DSLsofMath: Presenting Mathematical Analysis Using Functional Programming

Patrik Jansson patrikj@chalmers.se Cezar lonescu cezar@chalmers.se

Paper + talk: https://github.com/DSLsofMath/tfpie2015

Style example

$$\forall \epsilon \in \mathbb{R}. \ (\epsilon > 0) \Rightarrow \exists a \in A. \ (|a - \sup A| < \epsilon)$$

Domain-Specific Languages of Mathematics [lonescu and Jansson, 2015]: is a course currently developed at Chalmers in response to difficulties faced by third-year students in learning and applying classical mathematics (mainly real and complex analysis) Main idea: encourage students to approach mathematical domains from a functional programming perspective (similar to Wells [1995]). [Link: Summary of Wells 1995]

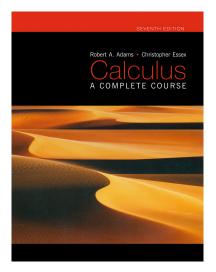
"... ideally, the course would improve the mathematical education of computer scientists and the computer science education of mathematicians."

- make functions and types explicit
- make the distinction between syntax and semantics explicit
- use types (\mathbb{N} , \mathbb{R} , \mathbb{C}) as carriers of semantic information, not just variable names (n, x, z)
- introduce functions and types for implicit operations such as the power series interpretation of a sequence
- use a calculational style for proofs
- organize the types and functions in DSLs

Not working code, rather working understanding of concepts

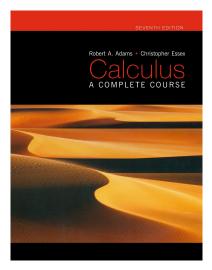
Active reading example

Calculus course book (D)



Active reading example: complex numbers

Calculus course book (D)



... Appendix I, Page 993!

Complex Numbers

Definition of Complex Numbers

We begin by defining the symbol i, called the imaginary unit,1 to have the

 $i^2 = -1.$

Thus, we could also call *i* the square root of -1 and denote it $\sqrt{-1}$. Of not a real number; no real number has a negative square.

DEFINITION

A complex number is an expression of the form

a + bi or a + ib,

where a and b are real numbers, and i is the imaginary unit.

For example, 3+2i, $\frac{7}{2}-\frac{2}{3}i$, $i\pi = 0+i\pi$, and -3 = -3+0i are all comple The last of these examples shows that every real number can be regarded as number. (We will normally use a + bi unless b is a complicated expressio case we will write a + ib instead. Either form is acceptable.)

It is often convenient to represent a complex number by a single letter are frequently used for this purpose. If a, b, x, and y are real numbers, and

w = a + bi and z = x + yi,

then we can refer to the complex numbers w and z. Note that w = z if a = x and b = y. Of special importance are the complex numbers

0 = 0 + 0i, 1 = 1 + 0i, and i = 0 + 1i.

DEFINITION

If z = x + yi is a complex number (where x and y are real), we call x **part** of z and denote it Re(z). We call y the **imaginary part** of z and d Im(z):

 $\operatorname{Re}(z) = \operatorname{Re}(x + yi) = x, \quad \operatorname{Im}(z) = \operatorname{Im}(x + yi) = y.$

We begin by defining the symbol *i*, called **the imaginary unit**, to have the property

 $i^2 = -1$

Thus, we could also call *i* the square root of -1 and denote it $\sqrt{-1}$. Of course, *i* is not a real number; no real number has a negative square.

(Adams and Essex [2010], Appendix I)

We begin by defining the symbol *i*, called **the imaginary unit**, to have the property

 $i^2 = -1$

Thus, we could also call *i* the square root of -1 and denote it $\sqrt{-1}$. Of course, *i* is not a real number; no real number has a negative square.

(Adams and Essex [2010], Appendix I)

data I = i

Definition: A complex number is an expression of the form

a + bi or a + ib,

where *a* and *b* are real numbers, and *i* is the imaginary unit.

Definition: A complex number is an expression of the form

a + bi or a + ib,

where a and b are real numbers, and i is the imaginary unit.

$$\begin{array}{rcl} show & : & Complex & \rightarrow & String \\ show & (Plus_1 x y i) & = & show x + + " + " + & show y + + "i" \\ show & (Plus_2 x i y) & = & show x + + " + " + " i" + & show y \end{array}$$

Definition: A complex number is an expression of the form

a + bi or a + ib,

where a and b are real numbers, and i is the imaginary unit.

For example, 3 + 2i, $\frac{7}{2} - \frac{2}{3}i$, $i \pi = 0 + i \pi$, and -3 = -3 + 0i are all complex numbers. The last of these examples shows that every real number can be regarded as a complex number.

