
AlgSDP: Algebra of Sequential Decision Problems

formalised in Agda

Robert Krook Patrik Jansson

2020-01-06, WG2.1 #79 in Otterlo, NL

Abstract

Sequential decision problems are a well established concept in
decision theory, with the Bellman equation as a popular choice
for describing them. Botta, Jansson, Ionescu have formalised
the notion of such problems in Idris (presented by Jansson at
#75 Uruguay, by Botta at #77 Brandenburg). Here we focus
on an Algebra of SDPs (in Agda): combinators for building
more complex SDPs from simpler ones.

AlgSDP by example in one slide
A 1D-coord. syst. with N as state and +1 , 0 , and −1 as actions.

p : SDProc

We de�ne a product to enable reusing p in a 2D setting:

×SDP : SDProc → SDProc → SDProc

p2 = p ×SDP p

Both p and p2 use a �xed state space, but we can also handle time

dependent processes (for example p′ of type SDProcT).

_×T
SDP

_ : SDProcT → SDProcT → SDProcT

embed : SDProc → SDProcT

p2
′
= p′ ×T

SDP
(embed p)

p3 = p2 ×SDP p

Final example: a process that moves either in 3D or in 2D.

_]T
SDP

_ : SDProcT → SDProcT → SDProcT

game = p2
′]T

SDP
(embed p3)

You could think of this as choosing a map in a game.

AlgSDP by example in one slide
A 1D-coord. syst. with N as state and +1 , 0 , and −1 as actions.

p : SDProc

We de�ne a product to enable reusing p in a 2D setting:

×SDP : SDProc → SDProc → SDProc

p2 = p ×SDP p

Both p and p2 use a �xed state space, but we can also handle time

dependent processes (for example p′ of type SDProcT).

_×T
SDP

_ : SDProcT → SDProcT → SDProcT

embed : SDProc → SDProcT

p2
′
= p′ ×T

SDP
(embed p)

p3 = p2 ×SDP p

Final example: a process that moves either in 3D or in 2D.

_]T
SDP

_ : SDProcT → SDProcT → SDProcT

game = p2
′]T

SDP
(embed p3)

You could think of this as choosing a map in a game.

AlgSDP by example in one slide
A 1D-coord. syst. with N as state and +1 , 0 , and −1 as actions.

p : SDProc

We de�ne a product to enable reusing p in a 2D setting:

×SDP : SDProc → SDProc → SDProc

p2 = p ×SDP p

Both p and p2 use a �xed state space, but we can also handle time

dependent processes (for example p′ of type SDProcT).

_×T
SDP

_ : SDProcT → SDProcT → SDProcT

embed : SDProc → SDProcT

p2
′
= p′ ×T

SDP
(embed p)

p3 = p2 ×SDP p

Final example: a process that moves either in 3D or in 2D.

_]T
SDP

_ : SDProcT → SDProcT → SDProcT

game = p2
′]T

SDP
(embed p3)

You could think of this as choosing a map in a game.

AlgSDP by example in one slide
A 1D-coord. syst. with N as state and +1 , 0 , and −1 as actions.

p : SDProc

We de�ne a product to enable reusing p in a 2D setting:

×SDP : SDProc → SDProc → SDProc

p2 = p ×SDP p

Both p and p2 use a �xed state space, but we can also handle time

dependent processes (for example p′ of type SDProcT).

_×T
SDP

_ : SDProcT → SDProcT → SDProcT

embed : SDProc → SDProcT

p2
′
= p′ ×T

SDP
(embed p)

p3 = p2 ×SDP p

Final example: a process that moves either in 3D or in 2D.

_]T
SDP

_ : SDProcT → SDProcT → SDProcT

game = p2
′]T

SDP
(embed p3)

You could think of this as choosing a map in a game.

