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https://github.com/DSLsofMath/

Background

Domain-Specific Languages of Mathematics [lonescu and Jansson, 2015]:
is a course currently developed at Chalmers in response to difficulties faced
by third-year students in learning and applying classical mathematics
(mainly real and complex analysis)

Main idea: encourage students to approach mathematical domains from a
functional programming perspective (similar to Wells [1995]).

“... ideally, the course would improve the mathematical education of
computer scientists and the computer science education of
mathematicians.”
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Introduction

@ make functions and types explicit
@ make the distinction between syntax and semantics explicit

o use types (R, C) as carriers of semantic information, not just variable
names (x, z)

@ introduce functions and types for implicit operations such as the power
series interpretation of a sequence

@ use a calculational style for proofs

@ organize the types and functions in DSLs

Not working code, rather working understanding of concepts
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Complex numbers

We begin by defining the symbol /, called the imaginary unit, to have the
property

Thus, we could also call / the square root of —1 and denote it v/—1. Of
course, I is not a real number; no real number has a negative square.

v

(Adams and Essex [2010], Appendix 1)
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Complex numbers

We begin by defining the symbol /, called the imaginary unit, to have the
property

Thus, we could also call / the square root of —1 and denote it v/—1. Of
course, I is not a real number; no real number has a negative square.

v

(Adams and Essex [2010], Appendix 1)

data/ = |/
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Complex numbers

Definition: A complex number is an expression of the form
a+ bi or a+ ib,

where a and b are real numbers, and / is the imaginary unit.
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Complex numbers

Definition: A complex number is an expression of the form
a+ bi or a+ ib,

where a and b are real numbers, and / is the imaginary unit.

data Complex = Plusi RR I
| P/U52 RI/R

show : Complex — String
show (Plusy x y i) = show x + " + " 4 show y + "i"
show (Plusy x i y) = show x 4 " + " H# "i" 4+ show y
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Complex numbers examples

Definition: A complex number is an expression of the form
a+ bi or a+ ib,

where a and b are real numbers, and / is the imaginary unit.

Forexample,3+2i,%—§i,i7r= O+im,and =3 = —3+01i

are all complex numbers. The last of these examples shows that every real
number can be regarded as a complex number.
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Complex numbers examples

Forexample,3+2i,%—§i,i7r =0+im,and -3 = —-34+01i
are all complex numbers. The last of these examples shows that every real
number can be regarded as a complex number.

data Complex = Plusi RR/
| P/U52 RI/R

toComplex : R — Complex
toComplex x = Plusy x 0§

o what about / by itself?
@ what about, say, 2 i?
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Complex numbers version 2.0

(We will normally use a + bi unless b is a complicated expression, in which
case we will write a + ib instead. Either form is acceptable.)

data Complex = PlusRR |

data Complex = Plusl RR
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Name and reuse

It is often convenient to represent a complex number by a single letter; w
and z are frequently used for this purpose. If a, b, x, and y are real
numbers, and w = a + bi and z = x + yi, then we can refer to the
complex numbers w and z. Note that w = z if and only if 2 = x and

b =y.

newtype Complex = C (R, R)
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Equality and pattern-matching

Definition: If z = x + yi is a complex number (where x and y are real),
we call x the real part of z and denote it Re (z). We call y the imaginary
part of z and denote it Im (z):

Re (z) = Re(x+yi) = x
Im(z) = Im(x+yi) =y

Re : Complex - R
Rez@(C (x, y)) = x

Im . Complex - R
Imz@(C (x, y)) = y
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Shallow vs. deep embeddings

The sum and difference of complex numbers
If w=a+ bi and z = x + yi, where a, b, x, and y are real numbers, then

w+z =

(a+x)+(b+y)i
w—z=(a—x)+(b—y)i

Shallow embedding:

(+) : Complex — Complex — Complex
(C(a b))+ (C(x, y)) = C((a+x), (b+y))
newtype Complex C (R, R)
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Shallow vs. deep embeddings

The sum and difference of complex numbers

If w=a+ bi and z = x + yi, where a, b, x, and y are real numbers, then
w+z = (a+x)+(b+y)i
w—z=(a—x)+(b—y)i

Deep embedding:

(+) : Complex — Complex — Complex
(+) = Plus

data Complex = i
|  ToComplex R

| Plus Complex Complex
|  Times Complex Complex
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Abstraction barriers

Example: continuity defined in terms of limits.

