
DSLM: Presenting Mathematical Analysis Using
Functional Programming

Cezar Ionescu Patrik Jansson
cezar@chalmers.se patrikj@chalmers.se

Paper + talk: https://github.com/DSLsofMath/tfpie2015

Style example

∀ ε ∈ R. (ε > 0) ⇒ ∃ a ∈ A. (|a − sup A| < ε)

C. Ionescu and P. Jansson DSLsofMath 1 / 20

https://github.com/DSLsofMath/tfpie2015

Background

Domain-Speci�c Languages of Mathematics [Ionescu and Jansson, 2015]:
is a course currently developed at Chalmers in response to di�culties faced
by third-year students in learning and applying classical mathematics
(mainly real and complex analysis)
Main idea: encourage students to approach mathematical domains from a
functional programming perspective (similar to Wells [1995]).

�... ideally, the course would improve the mathematical education of
computer scientists and the computer science education of
mathematicians.�

C. Ionescu and P. Jansson DSLsofMath 2 / 20

Introduction

make functions and types explicit

use types as carriers of semantic information, not just variable names

introduce functions and types for implicit operations such as the power
series interpretation of a sequence

use a calculational style for proofs

organize the types and functions in DSLs

Not working code, rather working understanding of concepts

C. Ionescu and P. Jansson DSLsofMath 3 / 20

Complex numbers

We begin by de�ning the symbol i , called the imaginary unit, to have the
property

i2 = −1

Thus, we could also call i the square root of −1 and denote it
√
−1 . Of

course, i is not a real number; no real number has a negative square.

(Adams and Essex [2010], Appendix I)

data I = i

C. Ionescu and P. Jansson DSLsofMath 4 / 20

Complex numbers

We begin by de�ning the symbol i , called the imaginary unit, to have the
property

i2 = −1

Thus, we could also call i the square root of −1 and denote it
√
−1 . Of

course, i is not a real number; no real number has a negative square.

(Adams and Essex [2010], Appendix I)

data I = i

C. Ionescu and P. Jansson DSLsofMath 4 / 20

Complex numbers

De�nition: A complex number is an expression of the form

a + bi or a + ib,

where a and b are real numbers, and i is the imaginary unit.

data Complex = Plus1 R R I

| Plus2 R I R

show : Complex → String

show (Plus1 x y i) = show x ++ " + " ++ show y ++ "i"

show (Plus2 x i y) = show x ++ " + " ++ "i" ++ show y

C. Ionescu and P. Jansson DSLsofMath 5 / 20

Complex numbers

De�nition: A complex number is an expression of the form

a + bi or a + ib,

where a and b are real numbers, and i is the imaginary unit.

data Complex = Plus1 R R I

| Plus2 R I R

show : Complex → String

show (Plus1 x y i) = show x ++ " + " ++ show y ++ "i"

show (Plus2 x i y) = show x ++ " + " ++ "i" ++ show y

C. Ionescu and P. Jansson DSLsofMath 5 / 20

Complex numbers examples

De�nition: A complex number is an expression of the form

a + bi or a + ib,

where a and b are real numbers, and i is the imaginary unit.

For example, 3 + 2 i , 7

2
− 2

3
i , i π = 0 + i π , and −3 = −3 + 0 i

are all complex numbers. The last of these examples shows that every real
number can be regarded as a complex number.

C. Ionescu and P. Jansson DSLsofMath 6 / 20

Complex numbers examples

For example, 3 + 2 i , 7

2
− 2

3
i , i π = 0 + i π , and −3 = −3 + 0 i

are all complex numbers. The last of these examples shows that every real
number can be regarded as a complex number.

data Complex = Plus1 R R I

| Plus2 R I R

toComplex : R → Complex

toComplex x = Plus1 x 0 i

what about i by itself?

what about, say, 2 i?

C. Ionescu and P. Jansson DSLsofMath 7 / 20

Complex numbers version 2.0

(We will normally use a + bi unless b is a complicated expression, in which
case we will write a + ib instead. Either form is acceptable.)

data Complex = Plus R R I

data Complex = PlusI R R

C. Ionescu and P. Jansson DSLsofMath 8 / 20

Name and reuse

It is often convenient to represent a complex number by a single letter; w
and z are frequently used for this purpose. If a, b, x , and y are real
numbers, and w = a + bi and z = x + yi , then we can refer to the
complex numbers w and z . Note that w = z if and only if a = x and
b = y .

newtype Complex = C (R, R)

C. Ionescu and P. Jansson DSLsofMath 9 / 20

Equality and pattern-matching

De�nition: If z = x + yi is a complex number (where x and y are real),
we call x the real part of z and denote it Re (z). We call y the imaginary
part of z and denote it Im (z):

Re (z) = Re (x + yi) = x

Im (z) = Im (x + yi) = y

Re : Complex → R
Re z@(C (x , y)) = x

Im : Complex → R
Im z@(C (x , y)) = y

C. Ionescu and P. Jansson DSLsofMath 10 / 20

Shallow vs. deep embeddings

The sum and di�erence of complex numbers
If w = a + bi and z = x + yi , where a, b, x , and y are real numbers, then

w + z = (a + x) + (b + y) i

w − z = (a − x) + (b − y) i

Shallow embedding:

(+) : Complex → Complex → Complex

(C (a, b)) + (C (x , y)) = C ((a + x), (b + y))

newtype Complex = C (R, R)

C. Ionescu and P. Jansson DSLsofMath 11 / 20

Shallow vs. deep embeddings

The sum and di�erence of complex numbers
If w = a + bi and z = x + yi , where a, b, x , and y are real numbers, then

w + z = (a + x) + (b + y) i

w − z = (a − x) + (b − y) i

Deep embedding (buggy):

(+) : Complex → Complex → Complex

(+) = Plus

data ComplexDeep = i

| ToComplex R
| Plus Complex Complex

| Times Complex Complex

| ...

C. Ionescu and P. Jansson DSLsofMath 11 / 20

Shallow vs. deep embeddings

The sum and di�erence of complex numbers
If w = a + bi and z = x + yi , where a, b, x , and y are real numbers, then

w + z = (a + x) + (b + y) i

w − z = (a − x) + (b − y) i

Deep embedding:

(+) : Complex → Complex → Complex

(+) = Plus

data Complex = i

| ToComplex R
| Plus Complex Complex

| Times Complex Complex

| ...

C. Ionescu and P. Jansson DSLsofMath 11 / 20

Completeness property of R

Next: start from a more �mathematical� quote from the book:

The completeness property of the real number system is more subtle and
di�cult to understand. One way to state it is as follows: if A is any set of
real numbers having at least one number in it, and if there exists a real
number y with the property that x 6 y for every x ∈ A (such a number
y is called an upper bound for A), then there exists a smallest such
number, called the least upper bound or supremum of A, and denoted
sup (A). Roughly speaking, this says that there can be no holes or gaps on
the real line�every point corresponds to a real number.

(Adams and Essex [2010], page 4)

C. Ionescu and P. Jansson DSLsofMath 12 / 20

Min (�smallest such number�)

Speci�cation (not implementation)

min : P+ R → R
min A = x ⇐⇒ x ∈ A ∧ (∀ a ∈ A. x 6 a)

Example consequence (which will be used later):

If y < min A, then y /∈ A.

C. Ionescu and P. Jansson DSLsofMath 13 / 20

Upper bounds

ubs : P R → P R
ubs A = {x | x ∈ R, x upper bound of A}

= {x | x ∈ R, ∀ a ∈ A. a 6 x }

The completeness axiom can be stated as

Assume an A : P+ R with an upper bound u ∈ ubs A.

Then s = sup A = min (ubs A) exists.

where

sup : P+ R → R
sup = min ◦ ubs

C. Ionescu and P. Jansson DSLsofMath 14 / 20

Completeness and �gaps�

Assume an A : P+ R with an upper bound u ∈ ubs A.

Then s = sup A = min (ubs A) exists.

But s need not be in A � could there be a �gap�?

With �gap� = �an ε-neighbourhood between A and s� we can can show
there is no �gap�.

C. Ionescu and P. Jansson DSLsofMath 15 / 20

Completeness and �gaps�

Assume an A : P+ R with an upper bound u ∈ ubs A.

Then s = sup A = min (ubs A) exists.

But s need not be in A � could there be a �gap�?
With �gap� = �an ε-neighbourhood between A and s� we can can show
there is no �gap�.

C. Ionescu and P. Jansson DSLsofMath 15 / 20

A proof: Completeness implications step-by-step

ε > 0

⇒ { arithmetic }

s − ε < s

⇒ { s = min (ubs A), property of min }

s − ε /∈ ubs A

⇒ { set membership }

¬ ∀ a ∈ A. a 6 s − ε
⇒ { quanti�er negation }

∃ a ∈ A. s − ε < a

⇒ { de�nition of upper bound }

∃ a ∈ A. s − ε < a 6 s

⇒ { absolute value }

∃ a ∈ A. (|a − s| < ε)

C. Ionescu and P. Jansson DSLsofMath 16 / 20

A proof: Completeness implications step-by-step

ε > 0

⇒ { arithmetic }

s − ε < s

⇒ { s = min (ubs A), property of min }

s − ε /∈ ubs A

⇒ { set membership }

¬ ∀ a ∈ A. a 6 s − ε
⇒ { quanti�er negation }

∃ a ∈ A. s − ε < a

⇒ { de�nition of upper bound }

∃ a ∈ A. s − ε < a 6 s

⇒ { absolute value }

∃ a ∈ A. (|a − s| < ε)

C. Ionescu and P. Jansson DSLsofMath 16 / 20

A proof: Completeness implications step-by-step

ε > 0

⇒ { arithmetic }

s − ε < s

⇒ { s = min (ubs A), property of min }

s − ε /∈ ubs A

⇒ { set membership }

¬ ∀ a ∈ A. a 6 s − ε

⇒ { quanti�er negation }

∃ a ∈ A. s − ε < a

⇒ { de�nition of upper bound }

∃ a ∈ A. s − ε < a 6 s

⇒ { absolute value }

∃ a ∈ A. (|a − s| < ε)