Example: 1-dimensional coordinate system

· · ·
0 1 2 3 4 5

1d -state : Set

1d -state = N

data 1d -control : 1d -state → Set where

Right : {n : 1d -state} → 1d -control n

Stay : {n : 1d -state} → 1d -control n

Left : {n : 1d -state} → 1d -control (suc n)

Example: 1-dimensional coordinate system

· · ·
0 1 2 3 4 5

Right

1d -state : Set

1d -state = N

data 1d -control : 1d -state → Set where

Right : {n : 1d -state} → 1d -control n

Stay : {n : 1d -state} → 1d -control n

Left : {n : 1d -state} → 1d -control (suc n)

Example: 1-dimensional coordinate system

· · ·
0 1 2 3 4 5

Right

1d -state : Set

1d -state = N

data 1d -control : 1d -state → Set where

Right : {n : 1d -state} → 1d -control n

Stay : {n : 1d -state} → 1d -control n

Left : {n : 1d -state} → 1d -control (suc n)

Example: 1-dimensional coordinate system

· · ·
0 1 2 3 4 5

Left

1d -state : Set

1d -state = N

data 1d -control : 1d -state → Set where

Right : {n : 1d -state} → 1d -control n

Stay : {n : 1d -state} → 1d -control n

Left : {n : 1d -state} → 1d -control (suc n)

Example: 1-dimensional coordinate system

· · ·
0 1 2 3 4 5

Stay

1d -state : Set

1d -state = N

data 1d -control : 1d -state → Set where

Right : {n : 1d -state} → 1d -control n

Stay : {n : 1d -state} → 1d -control n

Left : {n : 1d -state} → 1d -control (suc n)

Example: 1-dimensional coordinate system

1d -state : Set

1d -state = N

data 1d -control : 1d -state → Set where

Right : {n : 1d -state} → 1d -control n

Stay : {n : 1d -state} → 1d -control n

Left : {n : 1d -state} → 1d -control (suc n)

1d -step : (x : 1d -state) → 1d -control x → 1d -state

1d -step x Right = suc x

1d -step x Stay = x

1d -step (suc x) Left = x

Sequential Decision Process

record SDProc : Set1 where

constructor SDP

�eld

State : Set

Control : State → Set

step : (x : State) → Control x → State

Our example:

1d -sys : SDProc

1d -sys = SDP 1d -state 1d -control 1d -step

Sequential Decision Process

record SDProc : Set1 where

constructor SDP

�eld

State : Set

Control : State → Set

step : (x : State) → Control x → State

Our example:

1d -sys : SDProc

1d -sys = SDP 1d -state 1d -control 1d -step

Sequential Decision Process

record SDProc : Set1 where

constructor SDP

�eld

State : Set

Control : State → Set

step : (x : State) → Control x → State

Our example:

1d -sys : SDProc

1d -sys = SDP 1d -state 1d -control 1d -step

Sequential Decision Process

record SDProc : Set1 where

constructor SDP

�eld

State : Set

Control : State → Set

step : (x : State) → Control x → State

Our example:

1d -sys : SDProc

1d -sys = SDP 1d -state 1d -control 1d -step

Sequential Decision Problem

In a sequential decision problem there is also a fourth �eld reward :

record SDProb : Set1 where

constructor SDP

�eld

State : Set

Control : State → Set

step : (x : State) → Control x → State

reward : (x : State) → Control x → Val

(where Val is often R).
I The Seq. Dec. Problem is: �nd a sequence of controls that

maximises the sum of rewards.

I Or, in more realistic settings with uncertainty, �nding a

sequence of policies which maximises the expected reward.

I Rewards, and problems, are not the focus of this talk but are

mentioned for completeness.

