
A Strategic
Research Agenda
for the Swedish
Software Intensive
Industry

January 2010
Presented by Swedsoft

Content:

1 Executive Manifesto: A Strong Sense of Urgency 5

2 Sammanfattning (Summary in Swedish) 8

3 Conclusions and recommendations 10

4 Goals and Wanted Position 12

5 Current Situation and Challenges 16

6 Threats 24

7 Strategic needs 26

8 Appendix. About Swedsoft 30

”There is a strong sense of
urgency in the Swedish software
industry.
We must become at least ten
times more efficient to remain
globally competetive.
The stakes are huge.”

Editor: Adam Edström
Production: HeadQuarters Annnonsbyrå, Stockholm
Print: Löwex, Växjö, 2010

4 A Strong Sense of Urgency

A Strong Sense of Urgency 5

there is a strong sense of urgency in the Swedish software industry. the old approaches to
software development are simply not sufficient for maintaining global leadership.

to remain a strong competitor, the Swedish software intensive industry must increase its
efficiency and productivity, enhance the software quality and reduce lead times.

Several changes are required in the approach to processes, system architecture design
and implementation, testing and maintenance, pared with improved management of
software projects.

the stakes are huge. About half of Sweden’s exported products are critically dependant
of software. A majority of the costs associated with R&D are already related to software
development in many companies.

The importance of software development, including embedded software, for the Swedish
industry has been highlighted by Swedsoft, in a report supported by VINNOVA, called
“Programvaruintensiva företag i Sverige. Konkurrenskraft och synlighet” (Software Intensive
Companies in Sweden. Competitiveness and Visibility, Swedsoft 2008. Available in Swedish
at www.swedsoft.se and www.vinnova.se).

Executive
manifesto:

A strong
sense of
urgency

Automotive Telecom Industrial
Automation

Defence Finance Medical

SOFTWARE

6 A Strong Sense of Urgency

As software has become the prime industrial differentiator and basis for innovation, an
increasing number of Swedish companies have more or less by accident found themselves
software centric.

Volvo, the truck company, estimates that 90 percent of new innovations are in the field
of electronics, and 80 percent thereof is software.

Some 25-35 percent of the cost of a car today is software, not to mention the much
higher number for Ericsson’s products. Similar assessments can be made at Saab, ABB and
other major Swedish industries, operating within sectors as diverse as telecom, defence,
automotive, medical technology, industrial automation or finance.

There is a relatively recent realization within these companies that they – and many others –
share very similar challenges.

Thus, a new level of cooperation is necessary to bridge the efforts on all levels within
the software domain – between corporations, between industries, academia and research
institutes as well as between industry and academia.

Through the Swedsoft initiative, there is now an arena where representatives from all
these bodies regularly meet to exchange experiences, ideas and visions about software devel-
opment.

Swedsoft aspires to be a platform for future cooperation and interactivity, aiming to
increase the competitiveness of Swedish software development.

but further changes are required. In particular research funding institutes, corporations and
academia need to regard software development as a discipline in its own right, and organize
their efforts to move away from today’s situation of fragmented development in more or less
isolated vertical silos.

Funding should be dedicated to pure software development research, not only to do-
mains where software is a mean to an end.

Our conclusions and recommendations are further outlined in Section 3.

More incentives are also needed to encourage cross-fertilization. Today there is very little
incentive for cooperation between universities, between corporations and between industry
and academia. New mechanisms are necessary to leverage the true potential of the scattered
competences.

6 A Strong Sense of Urgency

the challenges are numerous. Much of today’s software runs 24 hours a day, 7 days a week.
Complexity increases dramatically for each new project. Integration and test of legacy
software, open source and other third party software are issues in dire need of new levels of
understanding.

In spite of existing standards it is still difficult to predict the behavior of systems with
many different components, especially real-time systems. Regulations, security, safety and
environmental issues put further strain on the development.

One thing that is not increasing, at least not very rapidly, is the number of competent
software developers in Sweden. Young people – especially young women – tend to prefer
careers other than software engineering. Skilled software management is equally scarce,
resulting in yet another industrial bottleneck.

so, why bother? With so many challenges and so few resources, what’s the point?

Within Swedsoft, representing a substantial part of the Swedish software community, we
believe it is timely for the Swedish industry to take the next steps in software development
to maintain and increase our competitiveness. A national effort is of essence to maintain the
Swedish industry’s current position and become a world champion of software development
within ten years. That goal is ambitious, but realistic.

We hope to share our goals with as many influential people as possible. Please feel free to
distribute this document to any and all concerned parties.

