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Style example

∀ ε ∈ R. (ε > 0) ⇒ ∃ a ∈ A. (|a − sup A| < ε)

P. Jansson and C. Ionescu DSLsofMath 1 / 19

https://github.com/DSLsofMath/tfpie2015


Background

Domain-Speci�c Languages of Mathematics [Ionescu and Jansson, 2015]:
is a course currently developed at Chalmers in response to di�culties faced
by third-year students in learning and applying classical mathematics
(mainly real and complex analysis)
Main idea: encourage students to approach mathematical domains from a
functional programming perspective (similar to Wells [1995]).
[Link: Summary of Wells 1995]

�... ideally, the course would improve the mathematical education of
computer scientists and the computer science education of
mathematicians.�
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Introduction

make functions and types explicit

make the distinction between syntax and semantics explicit

use types (N, R, C) as carriers of semantic information, not just
variable names (n, x , z)

introduce functions and types for implicit operations such as the power
series interpretation of a sequence

use a calculational style for proofs

organize the types and functions in DSLs

Not working code, rather working understanding of concepts
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Active reading example

Calculus course book (D)
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Active reading example: complex numbers

Calculus course book (D) . . . Appendix I, Page 993!
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Complex numbers

We begin by de�ning the symbol i , called the imaginary unit, to have the
property

i2 = −1

Thus, we could also call i the square root of −1 and denote it
√
−1 . Of

course, i is not a real number; no real number has a negative square.

(Adams and Essex [2010], Appendix I)

data I = i
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Complex numbers

De�nition: A complex number is an expression of the form

a + bi or a + ib,

where a and b are real numbers, and i is the imaginary unit.

data Complex = Plus1 R R I

| Plus2 R I R

show : Complex → String

show (Plus1 x y i) = show x ++ " + " ++ show y ++ "i"

show (Plus2 x i y) = show x ++ " + " ++ "i" ++ show y
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Complex numbers examples

De�nition: A complex number is an expression of the form

a + bi or a + ib,

where a and b are real numbers, and i is the imaginary unit.

For example, 3 + 2 i , 7

2
− 2

3
i , i π = 0 + i π , and −3 = −3 + 0 i

are all complex numbers. The last of these examples shows that every real
number can be regarded as a complex number.
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Complex numbers examples

For example, 3 + 2 i , 7

2
− 2

3
i , i π = 0 + i π , and −3 = −3 + 0 i

are all complex numbers. The last of these examples shows that every real
number can be regarded as a complex number.

data Complex = Plus1 R R I

| Plus2 R I R

toComplex : R → Complex

toComplex x = Plus1 x 0 i

what about i by itself?

what about, say, 2 i?
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Complex numbers version 2.0

(We will normally use a + bi unless b is a complicated expression, in which
case we will write a + ib instead. Either form is acceptable.)

data Complex = Plus R R I

data Complex = PlusI R R
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Name and reuse

It is often convenient to represent a complex number by a single letter; w
and z are frequently used for this purpose. If a, b, x , and y are real
numbers, and w = a + bi and z = x + yi , then we can refer to the
complex numbers w and z . Note that w = z if and only if a = x and
b = y .

newtype Complex = C (R , R)
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Equality and pattern-matching

De�nition: If z = x + yi is a complex number (where x and y are real),
we call x the real part of z and denote it Re (z). We call y the imaginary

part of z and denote it Im (z):

Re (z) = Re (x + yi) = x

Im (z) = Im (x + yi) = y

Re : Complex → R
Re z@(C (x , y)) = x

Im : Complex → R
Im z@(C (x , y)) = y
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Shallow vs. deep embeddings

The sum and di�erence of complex numbers

If w = a + bi and z = x + yi , where a, b, x , and y are real numbers, then

w + z = (a + x) + (b + y) i

w − z = (a − x) + (b − y) i

Shallow embedding:

(+) : Complex → Complex → Complex

(C (a, b)) + (C (x , y)) = C ((a + x) , (b + y))

newtype Complex = C (R , R)
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Shallow vs. deep embeddings

The sum and di�erence of complex numbers

If w = a + bi and z = x + yi , where a, b, x , and y are real numbers, then

w + z = (a + x) + (b + y) i

w − z = (a − x) + (b − y) i

Deep embedding:

(+) : Complex → Complex → Complex

(+) = Plus

data Complex = i

| ToComplex R
| Plus Complex Complex

| Times Complex Complex

| ...
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Abstraction barriers

Example: continuity de�ned in terms of limits.