Policy
In general:

Policy : (S : Set)→ ((s : S)→ Set)→ Set

Policy S C = (s : S)→ C s

Example policies:

right stay tryleft : 1d -Policy

right = Right

stay = Stay

tryleft zero = Stay

tryleft (suc s) = Left

A family of policies (to move towards a particular goal coordinate):

towards : N → 1d -Policy

towards goal n with compare n goal

... | less = Right

... | equal = Stay

... | greater = Left

Policy
In general:

Policy : (S : Set)→ ((s : S)→ Set)→ Set

Policy S C = (s : S)→ C s

Specialised:

1d -Policy : Set

1d -Policy = Policy 1d -state 1d -control

-- = (x : 1d -state) → 1d -control x

Example policies:

right stay tryleft : 1d -Policy

right = Right

stay = Stay

tryleft zero = Stay

tryleft (suc s) = Left

A family of policies (to move towards a particular goal coordinate):

towards : N → 1d -Policy

towards goal n with compare n goal

... | less = Right

... | equal = Stay

... | greater = Left

Policy
Specialised:

1d -Policy : Set

1d -Policy = Policy 1d -state 1d -control

-- = (x : 1d -state) → 1d -control x

Example policies:

right stay tryleft : 1d -Policy

right = Right

stay = Stay

tryleft zero = Stay

tryleft (suc s) = Left

A family of policies (to move towards a particular goal coordinate):

towards : N → 1d -Policy

towards goal n with compare n goal

... | less = Right

... | equal = Stay

... | greater = Left

Policy

Example policies:

right stay tryleft : 1d -Policy

right = Right

stay = Stay

tryleft zero = Stay

tryleft (suc s) = Left

A family of policies (to move towards a particular goal coordinate):

towards : N → 1d -Policy

towards goal n with compare n goal

... | less = Right

... | equal = Stay

... | greater = Left

Back to Processes - now with abbreviations

record SDProc : Set1 where

constructor SDP

�eld State : Set

Control : Con State

step : Step State Control

Con : Set → Set1
Con S = S → Set

Step : (S : Set) → Con S → Set

Step S C = (s : S) → C s → S

Policy : (S : Set)→ ((s : S)→ Set)→ Set

Policy S C = (s : S)→ C s

Trajectory

Here #st, #c, #sf extract the di�erent components of an SDP.

trajectory : (p : SDProc) → {n : N} →
→ Vec (Policy (#st p) (#c p)) n
→ #st p → Vec (#st p) n

trajectory sys [] x0 = []
trajectory sys (p :: ps) x0 = x1 :: trajectory sys ps x1
where x1 : #st sys

x1 = (#sf sys) x0 (p x0)

Example:

pseq = tryleft :: tryleft :: right :: stay :: right :: []
test1 = trajectory 1d -sys pseq 0

-- = 0 :: 0 :: 1 :: 1 :: 2 :: []

In an applied setting many trajectories would be computed to

explore the system behaviour.

The Product of SDPs

×SDP : SDProc → SDProc → SDProc

(SDP S1 C1 sf1) ×SDP (SDP S2 C2 sf2)
= SDP (S1 × S2) (C1 ×C C2) (sf1 ×sf sf2)

The Product of SDPs

×SDP : SDProc → SDProc → SDProc

(SDP S1 C1 sf1) ×SDP (SDP S2 C2 sf2)
= SDP (S1 × S2) (C1 ×C C2) (sf1 ×sf sf2)

Con : Set → Set1
Con S = S → Set

×C : {S1 S2 : Set } →
Con S1 → Con S2 → Con (S1 × S2)

(C1 ×C C2) (s1 , s2) = C1 s1 × C2 s2

The Product of SDPs

×SDP : SDProc → SDProc → SDProc

(SDP S1 C1 sf1) ×SDP (SDP S2 C2 sf2)
= SDP (S1 × S2) (C1 ×C C2) (sf1 ×sf sf2)

Con : Set → Set1
Con S = S → Set
×C : {S1 S2 : Set } →

Con S1 → Con S2 → Con (S1 × S2)
(C1 ×C C2) (s1 , s2) = C1 s1 × C2 s2

Step : (S : Set) → Con S → Set

Step S C = (s : S) → C s → S
_×sf _ : {S1 S2 : Set } {C1 : Con S1 } {C2 : Con S2 }

→ Step S1 C1 → Step S2 C2
→ Step (S1 × S2) (C1 ×C C2)

