AlgSDP: Algebra of Sequential Decision Problems
formalised in Agda

Robert Krook Patrik Jansson

2020-01-06, WG2.1 #79 in Otterlo, NL

Abstract

Sequential decision problems are a well established concept in
decision theory, with the Bellman equation as a popular choice
for describing them. Botta, Jansson, lonescu have formalised
the notion of such problems in Idris (presented by Jansson at
#75 Uruguay, by Botta at #77 Brandenburg). Here we focus
on an Algebra of SDPs (in Agda): combinators for building
more complex SDPs from simpler ones.

AlgSDP by example in one slide
A 1D-coord. syst. with N as state and +1, 0, and —1 as actions.

p : SDProc

AlgSDP by example in one slide
A 1D-coord. syst. with N as state and +1, 0, and —1 as actions.

p : SDProc
We define a product to enable reusing p in a 2D setting:

Xspp . SDProc — SDProc — SDProc

p> = p Xspp p

AlgSDP by example in one slide
A 1D-coord. syst. with N as state and +1, 0, and —1 as actions.

p : SDProc
We define a product to enable reusing p in a 2D setting:

Xspp . SDProc — SDProc — SDProc

p> = p Xspp p

Both p and p? use a fixed state space, but we can also handle time
dependent processes (for example p’ of type SDProcT).

_x;_DP_ : SDProcT — SDProcT — SDProcT

embed : SDProc — SDProcT

p? = p Xg—DP (embed p)

P3 = P2 Xspp P

AlgSDP by example in one slide
A 1D-coord. syst. with N as state and +1, 0, and —1 as actions.

p : SDProc
We define a product to enable reusing p in a 2D setting:

Xspp . SDProc — SDProc — SDProc

p> = p Xspp p
Both p and p? use a fixed state space, but we can also handle time
dependent processes (for example p’ of type SDProcT).

_x;_DP_ : SDProcT — SDProcT — SDProcT

embed : SDProc — SDProcT

p? = p Xg—DP (embed p)
p® = p? xspp p

Final example: a process that moves either in 3D or in 2D.
Lﬂ;—Dp : SDProcT — SDProcT — SDProcT
game = p* wl, (embed p?)

You could think of this as choosing a map in a game.

Example: 1-dimensional coordinate system

Id-state : Set
1d-state = N

Example: 1-dimensional coordinate system

lRight

0 1 2 3 4 5

Id-state : Set
1d-state = N

data Id-control : Id-state — Set where
Right : {n : 1d-state} — I1d-control n
Stay : {n : 1d-state} — Id-control n
Left : {n : 1d-state} — 1d-control (suc n)

Example: 1-dimensional coordinate system

lRight

0 1 2 3 4 5

Id-state : Set
1d-state = N

data Id-control : Id-state — Set where
Right : {n : 1d-state} — I1d-control n
Stay : {n : 1d-state} — Id-control n
Left : {n : 1d-state} — 1d-control (suc n)

Example: 1-dimensional coordinate system

Id-state : Set
1d-state = N

data Id-control : Id-state — Set where
Right : {n : 1d-state} — I1d-control n
Stay : {n : 1d-state} — Id-control n
Left : {n : 1d-state} — 1d-control (suc n)

Example: 1-dimensional coordinate system

lStay

0 1 2 3 4 5

Id-state : Set
1d-state = N

data Id-control : Id-state — Set where
Right : {n : 1d-state} — I1d-control n
Stay : {n : 1d-state} — Id-control n
Left : {n : 1d-state} — 1d-control (suc n)

Example: 1-dimensional coordinate system

Id-state : Set
Id-state = N

data Id-control : 1d-state — Set where
Right : {n : 1d-state} — 1d-control n
Stay : {n : 1d-state} — Id-control n
Left : {n : 1d-state} — 1d-control (suc n)

1d-step : (x : 1d-state) — Id-control x — Id-state
1d-step x Right = suc x

1d-step x Stay = x

1d-step (suc x) Left = x

Sequential Decision Process

record SDProc : Setl where
constructor SDP
field
State : Set

Sequential Decision Process

record SDProc : Setl where
constructor SDP
field
State : Set

Control : State — Set

Sequential Decision Process

record SDProc : Setl where
constructor SDP
field
State : Set

Control : State — Set
step . (x : State) — Control x — State

Sequential Decision Process

record SDProc : Setl where
constructor SDP

field
State : Set
Control : State — Set
step . (x : State) — Control x — State

Our example:

1d-sys : SDProc
1d-sys = SDP 1d-state 1d-control 1d-step

Sequential Decision Problem

In a sequential decision problem there is also a fourth field reward:

record SDProb : Setl where
constructor SDP

field
State : Set
Control : State — Set
step : (x : State) — Control x — State

reward : (x : State) — Control x — Val

(where Val is often R).