A Strong Sense of Urgency 7

Sammanfattning/
Summary in Swedish

Den svenska mjukvaruintensiva industrin har ett gyllene tillfälle att nå en världs-
ledande position inom tio år. Men samtidigt finns en stor oro inför framtiden. Da-
gens metoder för mjukvaruutveckling är inte tillfyllest för att bibehålla och utveckla
en ledande position. Det finns ett stort behov, och en stark konsensus, om att nya
grepp måste tas för att öka effektiviteten och produktiviteten i utvecklingsarbetet.
Inte minst måste samarbetet öka mellan de idag många gånger isolerade öarna
där mjukvaruutveckling bedrivs. Detta gäller industrin såväl som akademin.

att frågan är av nationell vikt råder ingen tvivel om. Hälften av all Sveriges export är
kritiskt beroende av mjukvara. Mjukvara har blivit det viktigaste medlet för företag att dif-
ferentiera sina produkter, och en majoritet av industrins FoU-projekt domineras av mjuk-
vara. Ett exempel är Volvo Lastvagnar, som räknar med att 70 procent av alla innovationer
är mjukvara. Ungefär 25-35 procent av värdet av ett fordon utgörs idag av mjukvara. Den
siffran är ännu högre för Ericssons produkter, och ligger i samma härad för många stora
svenska industriföretag oavsett om de är verksamma inom telekom, försvar, medicinsk
teknik, fordon, industriautomation eller finanssektorn.

Ändå är det inte förrän relativt nyligen som de svenska mjukvaruintensiva företagen har
insett att de sitter i samma båt och att deras utmaningar är gemensamma. Just därför måste
samarbetet tas till en ny nivå, det gäller såväl mellan industriföretag som mellan industri
och akademi och mellan olika akademiska institutioner. Swedsoft är ett initiativ som syftar
till just sådant samarbete, och aspirerar på att bli den arena där en rad samarbeten kan
initieras och genomföras. Allt i syfte att öka konkurrenskraften för den svenska mjukvaruin-
tensiva industrin.

8 Sammanfattning/Summary

Sammanfattning/Summary 9

swedsoft föreslår i denna skrift tre åtgärder för att
öka konkurrenskraften för den svenska mjukvaruin-
tensiva industrin.

för det första bör mjukvaruutveckling erkännas som
en egen disciplin, inom såväl industri och akademi.
Det är en grundförutsättning för att komma bort
från dagens fragmenterade utvecklingsansträngningar,
och en rimlig konsekvens av att mjukvara idag är det
främsta medlet för industrin att differentiera sina
produkter.

för det andra krävs ökad stimulans och nya struk-
turerade mekanismer för korsbefruktning mellan
mjukvaruutvecklingsaktiviteter, må de finnas inom
industrin, akademin eller annorstädes.

för det tredje bör mer pengar anslås till
fou-satsningar inom mjukvaruutveckling, och inte
bara där mjukvara ses som ett medel för att uppnå
andra mål. Ett nationellt program med fokus på att
göra mjukvaruutveckling minst tio gånger mer ef-
fektivare än idag, vore ett viktigt bidrag till Sveriges
industriella framtid.

En mer detaljerad redogörelse för våra mål, på
kort, medellång och lång sikt, återfinns i avsnitt 4,
Goals and Wanted Position.

Med denna skrift hoppas vi inom Swedsoft, som
representerar en stor del av den svenska mjukvaru-
intensiva industrin och akademin, få till stånd de
förändringar som krävs. Vi hoppas att på stöd från
så många inflytelserika personer som möjligt. sprid
gärna skriften.

Sammanfattning/Summary 9

Conclusions
and recom-
mendations

this document is set out as a Strategic Software Research Agenda
by and for the software intensive Swedish industries. It aspires
to highlight the importance of software for the Swedish industry,
the needs and the sense of urgency whitin the Swedish software
community for change and action. to that end we offer some
recommendations for the immediate and long term future.

As ever, new innovations built on the legacy of spirited Swedish
engineering can lay a new foundation for future wealth.

But to pave the way, the software discipline needs to be strength-
ened and new bridges must be established between islands of software
competence.

 Attitudes must change and a new willingness to work hard to
reach world championship must be established.

If the right measures are taken, Sweden could emerge as a global
software leader, with a more complete understanding of the develop-
ment process and an industry able to develop software at least ten
times more efficiently than today.
the current situation in the swedish software community, with devel-
opment and resources scattered around in isolated silos and software
development denied appropriate recognition as a discipline, is of
course far from ideal, and hardly the bedrock foundation necessary
for further innovation and economic growth.

10 Conclusions and Recommendations

we believe that three changes are of essence to amend the situation:

recogniZe softWare development as a discipline in its oWn right

First of all, since software is the prime diff erentiator for a large
and growing number of Swedish industrial products, software
development must be recognized as a discipline in its own
right. Actions must be taken within industries, universities and
other relevant bodies to modify and reorganize their software
development research and related activities according to this
recognition.

create incentives for crossfertiliZation

Secondly, new incentives must be created to improve the current
circumstances with software development mainly going on in
isolated silos.

Crossfertilization between companies, between universities and
between academia and industry needs further impetus to transform
from what is currently a rosy vision to a situation of innovation-
enabling cooperation.

