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Background to Domain-Speci�c Languages of Mathematics

Gothenburg, 2015 (73:rd meeting): Jansson and Ionescu: �DSLM -
Presenting Mathematical Analysis Using Functional Programming�.

Pedagogical project to develop the course (incl. material)

2015: paper at �Trends in Functional Programming in Education�

2016, 17, 18: Undergraduate course at Chalmers (28, 43, 39 students)

2018: new TFPIE paper (reported on in this talk)
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Course goal and focus

Goal

Encourage students to approach mathematical domains from a functional
programming perspective.

Course focus

Make functions and types explicit

Explicit distinction between syntax and semantics

Types as carriers of semantic information

Organize the types and functions in DSLs

[New] Make variable binding and scope explicit

Lecture notes and more available at:
https://github.com/DSLsofMath/DSLsofMath
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Example 1 - The limit of a function

We say that f (x) approaches the limit L as x approaches a,
and we write

lim
x→a

f (x) = L,

if the following condition is satis�ed:

for every number ε > 0 there exists a number δ > 0, possibly

depending on ε, such that if 0 < |x − a| < δ, then x belongs to

the domain of f and

|f (x)− L| < ε

- Adams & Essex, Calculus - A Complete Course
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Limit of a function - continued

lim
x→a

f (x) = L,

if

∀ε > 0

∃δ > 0

such that if

0 < |x − a| < δ,

then

x ∈ Dom f ∧ |f (x)− L| < ε
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Limit of a function - continued

First attempt at translation:

lim a f L = ∀ ε > 0. ∃ δ > 0. P ε δ

where P ε δ = (0< |x − a|< δ)⇒
(x ∈ Dom f ∧ |f x − L|< ε)
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Limit of a function - continued

Finally (after adding a binding for x):

lim a f L = ∀ ε > 0. ∃ δ > 0. P ε δ

where P ε δ = ∀ x . Q ε δ x

Q ε δ x = (0< |x − a|< δ)⇒
(x ∈ Dom f ∧ |f x − L|< ε)

Lesson learned: be careful with scope and binding (of x in this case).

[We will now assume limits exist and use lim as a function from a and f to L.]
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Example 2: derivative

The derivative of a function f is another function f ′ de�ned by

f ′(x) = lim
h→0

f (x + h)− f (x)

h

at all points x for which the limit exists (i.e., is a �nite real number).

If f ′(x) exists, we say that f is di�erentiable at x.

We can write

D f x = lim 0 g where g h = f (x+h)−f x

h

D f x = lim 0 (ϕ x) where ϕ x h = f (x+h)−f x

h

D f = lim 0 ◦ ψ f where ψ f x h = f (x+h)−f x

h

R

R (R→ R)

D f ψ f

lim 0
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Derivatives, cont.

Examples:

D : (R→ R)→ (R→ R)
sq x = xˆ2
double x = 2 ∗ x
c2 x = 2

sq′ D sq D (λx → xˆ2) D (ˆ2) (2∗) double

sq′′ D sq′ D double c2 const 2

Note: we cannot implement D (of this type) in Haskell.
Given only f : R→ R as a �black box� we cannot compute the actual
derivative f ′ : R→ R.
We need the �source code� of f to apply rules from calculus.
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Course material (chapters)

1 A DSL for arithmetic expressions and complex numbers

2 Logic and calculational proofs

3 Types in Mathematics

4 Compositional Semantics and Algebraic Structures

5 Polynomials and Power Series

6 Higher-order Derivatives and their Applications

7 Matrix algebra and linear transformations

8 Exponentials and Laplace
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Course context

Semi-compulsory course, spring of second year in CSE programme

Students struggle with math-heavy courses in third year

Students do well with (functional) programming

Can a functional programming perspective help to clarify the
mathematics?
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CSE program

Fall Spring

Year 1 Compulsory courses Compulsory courses
Year 2 Compulsory courses DSLsofMath OR ConcProg
Year 3 TSS + Control ...
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Course results

2016: 28 students, pass rate: 68%

2017: 43 students, pass rate: 58%

2018: 39 students, pass rate: 89%
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Results in subsequent courses

PASS IN OUT

TSS pass rate 77% 57% 36%
TSS mean grade 4.23 4.10 3.58

Control pass rate 68% 45% 40%
Control mean grade 3.91 3.88 3.35

Group sizes: PASS 34, IN 53, OUT 92 (145 in all)
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Results in previous courses

PASS IN OUT

Pass rate for �rst 3 semesters 97% 92% 86%
Mean grade for �rst 3 semesters 3.95 3.81 3.50

Math/physics pass rate 96% 91% 83%
Math/physics mean grade 4.01 3.84 3.55

Group sizes: PASS 34, IN 53, OUT 92 (145 in all)
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Future work

Working with earlier and later courses, can these ideas be useful in
their curriculum?