C. Ionescu and P. Jansson DSLsofMath 16 / 20

A proof: Completeness implications step-by-step

ε > 0

⇒ { arithmetic }

s − ε < s

⇒ { s = min (ubs A), property of min }

s − ε /∈ ubs A

⇒ { set membership }

¬ ∀ a ∈ A. a 6 s − ε
⇒ { quanti�er negation }

∃ a ∈ A. s − ε < a

⇒ { de�nition of upper bound }

∃ a ∈ A. s − ε < a 6 s

⇒ { absolute value }

∃ a ∈ A. (|a − s| < ε)

C. Ionescu and P. Jansson DSLsofMath 16 / 20

A proof: Completeness implications step-by-step

ε > 0

⇒ { arithmetic }

s − ε < s

⇒ { s = min (ubs A), property of min }

s − ε /∈ ubs A

⇒ { set membership }

¬ ∀ a ∈ A. a 6 s − ε
⇒ { quanti�er negation }

∃ a ∈ A. s − ε < a

⇒ { de�nition of upper bound }

∃ a ∈ A. s − ε < a 6 s

⇒ { absolute value }

∃ a ∈ A. (|a − s| < ε)

C. Ionescu and P. Jansson DSLsofMath 16 / 20

A proof: Completeness implications step-by-step

ε > 0

⇒ { arithmetic }

s − ε < s

⇒ { s = min (ubs A), property of min }

s − ε /∈ ubs A

⇒ { set membership }

¬ ∀ a ∈ A. a 6 s − ε
⇒ { quanti�er negation }

∃ a ∈ A. s − ε < a

⇒ { de�nition of upper bound }

∃ a ∈ A. s − ε < a 6 s

⇒ { absolute value }

∃ a ∈ A. (|a − s| < ε)

C. Ionescu and P. Jansson DSLsofMath 16 / 20

Completeness: proof interpretation (�no gaps�)

To sum up the proof says that the completeness axiom implies:

proof : ∀ ε ∈ R. (ε > 0) ⇒ ∃ a ∈ A. (|a − sup A| < ε)

More detail:
Assume a non-empty A : P R with an upper bound u ∈ ubs A.
Then s = sup A = min (ubs A) exists.
We know that s need not be in A � could there be a �gap�?
No, proof will give us an a ∈ A arbitrarily close to the supremum.
So, there is no �gap�.

C. Ionescu and P. Jansson DSLsofMath 17 / 20

Completeness: proof interpretation (�no gaps�)

To sum up the proof says that the completeness axiom implies:

proof : ∀ ε ∈ R. (ε > 0) ⇒ ∃ a ∈ A. (|a − sup A| < ε)

More detail:
Assume a non-empty A : P R with an upper bound u ∈ ubs A.
Then s = sup A = min (ubs A) exists.
We know that s need not be in A � could there be a �gap�?

No, proof will give us an a ∈ A arbitrarily close to the supremum.
So, there is no �gap�.

C. Ionescu and P. Jansson DSLsofMath 17 / 20

Completeness: proof interpretation (�no gaps�)

To sum up the proof says that the completeness axiom implies:

proof : ∀ ε ∈ R. (ε > 0) ⇒ ∃ a ∈ A. (|a − sup A| < ε)

More detail:
Assume a non-empty A : P R with an upper bound u ∈ ubs A.
Then s = sup A = min (ubs A) exists.
We know that s need not be in A � could there be a �gap�?
No, proof will give us an a ∈ A arbitrarily close to the supremum.
So, there is no �gap�.

C. Ionescu and P. Jansson DSLsofMath 17 / 20

Conclusions

make functions and types explicit: Re : Complex → R,
min : P+ R → R
use types as carriers of semantic information, not just variable names

introduce functions and types for implicit operations such as
toComplex : R → Complex

use a calculational style for proofs

organize the types and functions in DSLs (for Complex , limits, power
series, etc.)

C. Ionescu and P. Jansson DSLsofMath 18 / 20

Future work

Partial implementation in Agda:

errors caught by formalization (but no �royal road�)

ComplexDeep

choice function

subsets and coercions

ε : R>0, di�erent type from R≥0 and R and C
what is the type of |·|? (C → R≥0?)
other subsets of R or C are common, but closure properties unclear

C. Ionescu and P. Jansson DSLsofMath 19 / 20

Bibliography

R. A. Adams and C. Essex. Calculus: a complete course. Pearson Canada,
7th edition, 2010.

C. Ionescu and P. Jansson. Domain-speci�c languages of mathematics,
2015. URL
https://www.student.chalmers.se/sp/course?course_id=24179.
Course plan for DAT325, Chalmers University of Technology.

C. Wells. Communicating mathematics: Useful ideas from computer
science. American Mathematical Monthly, pages 397�408, 1995.

C. Ionescu and P. Jansson DSLsofMath 20 / 20

https://www.student.chalmers.se/sp/course?course_id=24179

	Intro
	Types
	Proofs
	Appendix
	Bibliography