A humble demand is also that more crossfertilization occurs
among government bodies and foundations responsible for R&D
funding, as well as between relevant government departments. Such
positive developments would support and nurture the crossfertiliza-
tion across the entire Swedish software development ecosystem.

dedicate grants to a major national softWare initiative

As a consequence – since software is a signifi cant driver for
innovation – research and development grants should be dedicated
to the specifi c fi eld of software development, rather than confi ning
allocations to domains where software is seen as a necessary
prerequisite for success.

A major national initiative, focusing on making software devel-
opment at least ten times more effi cient, is called for in the interest
of the Swedish industry’s future competitiveness.

”A major national initiative
is called for in the interest
of the Swedish industry’s
future competitiveness.”

Conclusions and Recommendations 11

our vision is that by 2020, the Swedish
software intensive industry should be second
to none. It should exhibit drive, and flexibility
of business models relevant for creating large
complex software intensive systems.
By 2020, we should fully understand how to
efficiently develop software intensive systems,
with high quality and excellent usability. And
we should be able to do this at least ten times
more efficiently than today, alternatively be
able to produce ten times more complex
software without additional manpower.

The goals are illustrated in this matrix:

Goals
and

Wanted
Position

12 Goals and Wanted Position

Goals and Wanted Position 13

Strategic need Short term, 2010-2012 Mid term, 2013-2016 Long term 2016-2020

Management of the SW
discipline. Including
increasing flexibility,
realization of business
models and recruitment
of SW competence

1) Industrial and academic focus
on SW as a discipline.

2) New model how to recruit
students to university SW
programs.

3) New teaching curriculum ore
closely related to middle- and
long term industrial needs.

1) Large-scale national SIS
development cooperation projects
under way.

2) Structured methods for assuring
supply of SW project management.

3) Good architecture support, i.e.
easy to understand, maintain and
extend.

1) We fully understand how to develop
SIS with efficiency, quality and cost
control.

2) We develop and simulate systems
(SW and HW) in an mixed and
integrated development environment.

3) We have assured continuous
competence supply for SIS
development.

SW engineering
(addressing the need for
increased productivity
in terms of reducing
lead-time and cost,
and dramatically
improving the efficiency
of software engineering
and adding the
aspect of swedish
industrialization.)
Includes cost efficient
quality assurance,
earlier verification of
designs and improved
relevant system
understanding.

1) The tool environment should
support fast feedback, e.g with
simulation, for the user.

2) Expressiveness of design and
architecture to stakeholders.

3) Expressiveness of formalism
and consistency so the SIS
does what it is designed to do.

4) Full utilization of domain
specific “languages”/
instruction sets.

5) Scalability.

1) Everything on the same abstraction
level (implement, simulate, test and
debug) including legacy systems.

2) More user friendly and easy to
learn. Integration and full support
throughout the way of working
chain.

3) The IDE is more active in analyzing
the design (in all phases) and
providing feedback to the
developer.

4) Verification of the design is done at
high level, earlier than today.

1) We can develop SIS at least 10
x more efficient than today. Or,
alternatively, we can reduce lead-
time with increased quality of end-
to-end SIS development to 1/10 of
today.

2) We have ensured working
interchange of SW tools.

SW execution
environment (portability,
scalability, safety critical
systems, long life cycle,
dependability).

1) We can implement, run and
interchange SW components
smoothly in specific domains
(telecom, automotive, etc).

2) Verification on component/
subsystem level is sufficient for
the integration

1) We can implement, run and
interchange SW components
smoothly across domains.

2) Software developed for SIS
is predictable in different
configurations.

1) We can implement, run and
interchange SW components
smoothly in all systems, including
safety-critical SIS.

2) We can manage the variability
of the SIS without adding to the
maintenance cost or R&D.

3) Product test should not be needed
since the general PLA is tested and
the variants’ quality is deduced
therefrom.

(Note: SIS = Software Intensive Systems. IDE=Integrated Development Environment. PLA=Product Line Architecture)

14 Goals and Wanted Position

Many steps are necessary to achieve these goals. Improved understanding of the manage-
ment of software development is perhaps the most pressing. Too few people have the
capacity and ability to successfully manage large software development projects, resulting in
products with less than optimal performance and/or lost windows of opportunity.

new ”best practices” are needed to optimize the make/buy/borrow challenges. Large
software projects could become much more efficient by raising the level of abstraction,
with execution and testability on all levels and full maintainability of legacy software. Tools
should have high level check functions – at the design level rather than the code level –
and support instant feedback to the user, e.g. by simulation. Increased use of model-based
development methodologies offers one possible way forward.

more stringent specifications and standardisations of the interfaces between different
software components are necessary, not least to deal with the plethora of open source and
other third party software. The performance of the software system must be also predictable
in other, different configurations, eliminating some of the needs for test. Verification on
subsystem level should also be sufficient for the integration, to decrease the number of
loops in the development chain.

better predictability is also needed, not least for automotive and industrial software to ensure
product longevity and industrial competitiveness. The software should be developed for
minimizing maintenance efforts, e.g. with possibility to upgrade continuously, in the field,
sometimes decades after its initial deployment.

our understanding of software functionality must improve to a state where we have
development environments supporting expressiveness, formalism and consistency to allow
the software intensive systems to do exactly – and only – what it is designed to do. Domain
specific languages or instruction sets could be required to fully leverage this potential.

we also need improved certification processes, not least for safety critical systems. These
systems should not be harder or more costly to develop than any other systems. By 2020,
safety critical systems should be executable on shared hardware and easily connectable to
the outside world. Issues of flexibility, security, integrity, portability and migration must be
natural ingredients of any software development ecosystem.

