DSLM: Presenting Mathematical Analysis Using Functional Programming

Cezar Ionescu cezar@chalmers.se

Patrik Jansson
patrikj@chalmers.se

Paper + talk: https://github.com/DSLsofMath/tfpie2015

Style example

$$
\forall \epsilon \in \mathbb{R} .(\epsilon>0) \Rightarrow \exists a \in A . \quad(|a-\sup A|<\epsilon)
$$

Background

Domain-Specific Languages of Mathematics [lonescu and Jansson, 2015]: is a course currently developed at Chalmers in response to difficulties faced by third-year students in learning and applying classical mathematics (mainly real and complex analysis)
Main idea: encourage students to approach mathematical domains from a functional programming perspective (similar to Wells [1995]).
"... ideally, the course would improve the mathematical education of computer scientists and the computer science education of mathematicians."

Introduction

- make functions and types explicit
- use types as carriers of semantic information, not just variable names
- introduce functions and types for implicit operations such as the power series interpretation of a sequence
- use a calculational style for proofs
- organize the types and functions in DSLs

Not working code, rather working understanding of concepts

Complex numbers

We begin by defining the symbol i, called the imaginary unit, to have the property

$$
i^{2}=-1
$$

Thus, we could also call i the square root of -1 and denote it $\sqrt{-1}$. Of course, i is not a real number; no real number has a negative square.
(Adams and Essex [2010], Appendix I)

Complex numbers

We begin by defining the symbol i, called the imaginary unit, to have the property

$$
i^{2}=-1
$$

Thus, we could also call i the square root of -1 and denote it $\sqrt{-1}$. Of course, i is not a real number; no real number has a negative square.
(Adams and Essex [2010], Appendix I)
data $I=i$

Complex numbers

Definition: A complex number is an expression of the form

$$
a+b i \quad \text { or } \quad a+i b,
$$

where a and b are real numbers, and i is the imaginary unit.

Complex numbers

Definition: A complex number is an expression of the form

$$
a+b i \quad \text { or } \quad a+i b,
$$

where a and b are real numbers, and i is the imaginary unit.
data Complex $=$ Plus $\mathbb{R}_{1} \mathbb{R} /$
| Plus $_{2} \mathbb{R} / \mathbb{R}$
show: Complex \rightarrow String
show (Plus x_{1} y i) $=$ show $x+$ " + " + show y + "i" show (Plus $2 x$ i y) $=$ show $x+$ " + " + "i" + show y

Complex numbers examples

Definition: A complex number is an expression of the form

$$
a+b i \quad \text { or } \quad a+i b,
$$

where a and b are real numbers, and i is the imaginary unit.

For example, $3+2 i, \frac{7}{2}-\frac{2}{3} i$, $i \pi=0+i \pi$, and $-3=-3+0 i$ are all complex numbers. The last of these examples shows that every real number can be regarded as a complex number.

Complex numbers examples

For example, $3+2 i, \frac{7}{2}-\frac{2}{3} i$, $i \pi=0+i \pi$, and $-3=-3+0 i$ are all complex numbers. The last of these examples shows that every real number can be regarded as a complex number.

$$
\begin{aligned}
\text { data Complex } & =\text { Plus } \mathbb{R}_{1} \mathbb{R} / \\
& \mid \quad \text { Plus } \mathrm{R}_{2} \mathbb{R} / \mathbb{R}
\end{aligned}
$$

toComplex : $\mathbb{R} \rightarrow$ Complex
toComplex $x=$ Plus $_{1} \times 0$ i

- what about i by itself?
- what about, say, 2 i?

Complex numbers version 2.0

(We will normally use $a+b i$ unless b is a complicated expression, in which case we will write $a+i b$ instead. Either form is acceptable.)
data Complex $=$ Plus $\mathbb{R} \mathbb{R} /$
data Complex $=$ Plus/ $\mathbb{R} \mathbb{R}$

Name and reuse

It is often convenient to represent a complex number by a single letter; w and z are frequently used for this purpose. If a, b, x, and y are real numbers, and $w=a+b i$ and $z=x+y i$, then we can refer to the complex numbers w and z. Note that $w=z$ if and only if $a=x$ and $b=y$.

$$
\text { newtype Complex }=C(\mathbb{R}, \mathbb{R})
$$

Equality and pattern-matching

Definition: If $z=x+y i$ is a complex number (where x and y are real), we call x the real part of z and denote it $\operatorname{Re}(z)$. We call y the imaginary part of z and denote it $\operatorname{Im}(z)$:

$$
\begin{aligned}
& \operatorname{Re}(z)=\operatorname{Re}(x+y i)=x \\
& \operatorname{Im}(z)=\operatorname{Im}(x+y i)=y
\end{aligned}
$$

Re : Complex $\rightarrow \mathbb{R}$
$\operatorname{Rez} @(C(x, y))=x$
$\begin{array}{ll}\text { Im : Complex } & \rightarrow \mathbb{R} \\ \text { Im z@ }(C(x, y)) & =y\end{array}$

