Languages for Policy Formulation and Enforcement

P.A. Bonatti GSS Conference 2013

Brussels, June 2013

Main goal of this talk

- Discussing requirements for a policy language
- Capitalizing on previous experience
 - Work on computer policies:
 - Access Control (AC) policies
 - Including trust negotiation (TN)
 - Usage control policies
 - Privacy policicies
 - DRM
- With a general GSS perspective

Outline

- What is a policy?
- Policy usage
- Policy language requirements
- A promising technological framework

Privacy and confidentiality policies

- In their simplest form constrain
 - Access to information / knowledge (server's view)
 - Disclosure of information / knowledge (user's view)
 - e.g. when accounts are created, credit card numbers released

Privacy and confidentiality policies

- In their simplest form constrain
 - Access to information / knowledge (server's view)
 - Disclosure of information / knowledge (user's view)
 - e.g. when accounts are created, credit card numbers released
- Based on
 - Properties of the requester
 - Information / knowledge contents
 - The nature of the current transaction / operation
 - Contextual properties (time, place, etc.)

Privacy and confidentiality policies

- In their simplest form constrain
 - Access to information / knowledge (server's view)
 - Disclosure of information / knowledge (user's view)
 - e.g. when accounts are created, credit card numbers released
- Based on
 - Properties of the requester
 - Information / knowledge contents
 - The nature of the current transaction / operation
 - Contextual properties (time, place, etc.)
- Expressiveness needs for policy languages
 - Complex conditions
 - Over all sorts of knowledge and data

Policies for semantic web & social networks

- Access control & information disclosure depend on metadata such as:
 - User profiles
 - Relationships between users
 - Friendship
 - Reputation
 - Content classification
 - etc...
- Such metadata are encoded with KR languages
 - RDF / Description logics
 - Rules
 - In perspective, combinations thereof

Policies for enterprise data

- Recent initiatives aimed at applying the LOD paradigm to organization data / knowledge management
- Increasing use of RDF and OWL

Enforcement

- Example from Access Control:
- Given a state (including a user request),
- Decide whether the request is permitted or denied
- Possibly log request / decision, notify administrator, change policy, start a registration process, ...
- More generally:
 - Given a (partial) description of a state
 - Make a decision & apply it
- Main language desiderata:
 - Flexible and general state / decision representation
 - Directly executable declarative specifications
 - intermediate translations may introduce errors

- Reasoning about policy consequences
- Reasoning about what-if scenarios
 - Reasoning about policy effects
 - Policy formulation, assessment, and tuning
- A tool for agreement
 - Reasoning about policy composition
 - Policies result from independent sources of requirements
 - Multiple stakeholders + laws
 - Society vs individuals
- Main language desiderata
 - Clear, unambiguous semantics
 - Hypothetical reasoning (possibly simplified)

- Policy comparison & negotiation
 - Related to enforcement & reasoning about policies
- A tool for decision making & agreement
 - Should I interact with this organization?
 - Is its policy compatible with my requirements?
 - Can we change our policies and find a mutually satisfactory agreement?
 - Experiences from computer privacy (P3P+IE6, TN, ...)
 - Related: How to fulfil a policy (TN)
- Main language desiderata
 - Intentional reasoning
 - for all possible states, ... (not simply evaluation)
 - Abduction (from goal to fulfilling action)
 - Preferences on how to negotiate, fulfil, ...
 1,2013 P. A. Bonatti GSS conference

- Human readable explanations
 - Formal languages are not familiar to everybody
 - Still a policy should be well understood by all the entities subject to the policy
- A tool for usability & ex-post validation
 - Explain the policy as well as decisions
- Main language desiderata
 - Possibility of converting from-to natural language
 - Explain the underlying reasoning
 - With as little human intervention as possible
 - Documentation not aligned to policy
 - Extra costs

Policies in abstract terms

- Suitable for Global System Science at large
- Policies are mappings from the states of a complex system to decisions
 - Aimed at constraining the system's behavior
 - States can be represented as complex pieces of knowledge
 - Discrete and continuous, possibly partial
 - Decisions:
 - System behavior should/should not be modified
 - The policy should be modified
 - Someone should be notified / a process should start
 - Determine alternatives and priorities
 - Take immediate actions automatically

Candidate policy languages

- KR (logic-based) languages are a natural choice
- Clean formal semantics
- Direct, uniform representation of:
 - Support knowledge (states)
 - Possibly incomplete knowledge as it frequently happens
 - Behavior constraints
 - Focus on what is to be achieved vs. how
 - Possible decisions
 - Planning concrete actions to achieve desired goals
- Reasoning engines are available
 - For all the kinds of reasoning mentioned so far

Candidate policy languages

- Rule-based languages are currently the best choice
 - [P.B., Datalog for Security, Privacy and Trust, 2011]
 - Datalog extensions
 - Answer Set Programming (ASP)
- Appropriate expressiveness
 - Formally: eg. they can express all PTIME policies
 - Empirically: people write policies as rules
- Higher maturity in relation to
 - Support to default policies
 - Support to abduction and explanations
 - Controlled natural language interfaces
 - Integration with other packages & formats

The case of ASP

- Solid implementations based on DLV and its extensions
 - Highly optimized, production stage
 - Integrated with external systems & formats
 - DBMS for processing large bodies of knowledge/data
 - RDF and OWL reasoners
 - External functions & packages
 - Support to nonmonotonic reasoning
 - Default policies, what-if reasoning, ...
 - Reasoning about alternatives and priorities
 - Preferences, weights
 - The standard engine can handle all kinds of policy usage but explanations
- The language is amenable to adding an independent June 11, 2013 explanation engine GSS conference

Summarizing

- Policy languages need to encode and handle
 - Articulated pieces of knowledge
 - Interoperability with many formats and systems
 - Decisions and countermeasures
 - With a clean, unambiguous semantics
- One policy, many uses
 - Enforcement, analysis, comparison, explanations, ...
 - All should be coherent with the semantics
- Rule-based knowledge representation languages
 - Currently the most appealing choice
 - Expressiveness, maturity, interoperability
 - Direct support to most kinds of policy usage

Some open issues

- Space, time, and autonomy of agents
 - Constraining and monitoring behavior over extended periods and across multiple places
 - e.g. usage control, DRM, privacy policy enforcement
 - Delete file within n days
 - Copy at most n times
 - Don't show this to third parties
 - Usability vs expressiveness
 - Some dynamic logics are almost programming languages
 - Error prone, difficult to explain
 - Technical obstacles to enforcement
 - Can't force agents to adopt desired behavior
 - Monitoring is difficult and expensive

Some open issues

- A recent innovative approach:
- Integrating traditional enforcement and mechanism design
 - Preventing violations through a system of disincentives based on game theoretic techniques, e.g.:
 - reduce user profiling through competition among service providers
 - reduce monitoring costs via strategic allocation of inspections
 - Improving game efficiency through ad hoc technical enforcement mechanisms
 - Which technical solutions best support in governing global systems?

QUESTIONS/DISCUSSION