”Universities need to
focus more on software

devlopment as an
academic discipline and

secure the understanding
of the software product

development cycle.”

”Too few people have the
capacity and ability to

successfully manage large
software development

projects”

Goals and Wanted Position 15

a new model for recruiting and educating
students is of essence to assure a sufficient
supply of competence for all these tasks.
Universities need to focus more on
software development as an academic
discipline to develop and accredit graduates
who understand the software product
development cycle. A more industry-driven
curriculum would also be appreciated by
several software-intensive corporations.

The industry must be more vocal about
the need for SW talent, to attract more
young people to the field.

Industry and academia ought to
become much better at synchronizing their
software development roadmaps and match
their strategies for software development
management.

Goals and Wanted Position 15

16 Current Situation and Challenges

the industry that is not

one of the main challenges for the Swedish
software industry is that it is in general not
regarded as an industry.
This might sound like a paradox, but
software is still viewed as an add-on to
many products and services. But software is
in fact the main driver for innovation and
product development within a spectrum
of industries ranging from telecom
and automotive to consumer products,
industrial automation, medical equipment,
defence and finance. Nevertheless it is
only rarely treated as a core competence
and seldom given the strategic attention it
deserves. The current trend of outsourcing

Current
situation and

challenges

16 Current Situation and Challenges

Current Situation and Challenges 17

software development to low-cost countries is unsustainable and runs the risk of seriously
threatening Sweden’s aspirations for world leadership in this field.

software development is most often scattered, the competence and products developed in
isolated vertical silos with little or no peer exchange between software developers. This is
true within industries and single companies, within academia and also within government
and research funding bodies. One of Swedsoft’s main ambitions is to change this situation,
and have software development treated as a more coherent activity.

It should be stressed that the software product life cycle consists of much more than
simply writing code. In fact, the coding itself amounts to only a small fraction of the
development task. Large industries estimate that coding accounts for only about 7 percent
of the total software development effort. The majority of the work has more to do with
requirement handling and understanding, architecture design, system design, integration,
specifications, documentation, verification, test and other higher-level activities. Creating
brand new programs is a rare task – most of the time is spent making changes and additions
to existing code or figuring out what has gone wrong and why. The all too common view
that software development equals coding could be one reason why software development is
not given the attention it deserves.

increasing challenges
The technical challenges for software development have been thoroughly analyzed and
described by academics, industrialists and not least by the media. The picture is clear –
this is an activity where customer demands and new technology increase the challenges
of quality attributes such as complexity, flexibility, usability, safety, security, reliability,
maintainability (and a growing list of other “–ilities”). A common, if perhaps surprising,
conclusion is that many of these challenges cannot be addressed by simply adding more
manpower. Even if there was an abundance of software engineers – which is not the case –
all the recipes for success emphasizing using smarter methods, better design environment
and higher levels of abstraction, rather than relying on increased headcounts within
software departments.

This situation has paradoxically some beneficial implications for Sweden. The
international software communities, i.e. the competitors to Swedish companies, face the
very same challenges. Brute force is simply not the answer to these problems. By focusing

“The software product
life cycle consists of

much more than simply
writing code.”

18 Current Situation and Challenges

on the right issues, the Swedish industry thus has a golden opportunity to emerge as a
leader in the software field.

Some challenges deserve to be set in somewhat broader context. Software development
is today often a global activity, where a project could encompass several development teams
around the world. While this in theory opens up huge possibilities for efficiency and time
to market, handling distributed development with different competences in different places,
more often than not including customization for several different end markets, it also
generates a management challenge of great dignity.

new rules and regulations regularly affect software products. Regardless whether these
regulations emanate from government bodies or from standards committees they should
be taken into consideration as early as possible in the development projects in order to be
properly fulfilled.

For industrial applications – such as telecom equipment or industrial robots – there
is no room for failure. These devices can run for decades, 24 hours a day, 7 days a week,
and simply cannot risk unscheduled unavailability. Safety critical software in e.g. defence
products, automotive products or nuclear power plants adds another dimension of
dependability demands. The renowned software scholar Barry Boehm states that “Better
models for integrating ‘systems of systems’ are crucial for the future” and it is hard to
disagree. (Barry Boehm, A View of 20th and 21st Century Software Engineering, International
Conference of Software Engineering, 2006).

