{1} C_{1} s f_{1}\right) \times{ }_{S D P}\left(S D P S_{2} C_{2} s f_{2}\right)$

$$
=S D P\left(S_{1} \times S_{2}\right)\left(C_{1} \times C C_{2}\right)\left(s f_{1} \times_{s f} s f_{2}\right)
$$

Con : Set \rightarrow Set $_{1}$
Con $S=S \rightarrow$ Set
${ }_{-} \times_{C_{-}}:\left\{S_{1} S_{2}: S e t\right\} \rightarrow$ Con $S_{1} \rightarrow$ Con $S_{2} \rightarrow \operatorname{Con}\left(S_{1} \times S_{2}\right)$
$\left(C_{1} \times C_{2}\right)\left(s_{1}, s_{2}\right)=C_{1} s_{1} \times C_{2} s_{2}$

The Product of SDPs

${ }^{\times} \times_{\text {SD P_ }}:$ SDProc \rightarrow SDProc \rightarrow SDProc
$\left(S D P S_{1} C_{1} s f_{1}\right) \times S D P\left(S D P S_{2} C_{2} s f_{2}\right)$

$$
=S D P\left(S_{1} \times S_{2}\right)\left(C_{1} \times C C_{2}\right)\left(s f_{1} \times_{s f} s f_{2}\right)
$$

Con : Set \rightarrow Set $_{1}$
Con $S=S \rightarrow$ Set
${ }_{-} \times_{C_{-}}:\left\{S_{1} S_{2}: S e t\right\} \rightarrow$ Con $S_{1} \rightarrow$ Con $S_{2} \rightarrow \operatorname{Con}\left(S_{1} \times S_{2}\right)$
$\left(C_{1} \times C_{2}\right)\left(s_{1}, s_{2}\right)=C_{1} s_{1} \times C_{2} s_{2}$

Step : $(S:$ Set $) \rightarrow$ Con $S \rightarrow$ Set
Step $S C=(s: S) \rightarrow C s \rightarrow S$
${ }_{-} \times_{\text {sf_ }}:\left\{S_{1} S_{2}: \operatorname{Set}\right\}\left\{C_{1}:\right.$ Con $\left.S_{1}\right\}\left\{C_{2}:\right.$ Con $\left.S_{2}\right\}$
\rightarrow Step $S_{1} C_{1} \rightarrow$ Step $S_{2} C_{2}$
\rightarrow Step $\left(S_{1} \times S_{2}\right)\left(C_{1} \times{ }_{C} C_{2}\right)$
$\left(s f_{1} \times_{s f} s f_{2}\right)\left(s_{1}, s_{2}\right)\left(c_{1}, c_{2}\right)=\left(s f_{1} s_{1} c_{1}, s f_{2} s_{2} c_{2}\right)$

```
_ \SDP_ : SDProc }->\mathrm{ SDProc }->\mathrm{ SDProc
```



```
    =SDP}(\mp@subsup{S}{1}{}\times\mp@subsup{S}{2}{})(\mp@subsup{C}{1}{}\times\mp@subsup{\times}{C}{}\mp@subsup{C}{2}{})(s\mp@subsup{f}{1}{}\times\mp@subsup{\times}{sf}{
```



```
    Step S C C }->\mathrm{ Step S2 C 2
    Step (S S < S ) ( ( C1 < < C C )
(sfl }\mp@subsup{\times}{sf}{}s\mp@subsup{f}{2}{})(\mp@subsup{s}{1}{},\mp@subsup{s}{2}{})(\mp@subsup{c}{1}{},\mp@subsup{c}{2}{})=(s\mp@subsup{f}{1}{}\mp@subsup{s}{1}{}\mp@subsup{c}{1}{},s\mp@subsup{f}{2}{}\mp@subsup{s}{2}{}\mp@subsup{c}{2}{}
```

Example: $P_{1} \times$ SDP P_{2}

Product example

Example:

$$
2 d \text {-system }=1 d \text {-sys } \times_{\text {SDP }} 1 d \text {-sys }
$$

Now $2 d$-system is a process of two dimensions rather than one:

$$
\begin{aligned}
& \text { pseq }=\text { tryleft }:: \text { tryleft }:: \text { right }:: \text { stay }:: \text { right }::[] \\
& 2 d \text {-pseq }
\end{aligned}=\text { zipWith _ } \times_{P} \text { _ pseq pseq } . ~ \begin{aligned}
\text { test } 2 & =\text { trajectory } 2 d \text {-system } 2 d \text {-pseq }(0,5) \\
-- & =(0,4)::(0,3)::(1,4)::(1,4)::(2,5)::[]
\end{aligned}
$$

where $\times_{P_{-}}$is a combinator for policies.