De�nition (Adams and Essex [2010], page 78)

We say that a function f is continuous at an interior point c of its domain

if

lim
x→c

(f x) = f c

If either lim
x→c

(f x) fails to exist or it exists but is not equal to f c, then we

will say that f is discontinuous at c.
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Abstraction barriers

Di�erentiability de�ned in terms of limits.

De�nition (Adams and Essex [2010], page 99)

The derivative of a function f is another function f ′ de�ned by

f ′ x = lim
h→0

f (x+h)−f x
h

at all points x for which the limit exists (i.e., is a �nite real number). If

f ′ (x) exists, we say that f is di�erentiable at x.
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Abstraction barriers

Alternative: di�erentiability in terms of continuity.

De�nition (Adapted from Pickert [1969])

Let X ⊆ R , a ∈ X and f : X → R. If there exists a function

φf : X → X → R such that, for all x ∈ X

f x = f a + (x − a) ∗ φf a x

such that φf a : X → R continuous at a, then f is di�erentiable at a.

The value φf a a is called the derivative of f at a and is denoted f ′ a.

Note that for X ⊆ R we can de�ne φf for x 6≡ a as follows:

φf a x = (f x − f a) / (x − a)

but the de�nition above also works for vectors and matrices (when division
is not available).
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A calculational proof

(f x) ∗ (g x)

= { di�erentiability }

(f a + (x − a) ∗ φf a x) ∗ (g a + (x − a) ∗ φg a x)

= { arithmetic }

f a ∗ g a + f a ∗ (x − a) ∗ φg a x +
(x − a) ∗ φf a x ∗ g a + (x − a) ∗ φf a x ∗ (x − a) ∗ φg a x

= { factor out (x − a) to get h a + (x − a) ∗ φh a x }

f a ∗ g a + (x − a) ∗ (f a ∗ φg a x + φf a x ∗ g a +
φf a x ∗ (x − a) ∗ φg a x)

= { �pattern-matching� }

h a + (x − a) ∗ φh a x

where h x = f x ∗ g x

φh a x = f a ∗ φg a x + φf a x ∗ g a +
φf a x ∗ (x − a) ∗ φg a x

Therefore, by continuity of composition and di�erentiability:

h′ a = φh a a = f a ∗ g ′ a + f ′ a ∗ g a
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Conclusions

make functions and types explicit: Re : Complex → R,
φf : X → X → R
make the distinction between syntax and semantics explicit

use types (N, R, C) as carriers of semantic information, not just
variable names (n, x , z)

pay attention to abstraction barriers (such as limits, continuity,
di�erentiability)

introduce functions and types for implicit operations such as
toComplex : R → Complex

use a calculational style for proofs

organize the types and functions in DSLs (for Complex , limits, power
series, etc.)
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Future work

Partial implementation in Agda:

errors caught by formalization (but no �royal road�)

Mixing up names of the same type
choice function

subsets and coercions

ε : R>0, di�erent type from R≥0 and R and C
what is the type of |·|? (C → R≥0?)
other subsets of R or C are common, but closure properties unclear

P. Jansson and C. Ionescu DSLsofMath 18 / 19



Bibliography

R. A. Adams and C. Essex. Calculus: a complete course. Pearson Canada,
7th edition, 2010.

C. Ionescu and P. Jansson. Domain-speci�c languages of mathematics,
2015. URL
https://www.student.chalmers.se/sp/course?course_id=24179.
Course plan for DAT325, Chalmers University of Technology.

G. Pickert. Einführung in die Di�erential-und Integralrechnung. Klett,
1969.

C. Wells. Communicating mathematics: Useful ideas from computer
science. American Mathematical Monthly, pages 397�408, 1995. doi:
10.2307/2975030.

P. Jansson and C. Ionescu DSLsofMath 19 / 19

https://www.student.chalmers.se/sp/course?course_id=24179

	Intro
	Types
	Proofs
	Appendix
	Bibliography