Legacy software is a major contributing factor to the overall complexity, often combined
with increased demands for communication. Customer demands for devices with increased
communication capability, lower power consumption, ease of use and high performance
for lower costs mean increased challenges for efficient software development and proper
understanding of software architectures.

new technologies, such as new software and hardware architectures, multicore
microprocessors or higher abstraction levels, have the potential to solve some of the
performance issues needed to fulfil the demands of tomorrow. But they also add to the
complexity. Evolved tools and methods are necessary to unleash the potential performance
for the whole product life cycle development. Scalability should be stressed, though, since
many new tools and methods may work well on a small scale, but fail to deliver when
upscaled to industrial levels.

“For industrial
applications there’s no

room for failure.”

Current Situation and Challenges 19

buying and selling isn’t what it used to be
Major international software companies –
IBM, Sun (now Oracle), and several others
– have changed the issue of open source
software (software components available free
of nominal charge, most often downloadable
from the Internet) from a simple choice
of yes or no, to today’s more mature and
nuanced approach of how much, and for
what purposes, it makes best sense. Again,
the issues of legacy, testability and efficiency
must be dealt with, but with open source
several legal issues are added to the picture.

A widespread insecurity of future business
models for software is a further concern.
The nature of software makes it possible
to upgrade products as diverse as trucks,
telecom equipment, industrial robots and
defence equipment. Each of these can have
new function and features added years or
decades after the hardware was delivered.
By that time the owner could be completely
different from the original customer, the
ecosystem which the product operates in
could have changed radically, and so could
business or regulatory demands.

To determine the proper value of the
software, and find viable business models
under such circumstances, is a challenge
for many Swedish industries, and it does
not get easier with the proliferation of
open source software. Securing the right
competence for IPR (intellectual property

Current Situation and Challenges 19

20 Current Situation and Challenges

rights) and business model development
in this environment is of pressing concern
to the software intensive industry, not least
in order to treat open source software as a
possibility rather than a threat.

The customers – the end users – hardly
ever care about the intricacies of the
software or how it is implemented. From
the customer’s point of view the software
simply has to work. This requires the
software to be developed in a mature way,
conformant to standards and best practices.
It should be mentioned, though, that some
advanced customers can have demands
like adhering to a certain standard (e.g.
IEC61508 SIL) or that a specific technology
is used to ensure interoperability with other
systems.

the good heart of swedish engineering

The picture of the current situation would
not be complete without a mentioning
of the innovation climate in the Swedish
industry, where many of these metaphorical
clouds are lit up by proverbial silver
linings. The Swedish industry is generally
considered to be innovative, system-centric,
with a high technological level. Scientists
and engineers are usually willing to share
their knowledge and create relations and
connections without too much attention
to prestige or status. There are elements
of consensual decisionmaking in the

20 Current Situation and Challenges

Current Situation and Challenges 21

Swedish culture, with individuals willing and able to ask difficult questions as well as
making tough decisions. Should a problem occur, the Swedish focus is usually on finding a
solution, rather than searching for scapegoats to blame. This is also reflected in the Swedish
management style, which is usually described as coaching, informal and supportive rather
than hierarchical and bureaucratic.

These are all very valuable properties and are indeed almost prerequisites for more
intense interaction between companies, teams, universities and research bodies. The
fact that in general the Swedish software engineers are well educated, internationally
experienced, proficient in English and committed teammembers brightens the outlook even
more. There are of course counterexamples to all of these so called soft skills, but some of
the Swedish industrial successes could still be attributed to this general description.

piggybacking on resourceful peers

Many of the aforementioned issues have of course been addressed by several national and
international research programs.

Several noteworthy national programs have enjoyed support mainly from VINNOVA,
the Swedish Research Councyil, the Swedish Foundation for Strategic Research and the
Knowledge Foundation. VINNOVA supports several national programs where software
development has great wieht, most notably Forska & Väx (“Research & Grow”) and
Banbrytande IKT (“Groundbreaking ICT”). The earlier program Nätverksbaserad
programvaruteknik (“Network-based software technology”), conducted from 2001 to
2008, should also be mentioned in this context. These programs are, and have been, of
tremendous value for the Swedish industry and academia. However, they have not been
focused on software in itself, but instead on software as means to an end and only a fraction
of their budgets have been allocated to software development. Thus, they do not specifically
address the issues for this SRA: software development and the management thereof.

On a European level, the Framework Program 7 is, along with Artemis and ITEA 2,
probably the most influential currently ongoing program with high
software content. Artemis is supported by the European Union and
the member states, and ITEA 2, also supported by the member
states, is a program within the Eureka cluster. Much know-how and
competence generated by these programs can and should be applied
in the Swedish industry, and future national research programs would gain from close
connections to these programs.

”There are elements of
consensual decisionmaking

in the Swedish culture,
with individuals willing
and able to ask difficult

questions as well as
making tough decisions.
Should a problem occur,

the Swedish focus is
usually on finding a
solution, rather than

searching for scapegoats
to blame.”