Zero and One

```
zero : SDProc
zero = record {
    State = \perp;
    Control = \lambdastate }->\perp\mathrm{ ;
    step = \lambda state }->\lambda\mathrm{ control }->\mathrm{ state }
unit : SDProc
unit = record {
    State = T;
    Control = 部ate }->\textrm{T}
```


Coproduct combinator

$$
\begin{aligned}
& { }_{-} \uplus_{S D P_{-}}: S D P r o c \rightarrow \text { SDProc } \rightarrow \text { SDProc } \\
& S D P S_{1} C_{1} s f_{1} \uplus_{S D P} S D P S_{2} C_{2} s f_{2} \\
& =\operatorname{SDP}\left(S_{1} \uplus S_{2}\right)\left(C_{1} \uplus C \quad C_{2}\right)\left(s f_{1} \uplus_{s f} s f_{2}\right) \\
& { }_{-} \mathrm{C}_{-} \text {: }\left\{S_{1} S_{2}: \operatorname{Set}\right\} \\
& \rightarrow \text { Con } S_{1} \rightarrow \text { Con } S_{2} \rightarrow \operatorname{Con}\left(S_{1} \uplus S_{2}\right) \\
& \left(C_{1} \uplus C \quad C_{2}\right)\left(i n j_{1} s_{1}\right)=C_{1} s_{1} \\
& \left(C_{1} \uplus C \quad C_{2}\right)\left(i n j_{2} s_{2}\right)=C_{2} s_{2} \\
& { }_{-} \uplus_{s f-}: \quad\left\{S_{1} S_{2}: \text { Set }\right\} \\
& \rightarrow\left\{C_{1}: \text { Con } S_{1}\right\} \rightarrow\left\{C_{2}: \text { Con } S_{2}\right\} \\
& \rightarrow \text { Step } S_{1} C_{1} \rightarrow \text { Step } S_{2} C_{2} \\
& \rightarrow \text { Step }\left(S_{1} \uplus S_{2}\right)\left(C_{1} \uplus C \quad C_{2}\right) \\
& \left(s f_{1} \uplus_{s f} s f_{2}\right)\left(i n j_{1} s_{1}\right) c_{1}=i n j_{1}\left(s f_{1} s_{1} c_{1}\right) \\
& \left(s f_{1} \uplus_{s f} s f_{2}\right)\left(i n j_{2} s_{2}\right) c_{2}=i n j_{2}\left(s f_{2} s_{2} c_{2}\right)
\end{aligned}
$$

Coproduct combinator example

Left injection:

Right injection:
P_{1}

Yielding coproduct example

Illustration: It is capable of switching between the two processes, as illustrated by the calls to $v 1$ and $v 2$.

With a combinator such as this one could you model e.g a two player game.
The processes would be the players and the combined process allows each to take turns making their next move.

Yielding coproduct code

$$
\begin{aligned}
& -\uplus_{C}^{m}-\quad:\left\{S_{1} S_{2}: \text { Set }\right\} \\
& \rightarrow \text { Con } S_{1} \rightarrow \text { Con } S_{2} \rightarrow \operatorname{Con}\left(S_{1} \uplus S_{2}\right) \\
& \left(C_{1} \uplus_{C}^{m} C_{2}\right)\left(i n j_{1} s_{1}\right)=\operatorname{Maybe}\left(C_{1} s_{1}\right) \\
& \left(C_{1} \uplus_{C}^{m} C_{2}\right)\left(i n j 2 s_{2}\right)=\operatorname{Maybe}\left(C_{2} s_{2}\right) \\
& { }_{-} \rightleftarrows_{-}:\left(S_{1} S_{2}: S e t\right) \rightarrow \text { Set } \\
& s_{1} \rightleftarrows s_{2}=\left(s_{1} \rightarrow s_{2}\right) \times\left(s_{2} \rightarrow s_{1}\right) \\
& \uplus_{s f}^{m}:\left\{S_{1} S_{2}: \text { Set }\right\}\left\{C_{1}: \text { Con } S_{1}\right\}\left\{C_{2}: \text { Con } S_{2}\right\} \\
& \rightarrow\left(S_{1} \rightleftarrows S_{2}\right) \\
& \rightarrow \text { Step } S_{1} C_{1} \rightarrow \text { Step } S_{2} C_{2} \\
& \rightarrow \text { Step }\left(S_{1} \uplus S_{2}\right)\left(C_{1} \uplus_{C}^{m} C_{2}\right) \\
& \uplus_{s f}^{m}-\quad s f_{1} s f_{2}\left(i n j_{1} s_{1}\right)(j u s t c)=i n j_{1}\left(s f_{1} s_{1} c\right) \\
& \uplus_{s f}^{m}-\quad s f_{1} s f_{2}\left(\text { inj } j_{2} s_{2}\right)(j u s t c)=i n j_{2}\left(s f_{2} s_{2} c\right) \\
& \uplus_{s f}^{m}\left(v_{1},{ }_{-}\right) s f_{1} s f_{2}\left(i n j_{1} s_{1}\right) \text { nothing }=i n j_{2}\left(v_{1} s_{1}\right) \\
& \uplus_{s f}^{m}\left(-, v_{2}\right) s f_{1} s f_{2}\left(i n j_{2} s_{2}\right) \text { nothing }=i n j_{1}\left(v_{2} s_{2}\right) \\
& \text { syntax } \uplus_{s f}^{m} r s f_{1} s f_{2}=s f_{1}\langle r\rangle s f_{2}
\end{aligned}
$$

Summary

- It is possible to implement an algebra of SDPs
- Products are immediately useful

- Plain coproducts - not so much
- Many variants possible: yielding coproducts, interleaving product, etc.

Time-depedent, monadic cases left as exercises for the audience;-)