Better tool support in the course, proof systems?

Polish the lecture notes into a book

(Perhaps: more rigorous empirical evaluation of course e�cacy)

Questions?

https://github.com/DSLsofMath/DSLsofMath

[Hint: There are bonus slides;-]
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Example 3: Lagrangian

From [Sussman 2013, Functional Di�erential Geometry]:

A mechanical system is described by a Lagrangian function of the

system state (time, coordinates, and velocities). A motion of the

system is described by a path that gives the coordinates for each

moment of time. A path is allowed if and only if it satis�es the La-

grange equations. Traditionally, the Lagrange equations are written

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

What could this expression possibly mean?
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Lagrangian, cont.

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

The use of notation for �partial derivative�, ∂L/∂q, suggests that L is
a function of at least a pair of arguments:

L : Ri→ R, i > 2

This is consistent with the description: �Lagrangian function of the
system state (time, coordinates, and velocities)�. So, if we let
�coordinates� be just one coordinate, we can take i = 3:

L : R3→ R

The �system state� here is a triple, of type S = (T ,Q,V ), and we can
call the the three components t : T for time, q : Q for coordinate, and
v : V for velocity. (T = Q = V = R.)
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Lagrangian, cont.

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

Looking again at ∂L/∂q, q is the name of a variable, one of the 3 args
to L. In the context, which we do not have, we would expect to �nd
somewhere the de�nition of the Lagrangian as

L : (T ,Q,V )→ R
L (t, q, v) = ...

therefore, ∂L/∂q should also be a function of the same triple:

(∂L / ∂q) : (T ,Q,V )→ R

It follows that the equation expresses a relation between functions,
therefore the 0 on the right-hand side is not the real number 0, but
rather the constant function const 0:

const 0 : (T ,Q,V )→ R
const 0 (t, q, v) = 0
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Lagrangian, cont.

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

We now have a problem: d / dt can only be applied to functions of
one real argument t, and the result is a function of one real argument:

(d / dt) (∂L / ∂q̇) : T → R

Since we subtract from this the function ∂L/∂q, it follows that this,
too, must be of type T → R. But we already typed it as
(T ,Q,V )→ R, contradiction!
The expression ∂L/∂q̇ appears to also be malformed. We would
expect a variable name where we �nd q̇, but q̇ is the same as dq/dt, a
function.
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Lagrangian, cont.

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

The only immediate candidate for an application of d/dt is �a path
that gives the coordinates for each moment of time�. Thus, the path
is a function of time, let us say

w : T → Q -- with T for time and Q for coords (q : Q)

We can now guess that the use of the plural form �equations� might
have something to do with the use of �coordinates�. In an n-dim.
space, a position is given by n coordinates. A path would then be

w : T → Q -- with Q = Rn

which is equivalent to n functions of type T →R, each computing one
coordinate as a function of time. We would then have an equation for
each of them. We will use n = 1 for the rest of this example.
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Lagrangian, cont.

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

Now that we have a path, the coordinates at any time are given by the
path. And as the time derivative of a coordinate is a velocity, we can
actually compute the trajectory of the full system state (T ,Q,V )
starting from just the path.

q : T → Q

q t = w t -- or, equivalently, q = w

q̇ : T → V

q̇ t = dw / dt -- or, equivalently, q̇ = D w

We combine these in the �combinator� expand , given by

expand : (T → Q)→ (T → (T ,Q,V ))
expand w t = (t,w t,D w t)
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Lagrangian, cont.

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

With expand in our toolbox we can �x the typing problem.

(∂L / ∂q) ◦ (expand w) : T → R

We now move to using D for d / dt, D2 for ∂ / ∂q, and D3 for ∂ / ∂q̇.
In combination with expand w we �nd these type correct
combinations for the two terms in the equation:

D ((D2 L) ◦ (expand w)) : T → R
(D3 L) ◦ (expand w) : T → R

The equation becomes

D ((D3 L) ◦ (expand w))− (D2 L) ◦ (expand w) = const 0

or, after simpli�cation:

D (D3 L ◦ expand w) = D2 L ◦ expand w
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Example 3: Lagrangian, summary

�A path is allowed if and only if it satis�es the Lagrange equations� means
that this equation is a predicate on paths:

Lagrange (L,w) = D (D3 L ◦ expand w) D2 L ◦ expand w

Thus: If we can describe a mechanical system in terms of �a Lagrangian�
(L : S → R), then we can use the predicate to check if a particular
candidate path w : T → R quali�es as a �motion of the system� or not.
The unknown of the equation is the path w , and the equation is an
example of a partial di�erential equation (a PDE).
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