» The Seq. Dec. Problem is: find a sequence of controls that
maximises the sum of rewards.

» Or, in more realistic settings with uncertainty, finding a
sequence of policies which maximises the expected reward.

» Rewards, and problems, are not the focus of this talk but are
mentioned for completeness.

Policy
In general:

Policy : (S : Set) — ((s : S) — Set) — Set
Policy SC = (s : S) - Cs

Policy

In general:
Policy : (S : Set) — ((s : S) — Set) — Set
Policy SC = (s : §)—> Cs

Specialised:
1d-Policy : Set
1d-Policy = Policy 1d-state 1d-control

-- = (x : Id-state) — 1d-control x

Policy
Specialised:
1d-Policy : Set
1d-Policy = Policy 1d-state 1d-control
-- = (x : Id-state) — I1d-control x

Example policies:

right stay tryleft : 1d-Policy

right _ = Right
stay _ = Stay
tryleft zero = Stay

tryleft (suc s) = Left

Policy

Example policies:

right stay tryleft : 1d-Policy

right _ = Right
stay = Stay
tryleft zero = Stay

tryleft (suc s) = Left

A family of policies (to move towards a particular goal coordinate):

towards : N — 1d-Policy
towards goal n with compare n goal
o | less _ _ = Right

o | equal _ = Stay

.. | greater _ _ = Left

Back to Processes - now with abbreviations

record SDProc : Setl where
constructor SDP
field State : Set
Control : Con State
step . Step State Control

Con : Set — Set;
ConS = § — Set

Step : (S : Set) — ConS — Set
StepSC =(s:S) - Cs — S

Policy : (S : Set) — ((s : S) — Set) — Set
Policy SC = (s : S§)—> Cs

Trajectory

Here #£&, #c, #<f extract the different components of an SDP.

trajectory : (p : SDProc) — {n : N} —
— Vec (Policy (#st p) (#c p)) n
= #p — Vec (#s p) n

trajectory sys] xo = |]
trajectory sys (p :: ps) xo = xi :: trajectory sys ps xi
where x; : #4 sys

x1 = (#sf 5ys) xo (P x0)

Example:
pseq = tryleft :: tryleft :: right :: stay :: right :: ||
test] = trajectory 1d-sys pseq 0

- =0:0:1:21:22:]

In an applied setting many trajectories would be computed to
explore the system behaviour.

The Product of SDPs

Xspp : SDProc — SDProc — SDProc
(SDP 51 C1 5f1) Xspp (SDP 52 Cg ng)
= SDP (51 X 52) (Cl Xc C2) (Sfl Xsf ng)

The Product of SDPs

Xspp : SDProc — SDProc — SDProc
(SDP 51 C1 5f1) Xspp (SDP 52 Cg ng)
= SDP (51 X 52) (C_z Xc Cz) (Sfl Xsf ng)

Con : Set — Set;
ConS = § — Set

Xc- {51 S, Set} —
Con 51 — Con 52 — Con (51 X 52)
(C1 xc C2)(s1,52) = Crsi x Cosp

The Product of SDPs

Xspp . SDProc — SDProc — SDProc
(SDP 51 C1 Sfl) Xspp (SDP 52 C2 ng)
= SDP (51 X 52) (Cl Xc Cg) (Sfl Xsf ng)

Con : Set — Set;
ConS = S — Set
Xc {51 S2 : Set} —
Con 51 — Con 52 — Con (51 X 52)
(C1 Xc Cg) (51 ,52) = C1 S1 X C2 52