22 Current Situation and Challenges

However, neither Artemis nor ITEA 2 addresses
the fundamental issue of attitude towards software
development as a discipline, nor management of software.
And due to their scope they also don’t address some of

the hard issues of SW development – ITEA 2 is focussed on pre-competitive R&D for
software intensive systems, and Artemis is geared towards embedded systems, including
hardware. Both programs undoubtedly touch and overlap some of the issues pressing the
Swedish software industry, but it is our belief that much more can be done by national and
international bordercrossing exchange of knowledge, ideas and experiences.

In it’s latest roadmap (ITEA Roadmap for Software-Intensive Systems and Services, 3rd
edition, February 2009) there is a shift in perspective from a previous technology-centric to
a more human centric approach. Technology development is treated in a domain named
SSSC (Services, Systems and Software Creation), addressing some of the same issues as are
considered in this document. Four points are emphasized for increased speed of software
development: Better organization of the development process, Automation of component
integration, Interoperability of components/services/systems and Automation of software
generation (see pp 140-141 in the roadmap). Swedish R&D within software development
should by all means keep an eye on the development within this part of ITEA 2, but it is
Swedsoft’s belief that even more targeted efforts are necessary to obtain the wanted goals, as
laid out in some detail in Section 4 of this document.

Artemis also addresses some of the points raised in this Swedsoft document, not least
the need for cross-fertilization between different industrial domains. Some of Artemis’
objectives are also similar to Swedsoft’s – reducing the cost of system design, managing
increased complexity, reducing the effort and time required for validation and certification
and achieving cross-industry reusability of embedded systems devices (Artemis Strategic
Research Agenda 2006, Design Methods and Tools, p 6). However, Artemis’ goals are not
as far-reaching as the goals in this document, and the program has a different scope –
hardware and software for embedded systems. Nevertheless, results and experiences from
Artemis could kick-start a Swedish program on software development.

In the automotive industry there is today hardly any
software development going on without adherence to
AUTOSAR, Automotive Open Systems Architechture.

”Swedsoft believes that
a national effort making

Swedish software
development at least ten
times more efficient than
today would be of huge

national interest.”

Current Situation and Challenges 23

The AUTOSAR initiative, with roots in
the European automotive industry and
enjoying current backing by a majority of
Western automotive companies and their
supply chain, aims primarily to standardize
software architecture and interfaces between
software components for automotive
purposes. AUTOSAR is arguably the most
comprehensive industry standardization
effort ever in the field of software. The goals
are modularity, scalability, transferability
and re-usability of functions to provide a
standardized automotive systems platform,
enabling configuration and optimization to
meet runtime requirements. And although
AUTOSAR was conceived to meet the
needs of the automotive industry, there are
several elements therein that could apply
equally well to other industry niches.

Swedsoft believes that a national effort
addressing how Swedish industry and
academia should go about to make Sweden
a global leader in software development,
at least ten times more efficient than
today as described in Section 4 “Goals
and wanted position”, would be of huge
national interest. Of course, such a program
should draw upon experiences of the
aforementioned programs, but retain a
stricter focus on software development.

Current Situation and Challenges 23

24 Threats

If there ever was a moving target, then
software development is certainly one
of the most mobile.

The international competition is fierce,
to say the least. Parallels are plenty, but
perhaps the story of Alice’s Adventures in
Wonderland best illustrates the situation for
the software industry:

”Well, in our country,” said Alice, still
panting a little, ”you’d generally get to
somewhere else – if you ran very fast for a
long time, as we’ve been doing”.

”A slow sort of country!” said the Queen.
”Now, here, you see, it takes all the running
you can do, to keep in the same place. If
you want to get somewhere else, you must
run at least twice as fast as that!”

(Lewis Caroll, Through the Looking Glass, ch 2).

Threats

Threats 25

If, like the out-of-breath Alice, we stick to current technology, methodologies, design
environments and management practices and don’t act to improve the situation at home,
the competition abroad will be ahead of us quickly. Closing the gap will under such
circumstances be even more difficult, since many talented developers will look outside
Sweden for more interesting opportunities. A diminishing software intensive industry will
severely impact on not only the competitiveness of the Swedish industry, but also on the
entire Swedish job market.

some competitors have advantages of scale. Universities in China and India churn out
software engineers in amounts Sweden could only dream of. Chinese and Indian researchers
also play an increasingly prominent role at many of the best technical universities on earth.
It would be naïve to claim that this geopolitical change would hold no implications for the
Swedish software intensive industry.

Meanwhile, the apparent lack of interest among local young people in higher technical
education is of great concern. Most software courses remain dominated by young men,
with young women conspicuously absent. Solving these issues will go beyond the scope of
this document – suffice it to say that neither academia nor industry, nor society as a whole,
has done enough to address these pressing issues.

the competence of newly graduated engineers is yet another source of concern. Industry
and academia agree that the competence of the emergent graduates has great potential for
better matching the industry needs. Ericsson claims that under current circumstances new
recruits need training in software product development from day one, and would be very
happy to see this situation rectified.

a mismatch also exists between the research undertaken by academia and that required by
industries. Although Swedish software research is very competititive in a select number of
niches, many industry representatives feel that several other niches are not addressed as
properly by the Swedish research community as the industry would like. Representatives
from both sides agree that the academic community’s understanding of industrial needs
could be better, and both sides have called for incentives to encourage academia to better
adapt to industrial needs.