Definition (Adams and Essex [2010], page 78)

We say that a function f is continuous at an interior point ¢ of its domain
if

lim (fx) = fc

X—C

If either lim (f x) fails to exist or it exists but is not equal to f ¢, then we
X—C

will say that f is discontinuous at c.

v
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Abstraction barriers

Differentiability defined in terms of limits.

Definition (Adams and Essex [2010], page 99)

The derivative of a function f is another function f' defined by

f(x+h)—f x

b
f'x = Iim A

h—0

at all points x for which the limit exists (i.e., is a finite real number). If
' (x) exists, we say that f is differentiable at x.
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Abstraction barriers

Alternative: differentiability in terms of continuity.

Definition (Adapted from Pickert [1969])

Let X C R, a € Xandf : X — R. If there exists a function
of : X — X — R such that, forallx € X

fx="fa+(x—a)x¢rax

such that ¢r a : X — R continuous at a, then f is differentiable at x.
The value ¢¢ a a is called the derivative of f at a and is denoted f' a.
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A calculational proof

(f x) * (g x)
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A calculational proof

(f x) = (g x)
= { differentiability }

(fa+t(x—a)xgrax)*(ga+ (x—a)xq¢gax)
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A calculational proof

(f x) * (g x)

= { differentiability }

(fa+t(x—a)xgrax)*(ga+ (x—a)xq¢gax)

= { arithmetic }

faxga + fax(x—a)xggax+
(x—a)*x¢praxxga + (x—a)xdraxk(x—a)*pgax
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A calculational proof

(f x) * (g x)
= { differentiability }
(fa+t(x—a)xgrax)*(ga+ (x—a)xq¢gax)
= { arithmetic }
faxga + fax(x—a)xggax+
(x—a)*x¢praxxga + (x—a)xdraxk(x—a)*pgax
= {factorout (x —a)toget ha+ (x —a)*¢pax }
faxga+(x—a)x(faxdgax+draxxga+

¢f ax*x(x —a)x Py ax)
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A calculational proof

(f x) * (g x)

= { differentiability }

(fa+t(x—a)xgrax)*(ga+ (x—a)xq¢gax)

= { arithmetic }

faxga + fax(x—a)xggax+

(x—a)*x¢praxxga + (x—a)xdraxk(x—a)*pgax

= {factorout (x —a)toget ha+ (x —a)*¢pax }

faxga+(x—a)x(faxdgax+draxxga+
¢f ax*x(x —a)x Py ax)

= {"pattern-matching” }

ha+ (x —a)*¢pax

where hx = fxxgx

¢phax = faxpgax+drax*xga+

dfax*(x —a)xpgax
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A calculational proof

(f x) * (g x)
= { differentiability }
(fa+t(x—a)xgrax)*(ga+ (x—a)xq¢gax)
= { arithmetic }
faxga + fax(x—a)xggax+
(x—a)*x¢praxxga + (x—a)xdraxk(x—a)*pgax
= {factorout (x —a)toget ha+ (x —a)*¢pax }
faxga+(x—a)x(faxdgax+draxxga+
¢f ax*x(x —a)x Py ax)
= {"pattern-matching” }
ha+ (x—a)*¢pax
where hx = fxxgx
¢phax = faxpgax+drax*xga+
dfax*(x —a)xpgax
Therefore, by continuity of composition and differentiability:
hWa=¢pnaa="Ffaxgat+f axga
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Conclusions

@ make functions and types explicit: Re : Complex — R,
pr : X - X - R

@ make the distinction between syntax and semantics explicit

o use types (R, C) as carriers of semantic information, not just variable
names (x, z)

@ pay attention to abstraction barriers (such as limits, continuity,
differentiability)

@ introduce functions and types for implicit operations such as
toComplex : R — Complex

@ use a calculational style for proofs

@ organize the types and functions in DSLs (for Complex, limits, power
series, etc.)
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Partial implementation in Agda:

@ errors caught by formalization (but no “royal road”)
e Mixing up names of the same type
e choice function

@ subsets and coercions

o ¢ : Ry, different type from R>g and R and C
o what is the type of |-|? (C — Rx>0?)
o other subsets of R or C are common, but closure properties unclear
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