Step : (S : Set) — ConS — Set

StepSC =(s:S5) - Cs = S

Xsf— + {S1S2: Set}{C; : ConS;}{Co : Con Sy}
— Step S; C; — Step S» Co
— Step (S1 x S2) (C1 xc C2)

(sfi xsr sf2) (s1,52) (¢c1,¢c2) = (sf; s1 ¢1,sf2 52 C2)

The Product of SDPs

Xspp . SDProc — SDProc — SDProc
(SDP 51 Cl Sfl) Xspp (SDP 52 C2 ng)
= SDP (51 X 52) (C1 Xc CQ) (Sfl Xsf ng)

Xsf_ @ {S1 S : Set}{C; : ConS1} {Co : ConSo}
— Step S; C; — Step S, Co
— Step (51 X 52) (C1 Xc Cg)

(sf1 Xsf sf2) (s1,52) (¢1,¢c2) = (sf1 s1¢1,5f2 52 C2)

Example: P1 XsDpP P2
P OO0 20=0:20.

-_‘)Q__ X __ _?!L_,_

A O:_.. —_ th—* — Q;--—-"* OHH OE

Product example

Example:
2d-system = 1d-sys xspp Id-sys

Now 2d-system is a process of two dimensions rather than one:
pseq = tryleft :: tryleft :: right :: stay :: right :: [
2d-pseq = zipWith _Xp_ pseq pseq

test2 = trajectory 2d-system 2d-pseq (0 , 5)
- =(0,4):(0,3):(1,4)=(1,4)=(2,5):]]

where _xp_ is a combinator for policies.

Zero and One

zero : SDProc

zero = record {

State = 1;

Control = X state — 1;

step =)\ state —)\ control — state}
unit : SDProc
unit = record {

State = T;

Control =) state — T,
step = \state —)\ control — tt}

Coproduct combinator

Wspp : SDProc — SDProc — SDProc
SDP S; C; sf; Wspp SDP S, Co st
= SDP (51 H—JSQ) (Cl We C2) (5f1 Wer ng)
We @ {S1 S2 : Set}
— Con S; — Con S» — Con (51] 52)
(C1 We Cg) (inj1 51) = (Cy sq
(C] e Cg) (injg 52) = (o s
W {51 S, Set}
— {C; : ConS;1} — {Co : Con Sy}
— Step 51 ¢ — 5t6p S, G
— Step (51 W S52) (C1 e Co)
(sf1 W sfz) (inj; s1) c; = inj; (sf; s1 c1)
(57(1 Wer ng) (injg 52) Co = injo (ng So Cg)

Coproduct combinator example

Left injection:

O O—0 OH—»OY—*O

O, HOMQMQHOHO

Yielding coproduct example

[llustration: It is capable of switching between the two processes, as
illustrated by the calls to vI and v2.

7, Q:—"O. NS O;r—*og
R

r C)F-_‘IQ V'L

o]
With a combinator such as this one could you model e.g a two
player game.

The processes would be the players and the combined process
allows each to take turns making their next move.

Yielding coproduct code

WE o {5152 : Set}

— Con S; — Con S> — Con (51) 52)
(C1 ©& Co) (inj; s1) = Maybe (C; s1)
(Cq S (o) (inj2 s2) = Maybe (Cs sp)

= (51 52 : Set) — Set

S; 2 sp = (51 — S2)><(52 — 51)
Lﬂer : {51 S, Set}{C1 : ConSl}{Cg : COHSQ}
— (51 = 52)
— Step S; C; — Step S, Co
— Step (51) 52) (C1 Hﬂg Cg)
Wy sty sfa (inj1 s1) (just ¢) = inj1 (sf1 s1 ¢)
U/ sf1 sf2 (inj2 s2) (just c) inj2 (sf2 s2 ¢)
H’anfq (V1 ,,) sfy st (inj1 51) nothing = injs (V1 51)
i (=, v2) sf s> (inj2 s2) nothing = inj; (v2 s2)

syntax W7 rsf; sf, = sf; (r) s

Summary

> It is possible to implement an algebra of SDPs

» Products are immediately useful
P O“"OHO O=00.

LS

—O— OO,

» Plain coproducts — not so much

» Many variants possible: yielding coproducts, interleaving
product etc.

Time-depedent, monadic cases left as exercises for the audience;-)