(sf1 ×sf sf2) (s1 , s2) (c1 , c2) = (sf1 s1 c1 , sf2 s2 c2)

The Product of SDPs

×SDP : SDProc → SDProc → SDProc

(SDP S1 C1 sf1) ×SDP (SDP S2 C2 sf2)
= SDP (S1 × S2) (C1 ×C C2) (sf1 ×sf sf2)

_×sf _ : {S1 S2 : Set } {C1 : Con S1 } {C2 : Con S2 }
→ Step S1 C1 → Step S2 C2
→ Step (S1 × S2) (C1 ×C C2)

(sf1 ×sf sf2) (s1 , s2) (c1 , c2) = (sf1 s1 c1 , sf2 s2 c2)

Example: P1 ×SDP P2

Product example

Example:

2d -system = 1d -sys ×SDP 1d -sys

Now 2d -system is a process of two dimensions rather than one:

pseq = tryleft :: tryleft :: right :: stay :: right :: []
2d -pseq = zipWith _×P_ pseq pseq

test2 = trajectory 2d -system 2d -pseq (0 , 5)
-- = (0 , 4) :: (0 , 3) :: (1 , 4) :: (1 , 4) :: (2 , 5) :: []

where _×P_ is a combinator for policies.

Zero and One

zero : SDProc

zero = record {
State = ⊥;
Control = λ state → ⊥;
step = λ state → λ control → state}

unit : SDProc

unit = record {
State = >;
Control = λ state → >;
step = λ state → λ control → tt }

Coproduct combinator

]SDP : SDProc → SDProc → SDProc

SDP S1 C1 sf1]SDP SDP S2 C2 sf2
= SDP (S1] S2) (C1]C C2) (sf1]sf sf2)

]C : {S1 S2 : Set }
→ Con S1 → Con S2 → Con (S1] S2)

(C1]C C2) (inj1 s1) = C1 s1
(C1]C C2) (inj2 s2) = C2 s2

_]sf _ : {S1 S2 : Set }
→ {C1 : Con S1 } → {C2 : Con S2 }
→ Step S1 C1 → Step S2 C2
→ Step (S1] S2) (C1]C C2)

(sf1]sf sf2) (inj1 s1) c1 = inj1 (sf1 s1 c1)
(sf1]sf sf2) (inj2 s2) c2 = inj2 (sf2 s2 c2)

Coproduct combinator example

Left injection:

Right injection:

Yielding coproduct example

Illustration: It is capable of switching between the two processes, as

illustrated by the calls to v1 and v2 .

With a combinator such as this one could you model e.g a two

player game.

The processes would be the players and the combined process

allows each to take turns making their next move.

Yielding coproduct code

_]m
C
_ : {S1 S2 : Set }
→ Con S1 → Con S2 → Con (S1] S2)

(C1]mC C2) (inj1 s1) = Maybe (C1 s1)
(C1]mC C2) (inj2 s2) = Maybe (C2 s2)

� : (S1 S2 : Set)→ Set

s1 � s2 = (s1 → s2) × (s2 → s1)

]m
sf

: {S1 S2 : Set } {C1 : Con S1 } {C2 : Con S2 }
→ (S1 � S2)
→ Step S1 C1 → Step S2 C2
→ Step (S1] S2) (C1]mC C2)

]m
sf

sf1 sf2 (inj1 s1) (just c) = inj1 (sf1 s1 c)
]m
sf

sf1 sf2 (inj2 s2) (just c) = inj2 (sf2 s2 c)
]m
sf

(v1 ,) sf1 sf2 (inj1 s1) nothing = inj2 (v1 s1)
]m
sf

(, v2) sf1 sf2 (inj2 s2) nothing = inj1 (v2 s2)

syntax]m
sf

r sf1 sf2 = sf1 〈 r 〉 sf2

Summary

I It is possible to implement an algebra of SDPs

I Products are immediately useful

I Plain coproducts � not so much

I Many variants possible: yielding coproducts, interleaving

product, etc.

Time-depedent, monadic cases left as exercises for the audience;-)