Shallow vs. deep embeddings

The sum and difference of complex numbers
If $w=a+b i$ and $z=x+y i$, where a, b, x, and y are real numbers, then

$$
\begin{aligned}
& w+z=(a+x)+(b+y) i \\
& w-z=(a-x)+(b-y) i
\end{aligned}
$$

Shallow embedding:
$(+)$: Complex \rightarrow Complex \rightarrow Complex
$(C(a, b))+(C(x, y))=C((a+x),(b+y))$
newtype Complex $=C(\mathbb{R}, \mathbb{R})$

Shallow vs. deep embeddings

The sum and difference of complex numbers
If $w=a+b i$ and $z=x+y i$, where a, b, x, and y are real numbers, then

$$
\begin{aligned}
& w+z=(a+x)+(b+y) i \\
& w-z=(a-x)+(b-y) i
\end{aligned}
$$

Deep embedding (buggy):

$(+)$: Complex \rightarrow Complex \rightarrow Complex
$(+)=$ Plus
data ComplexDeep $=i$
ToComplex \mathbb{R}
Plus Complex Complex
Times Complex Complex

Shallow vs. deep embeddings

The sum and difference of complex numbers
If $w=a+b i$ and $z=x+y i$, where a, b, x, and y are real numbers, then

$$
\begin{aligned}
& w+z=(a+x)+(b+y) i \\
& w-z=(a-x)+(b-y) i
\end{aligned}
$$

Deep embedding:

$(+)$: Complex \rightarrow Complex \rightarrow Complex
$(+)=$ Plus
data Complex $=i$
ToComplex \mathbb{R}
Plus Complex Complex Times Complex Complex

Completeness property of \mathbb{R}

Next: start from a more "mathematical" quote from the book:
The completeness property of the real number system is more subtle and difficult to understand. One way to state it is as follows: if A is any set of real numbers having at least one number in it, and if there exists a real number y with the property that $x \leqslant y$ for every $x \in A$ (such a number y is called an upper bound for A), then there exists a smallest such number, called the least upper bound or supremum of A, and denoted $\sup (A)$. Roughly speaking, this says that there can be no holes or gaps on the real line-every point corresponds to a real number.

> (Adams and Essex [2010], page 4)

Min ("smallest such number")

Specification (not implementation)

$$
\begin{aligned}
& \min : \mathcal{P}^{+} \mathbb{R} \rightarrow \mathbb{R} \\
& \min A=x \Longleftrightarrow x \in A \wedge(\forall a \in A \cdot x \leqslant a)
\end{aligned}
$$

Example consequence (which will be used later):

$$
\text { If } y<\min A, \text { then } y \notin A \text {. }
$$

Upper bounds

$$
\begin{aligned}
& \text { ubs } \begin{aligned}
\text { ubs } A & =\{\mathbb{R} \rightarrow \mathcal{P} \mathbb{R} \\
& =\{x \mid x \in \mathbb{R}, x \text { upper bound of } A\} \\
& =\{x \mid x \in \mathbb{R}, \forall a \in A . a \leqslant x\}
\end{aligned}
\end{aligned}
$$

The completeness axiom can be stated as
Assume an $A: \mathcal{P}^{+} \mathbb{R}$ with an upper bound $u \in u b s A$.
Then $s=\sup A=\min (u b s A)$ exists.
where

$$
\begin{aligned}
& \sup : \mathcal{P}^{+} \mathbb{R} \rightarrow \mathbb{R} \\
& \sup =\min \circ u b s
\end{aligned}
$$

Completeness and "gaps"

Assume an $A: \mathcal{P}^{+} \mathbb{R}$ with an upper bound $u \in u b s A$. Then $s=\sup A=\min (u b s A)$ exists. But s need not be in A - could there be a "gap"?

Completeness and "gaps"

Assume an $A: \mathcal{P}^{+} \mathbb{R}$ with an upper bound $u \in u b s A$.
Then $s=\sup A=\min (u b s A)$ exists.
But s need not be in A - could there be a "gap"?
With "gap" $=$ "an ϵ-neighbourhood between A and s " we can can show there is no "gap".

A proof: Completeness implications step-by-step

$$
\begin{aligned}
& \epsilon>0 \\
& \Rightarrow \quad\{\text { arithmetic }\} \\
& s-\epsilon<s
\end{aligned}
$$

A proof: Completeness implications step-by-step

$$
\begin{aligned}
& \epsilon>0 \\
& \Rightarrow \quad\{\text { arithmetic }\} \\
& s-\epsilon<s \\
& \Rightarrow \quad\{s=\min (u b s A), \text { property of } \min \} \\
& s-\epsilon \notin u b s A
\end{aligned}
$$

A proof: Completeness implications step-by-step

$$
\begin{aligned}
& \epsilon>0 \\
& \Rightarrow \quad\{\text { arithmetic }\} \\
& s-\epsilon<s \\
& \Rightarrow \quad\{s=\min (u b s A), \text { property of } \min \} \\
& s-\epsilon \notin u b s A \\
& \Rightarrow \quad\{\text { set membership }\} \\
& \neg \forall a \in A . a \leqslant s-\epsilon
\end{aligned}
$$