For example, 3 + 2i, $\frac{7}{2} - \frac{2}{3}i$, $i \pi = 0 + i \pi$, and -3 = -3 + 0i are all complex numbers. The last of these examples shows that every real number can be regarded as a complex number.

 $toComplex : \mathbb{R} \rightarrow Complex$ $toComplex x = Plus_1 \times 0 i$

- what about *i* by itself?
- what about, say, 2 i?

(We will normally use a + bi unless b is a complicated expression, in which case we will write a + ib instead. Either form is acceptable.)

data Complex = $Plus \mathbb{R} \mathbb{R} I$

data Complex = $Plusl \mathbb{R} \mathbb{R}$

It is often convenient to represent a complex number by a single letter; w and z are frequently used for this purpose. If a, b, x, and y are real numbers, and w = a + bi and z = x + yi, then we can refer to the complex numbers w and z. Note that w = z if and only if a = x and b = y.

newtype Complex = $C(\mathbb{R}, \mathbb{R})$

Definition: If z = x + yi is a complex number (where x and y are real), we call x the **real part** of z and denote it Re(z). We call y the **imaginary part** of z and denote it Im(z):

$$Re(z) = Re(x + yi) = x$$
$$Im(z) = Im(x + yi) = y$$

$$\begin{array}{rcl} {\it Re} & : & {\it Complex} & \to & \mathbb{R} \\ {\it Re} & {\it z} @({\it C} (x,y)) & = & x \end{array}$$

$$\begin{array}{rcl} {\it Im} & : & {\it Complex} & \to & \mathbb{R} \\ {\it Im} & z @(C(x, y)) & = & y \end{array}$$

Shallow vs. deep embeddings

The sum and difference of complex numbers If w = a + bi and z = x + yi, where a, b, x, and y are real numbers, then

$$w + z = (a + x) + (b + y) i$$

 $w - z = (a - x) + (b - y) i$

Shallow embedding:

(+) : Complex \rightarrow Complex \rightarrow Complex (C (a, b)) + (C (x, y)) = C ((a + x), (b + y)) newtype Complex = C (\mathbb{R} , \mathbb{R})

Shallow vs. deep embeddings

The sum and difference of complex numbers If w = a + bi and z = x + yi, where a, b, x, and y are real numbers, then

$$w + z = (a + x) + (b + y) i$$

 $w - z = (a - x) + (b - y) i$

Deep embedding:

 Example: continuity defined in terms of limits.

Definition (Adams and Essex [2010], page 78)

We say that a function f is $\ensuremath{\textit{continuous}}$ at an interior point c of its domain if

$$\lim_{x\to c} (f x) = f c$$

If either $\lim_{x\to c} (f x)$ fails to exist or it exists but is not equal to f c, then we will say that f is **discontinuous** at c.

Differentiability defined in terms of limits.

Definition (Adams and Essex [2010], page 99)

The derivative of a function f is another function f' defined by

$$f' x = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

at all points x for which the limit exists (i.e., is a finite real number). If f'(x) exists, we say that f is **differentiable** at x.

Alternative: differentiability in terms of continuity.

Definition (Adapted from Pickert [1969])

Let $X \subseteq \mathbb{R}$, $a \in X$ and $f : X \to \mathbb{R}$. If there exists a function $\phi_f : X \to X \to \mathbb{R}$ such that, for all $x \in X$

$$f x = f a + (x - a) * \phi_f a x$$

such that $\phi_f a : X \to \mathbb{R}$ continuous at a, then f is differentiable at a. The value $\phi_f a$ a is called the derivative of f at a and is denoted f' a.

Note that for $X \subseteq \mathbb{R}$ we can define ϕ_f for $x \not\equiv a$ as follows:

$$\phi_f a x = (f x - f a) / (x - a)$$

but the definition above also works for vectors and matrices (when division is not available).

$$(f x) * (g x)$$

$$(f x) * (g x)$$

= { differentiability }
(f a + (x - a) * ϕ_f a x) * (g a + (x - a) * ϕ_g a x)

$$(f x) * (g x) = \{ \text{ differentiability } \} (f a + (x - a) * \phi_f a x) * (g a + (x - a) * \phi_g a x) = \{ \text{ arithmetic } \} f a * g a + f a * (x - a) * \phi_g a x + (x - a) * \phi_f a x * g a + (x - a) * \phi_f a x * (x - a) * \phi_g a x \end{cases}$$