26 Strategic needs

Given the number of challenges and
the shortage of resources, priority must
be given to needs considered strategic
to the industry.

This list aims to emphasize some of the
most pressing areas where work has to
be done and new competence gained to
reach the goals outlined in Section 4 and
reiterated below.

management of the software discipline

Strategic need Short term, 2010-2012 Mid term, 2013-2016 Long term 2016-2020

Management of the SW
discipline. Including
increasing flexibility,
realization of business
models and recruitment
of SW competence

1) Industrial and academic focus on
SW as a discipline.

2) New model how to recruit
students to university SW
programs.

3) New teaching curriculum closer
related to middle- and long term
industrial needs.

1) Large-scale national SIS
development cooperation projects
under way.

2) Structured methods for
assuring supply of SW project
management.

3) Good architecture support, easy
to understand, maintain and
extend.

1) We fully understand how to
develop SIS.

2) We develop and simulate
systems (SW and HW) in
an mixed and integrated
development environment.

3) We have assured continuous
competence supply for SIS
development.

(Note: SIS = Software Intensive Systems)

Strategic needs

software managers need a broader understanding of context and processes required
for developing software intensive systems. Such managers need to take into account not
only the technical demands but also focus on the business models and market needs. A
worthwile goal would be to better exploit the various existing business models that software
off ers, and perhaps develop new models where applicable.

For software development, management needs better environments to understand
the make/buy/borrow issue, and the consequences of such decisions. Designing with the
optimal software components regardless of source (a.k.a. Open Innovation) demands
thorough understanding not only of the software development process, but also profound
expertise in the domain where the design is aimed (e.g. telecom, automotive or defence).
Another important aspect that needs improvement is the art of reaching solutions
where hardware and software are as independent as possible. A better environment for
understanding the consequences of diff erent implementation alternatives would also be of
great value in answering questions about what should be developed in software, in hardware
or as a service.

the importance of cultural differences and leadership strengths should not be
underestimated. While managing the software development team, managers must also fi nd
methodologies for determining what to outsource and procuring the best available third
party services, sometimes in globally distributed teams.

hardly any software is developed without a steady supply of competence, and assuring the
competence supply is a pressing issue for all development of software intensive systems.
A new model for recruiting students to higher software education is an issue that simply
cannot wait. Tomorrow’s software graduates need a much wider set of skills, where coding
ability is probably the least worrysome. Th e industry already makes clear that it needs
software-savvy engineers with a willingness to grasp industrial demands on complexity,
effi ciency and quality, paired with social, linguistic and management abilities. It goes
without saying that this will not happen unless industry, academia and relevant government
bodies rise to this particular challenge with a new attitude.

the incentives for the industry to educate and recruit new software management should
already be strong enough. Key personnel will retire within a few years, and urgently need
to be replaced without losing technical know-how or customer confi dence. Th is topic
might be ideal for inter-corporational workshops and exchange.

Strategic Needs 27

”A worthwile goal would
be to better exploit
the various existing
business models that

software offers”

28 Strategic needs

software engineering and industrialization

Strategic need Short term, 2010-2012 Mid term, 2013-2016 Long term 2016-2020

SW engineering (addressing
the need for increased
productivity in terms of
reducing lead-time and
cost, and dramatically
improving the efficiency of
software engineering, and
adding the aspect of SW
industrialization.

Cost efficient quality
assurance.

Verification of the design is
done for each step in SW
development. Simulation
of the system at each step
during the end-to-end SW
development.

Improved relevant system
understanding.

1) The tool environment should
support fast feedback, e.g with
simulation, for the user.

2) Expressiveness of design and
architecture to stakeholders.

3) Expressiveness of formalism
and consistency to get the SIS
to do what it is designed to do.

4) Full utilization of domain
specific “languages”/
instruction sets.

5) Scalability.

6) Academic curriculum

1) Everything on the same abstraction
level (implement, simulate, test and
debug) including legacy systems.

2) More user friendly and easy to
learn. Integration and full chain
support.

3) The IDE is more active in
analyzing the design (in all phases)
and providing feedback to the
developer.

4) Verification of the design is
done for each step in the SW
development.

1) We can develop SIS 10 x
more efficient than today.
Alternatively reduce lead-time
with increased quality of end-
to-end SIS development to
1/10 of today.

2) We have ensured working
interchange of SW tools.