A proof: Completeness implications step-by-step

$$
\begin{aligned}
& \epsilon>0 \\
& \Rightarrow\{\text { arithmetic }\} \\
& s-\epsilon<s \\
& \Rightarrow \quad\{s=\min (u b s A), \text { property of } \min \} \\
& s-\epsilon \notin u b s A \\
& \Rightarrow \quad\{\text { set membership }\} \\
& \neg \forall a \in A \cdot a \leqslant s-\epsilon \\
& \Rightarrow \quad\{\text { quantifier negation }\} \\
& \exists a \in A \cdot s-\epsilon<a
\end{aligned}
$$

A proof: Completeness implications step-by-step

$$
\begin{aligned}
& \epsilon>0 \\
& \Rightarrow\{\text { arithmetic }\} \\
& s-\epsilon<s \\
& \Rightarrow \quad\{s=\min (u b s A), \text { property of } \min \} \\
& s-\epsilon \notin u b s A \\
& \Rightarrow \quad\{\text { set membership }\} \\
& \neg a \in A \cdot a \leqslant s-\epsilon \\
& \Rightarrow \quad\{\text { quantifier negation }\} \\
& \exists a \in A \cdot s-\epsilon<a \\
& \Rightarrow \quad\{\text { definition of upper bound }\} \\
& \exists a \in A \cdot s-\epsilon<a \leqslant s
\end{aligned}
$$

A proof: Completeness implications step-by-step

$$
\begin{aligned}
& \epsilon>0 \\
& \Rightarrow \quad\{\text { arithmetic }\} \\
& s-\epsilon<s \\
& \Rightarrow \quad\{s=\min (u b s A) \text {, property of min }\} \\
& s-\epsilon \notin \text { ubs } A \\
& \Rightarrow \quad\{\text { set membership }\} \\
& \neg \forall a \in A \cdot a \leqslant s-\epsilon \\
& \Rightarrow \quad\{\text { quantifier negation }\} \\
& \exists a \in A \cdot s-\epsilon<a \\
& \Rightarrow \quad\{\text { definition of upper bound }\} \\
& \exists a \in A \cdot s-\epsilon<a \leqslant s \\
& \Rightarrow \quad\{\text { absolute value }\} \\
& \exists a \in A .(|a-s|<\epsilon)
\end{aligned}
$$

Completeness: proof interpretation ("no gaps")

To sum up the proof says that the completeness axiom implies:

$$
\text { proof }: \forall \epsilon \in \mathbb{R} .(\epsilon>0) \Rightarrow \exists a \in A . \quad(|a-\sup A|<\epsilon)
$$

Completeness: proof interpretation ("no gaps")

To sum up the proof says that the completeness axiom implies:

$$
\text { proof }: \forall \epsilon \in \mathbb{R} .(\epsilon>0) \Rightarrow \exists a \in A . \quad(|a-\sup A|<\epsilon)
$$

More detail:
Assume a non-empty $A: \mathcal{P} \mathbb{R}$ with an upper bound $u \in u b s A$. Then $s=\sup A=\min (u b s A)$ exists.
We know that s need not be in A - could there be a "gap"?

Completeness: proof interpretation ("no gaps")

To sum up the proof says that the completeness axiom implies:

$$
\text { proof }: \forall \epsilon \in \mathbb{R} .(\epsilon>0) \Rightarrow \exists a \in A .(|a-\sup A|<\epsilon)
$$

More detail:

Assume a non-empty $A: \mathcal{P} \mathbb{R}$ with an upper bound $u \in u b s A$. Then $s=\sup A=\min (u b s A)$ exists.
We know that s need not be in A - could there be a "gap"? No, proof will give us an $a \in A$ arbitrarily close to the supremum. So, there is no "gap".

Conclusions

- make functions and types explicit: $\operatorname{Re}:$ Complex $\rightarrow \mathbb{R}$, $\min : \mathcal{P}^{+} \mathbb{R} \rightarrow \mathbb{R}$
- use types as carriers of semantic information, not just variable names
- introduce functions and types for implicit operations such as toComplex : $\mathbb{R} \rightarrow$ Complex
- use a calculational style for proofs
- organize the types and functions in DSLs (for Complex, limits, power series, etc.)

Future work

Partial implementation in Agda:

- errors caught by formalization (but no "royal road")
- ComplexDeep
- choice function
- subsets and coercions
- $\epsilon: \mathbb{R}_{>0}$, different type from $\mathbb{R}_{\geq 0}$ and \mathbb{R} and \mathbb{C}
- what is the type of $|\cdot|$? $\left(\mathbb{C} \rightarrow \mathbb{R}_{\geq 0}\right.$?)
- other subsets of \mathbb{R} or \mathbb{C} are common, but closure properties unclear

Bibliography

R. A. Adams and C. Essex. Calculus: a complete course. Pearson Canada, 7th edition, 2010.
C. Ionescu and P. Jansson. Domain-specific languages of mathematics, 2015. URL
https://www.student.chalmers.se/sp/course?course_id=24179. Course plan for DAT325, Chalmers University of Technology.
C. Wells. Communicating mathematics: Useful ideas from computer science. American Mathematical Monthly, pages 397-408, 1995.