$$\begin{array}{l} (f \ x) * (g \ x) \\ = & \{ \ \text{differentiability} \ \} \\ (f \ a + (x - a) * \phi_f \ a \ x) * (g \ a + (x - a) * \phi_g \ a \ x) \\ = & \{ \ \text{arithmetic} \ \} \\ f \ a * g \ a & + & f \ a * (x - a) * \phi_g \ a \ x + \\ (x - a) * \phi_f \ a \ x * g \ a & + & (x - a) * \phi_f \ a \ x * (x - a) * \phi_g \ a \ x \\ = & \{ \ \text{factor out} \ (x - a) \text{ to get} \ h \ a + (x - a) * \phi_h \ a \ x \ \} \\ f \ a * g \ a + (x - a) * (f \ a * \phi_g \ a \ x + \phi_f \ a \ x * g \ a + \\ \phi_f \ a \ x * (x - a) * \phi_g \ a \ x) \end{array}$$

$$(f x) * (g x)$$

$$= \{ \text{ differentiability } \}$$

$$(f a + (x - a) * \phi_f a x) * (g a + (x - a) * \phi_g a x)$$

$$= \{ \text{ arithmetic } \}$$

$$f a * g a + f a * (x - a) * \phi_g a x + (x - a) * \phi_f a x * g a + (x - a) * \phi_f a x * (x - a) * \phi_g a x$$

$$= \{ \text{ factor out } (x - a) \text{ to get } h a + (x - a) * \phi_h a x \}$$

$$f a * g a + (x - a) * (f a * \phi_g a x + \phi_f a x * g a + \phi_f a x * (x - a) * \phi_g a x)$$

$$= \{ \text{ "pattern-matching" } \}$$

$$h a + (x - a) * \phi_h a x$$

$$where h x = f x * g x$$

$$\phi_h a x = f a * \phi_g a x + \phi_f a x * g a + \phi_f a x * (x - a) * \phi_g a x$$

$$(f x) * (g x)$$

$$= \{ \text{ differentiability } \}$$

$$(f a + (x - a) * \phi_f a x) * (g a + (x - a) * \phi_g a x)$$

$$= \{ \text{ arithmetic } \}$$

$$f a * g a + f a * (x - a) * \phi_g a x + (x - a) * \phi_f a x * (x - a) * \phi_g a x + (x - a) * \phi_f a x * (x - a) * \phi_g a x$$

$$= \{ \text{ factor out } (x - a) \text{ to get } h a + (x - a) * \phi_h a x \}$$

$$f a * g a + (x - a) * (f a * \phi_g a x + \phi_f a x * g a + \phi_f a x * (x - a) * \phi_g a x)$$

$$= \{ \text{ "pattern-matching" } \}$$

$$h a + (x - a) * \phi_h a x$$

$$where h x = f x * g x$$

$$\phi_h a x = f a * \phi_g a x + \phi_f a x * g a + \phi_f a x * (x - a) * \phi_g a x$$

Therefore, by continuity of composition and differentiability:

$$h' a = \phi_h a a = f a * g' a + f' a * g a$$

- make functions and types explicit: $Re : Complex \rightarrow \mathbb{R}$, $\phi_f : X \rightarrow X \rightarrow \mathbb{R}$
- make the distinction between syntax and semantics explicit
- use types (ℕ, ℝ, ℂ) as carriers of semantic information, not just variable names (n, x, z)
- pay attention to abstraction barriers (such as limits, continuity, differentiability)
- introduce functions and types for implicit operations such as toComplex : $\mathbb{R} \to Complex$
- use a calculational style for proofs
- organize the types and functions in DSLs (for Complex, limits, power series, etc.)

Partial implementation in Agda:

- errors caught by formalization (but no "royal road")
 - Mixing up names of the same type
 - choice function
- subsets and coercions
 - ϵ : $\mathbb{R}_{>0}$, different type from $\mathbb{R}_{\geq 0}$ and \mathbb{R} and \mathbb{C}
 - what is the type of $|\cdot|? \ (\mathbb{C} \ \rightarrow \ \mathbb{R}_{\geq 0}?)$
 - $\bullet\,$ other subsets of ${\mathbb R}$ or ${\mathbb C}$ are common, but closure properties unclear

- R. A. Adams and C. Essex. *Calculus: a complete course*. Pearson Canada, 7th edition, 2010.
- C. Ionescu and P. Jansson. Domain-specific languages of mathematics, 2015. URL https://www.student.chalmers.se/sp/course?course_id=24179. Course plan for DAT325, Chalmers University of Technology.
- G. Pickert. *Einführung in die Differential-und Integralrechnung*. Klett, 1969.
- C. Wells. Communicating mathematics: Useful ideas from computer science. *American Mathematical Monthly*, pages 397–408, 1995. doi: 10.2307/2975030.