(Note: SIS = Software Intensive Systems. IDE=Integrated Development Environment)

With every product being custom made, whether a mobile phone, an industrial robot, a
vehicle or a military aircraft, managing variability is a key through the entire software design
process. Developing the best architecture and applying new technology such as multicore
or parallell computing where it makes best sense will become prime competencies, but need
more research for full understanding and for reaching the goal of increased productivity by
at least a factor of ten. Ostensibly reducing complexity by in fact adding complexity is an
easy trap to fall in, and should of course by all means be avoided.

raising the level of abstraction is essential for handling the variability issues with improved
design efficiency. This area also deserve more research, not least since the solutions must

Strategic needs 29

be paired with possibilities to execute, verify and test the software on all levels, with tools
giving fast feedback to the user, using simulation and other verification technologies.

developing an understanding for cost efficient quality assurance should also be high on the
agenda. We need to reach a state where software for software intensive systems is predictable
in different configurations, not least to deal with updates decades after the product was
delivered. Ideally, later date product tests should not be needed since the quality of the
integrated variants can be deduced from verification on component or subsystem level.

For safety critical systems the desirable position is to create systems which are as easy and
as efficient to produce as any other system. Security and integrity aspects should and could
become part of any system development. A more effective certification process is imperative
for this goal.

software execution environment

Strategic need Short term, 2010-2012 Mid term, 2013-2016 Long term 2016-2020

SW execution environment

(portability, scalability,
safety critical systems, long
life cycle, dependability).

1) We can implement, run and
interchange SW components
smoothly in specific domains
(telecom, automotive, etc).

2) Verification on component/
subsystem level is sufficient for
the integration

1) We can implement, run and
interchange SW components
smoothly across domains.

2) Software developed for SIS
is predictable in different
configurations.

1) We can implement, run and
interchange SW components
smoothly in all systems,
including safety-critical SIS.

2) We can manage the variability
of the SIS without adding to
the maintenance cost or R&D.

3) Product test should not be
needed since the general PLA
is tested and the variants’
quality is deduced therefrom.

(Note: SIS = Software Intensive Systems, PLA=Product Line Architecture)

major progress has already been made in specific domains, not least in automotive systems
thanks to the Autosar initiative. But Autosar is not necessarily the key to success. In an ideal
world software should execute in an environment where different software components can
be implemented, run and interchanged smoothly, more or less like Lego bricks. Upgrades
or changes of electronic hardware platforms should be easy requireing no reverification or
recertification. And although this ideal state probably won’t occur within the foreseeable
future, it is quite possible to close the gap between the ideal and the real.

30 Appendix

Appendix.
About Swedsoft and

the Strategic Research Agenda
Swedsoft is an industry initiative to strengthen Swedish competitiveness with regards to
research and development of software intensive systems, services and products.

swedsoft’s founders and financiers include ABB AB, Ericsson AB, Saab AB and Arcticus
Systems AB from industry, as well as the Swedish Institute of Computer Science, Blekinge
Institute of Technology, IT University of Gothenburg, Linköping University, Lund
University, and Mälardalen University. They have all contributed to this Strategic Research
Agenda, as have representatives from Volvo AB, Enea AB, Sony Ericsson and the KTH
Royal Institute of Technology. Elektroniktidningen’s editor Adam Edström wrote the
document.

swedsoft’s board members are: Anders Caspár, Ericsson AB (chairman); Lars-Olof
Gustafsson, Ericsson AB; Magnus Larsson, ABB AB; Göran Backlund, Saab AB; Kurt-
Lennart Lundbäck, Arcticus Systems AB; Staffan Truvé, Swedish Institute of Computer Science;
Claes Wohlin, Blekinge Institute of Technology; Thomas Arts, IT University of Gothenburg;
Kristian Sandahl, Linköping University; Per Runeson, Lund University and Christer
Norström, Mälardalen University.

Swedsofts director, Christer Bengtsson, can be contacted at christer@swedsoft.se

More information about Swedsoft is found at www.swedsoft.se.

 This report was supported by VINNOVA.

©Swedsoft. Copying and redistribution is encouraged. Please mention Swedsoft as the source.

Appendix 31

“Attitudes must change.
A national effort is of

essence to become a world
champion of software

development.”

Pr
od

uk
tio

n:
 H

ea
dQ

ua
rte

rs
An

nn
on

sb
yr

å
Tr

yc
k:

 Lö
w

ex
, V

äx
jö

, 2
01

0

©Swedsoft. Copying and redistribution is encouraged. Please mention Swedsoft as the source.

A unique
cooperation
this strategic research agenda is the result of a
unique cooperation between software intensive
industry corporations, universities and research
institutes in Sweden. Never before has there
been a consensus on this level about the needs
and the challenges for the Swedish software
intensive industry. Never before has the sense of
urgency been so strong in this community.

three things need to be done. Software has to be
recognized as a discipline in its own right. New
incentives must be created for crossfertilization,
in order to create innovation-enabling
cooperation. Last but not least we call for a
national initiative with grants dedicated to the
specific field of software development.

the agenda is conceived and produced by swedsoft,
an industry initiative aimed at strenghtening
Swedish competitiveness with regards to
research and development of software intensive
systems, services and products. The content of
the agenda is supported by a vast range of
large and small Swedish industries, as well as
most major Swedish universities. ViNNoVA
supported the production. Elektroniktidningen’s
editor Adam Edström wrote the document.
Swedsoft would like to express gratitude to
everyone involved in the process.

