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1 Introduction

1.1 The Abstraction-Specialisation Cycle

The development of science proceeds in a cycle of activities, the so-called abstraction-

specialisation cycle. Abstraction is the process of seeking patterns or commonalities, which

are then classi�ed, often in a formal mathematical framework. In the process of abstraction,

we gain greater understanding by eliminating irrelevant detail in order to identify what

is essential. The result is a collection of general laws which are then put to use in the

second phase of the cycle, the specialisation phase. In the specialisation phase the general

laws are instantiated to speci�c cases which, if the abstraction is a good one, leads to

novel applications, yet greater understanding, and input for another round of abstraction

followed by specialisation.

The abstraction-specialisation cycle is particularly relevant to the development of the sci-

ence of computing because the modern digital computer is, above all else, a general-purpose

device that is used for a dazzling range of tasks. Harnessing this versatility is the core task

of software design.

Good, commercially viable, software products evolve in a cycle of abstraction and customi-

sation. Abstraction, in this context, is the process of identifying a single, general-purpose

product out of a number of independently arising requirements. Customisation is the pro-

cess of optimizing a general-purpose product to meet the special requirements of particular

customers. Software manufacturers are involved in a continuous process of abstraction fol-

lowed by customisation.

1.2 Genericity in Programming Languages

The abstraction-specialisation/customisation cycle occurs at all levels of software design.

Programming languages play an important role in facilitating its implementation. Indeed,

the desire to be able to name and reuse \programming patterns" |capturing them in the

form of parametrisable abstractions| has been a driving force in the evolution of high-

level programming languages to the extent that the level of \genericity" of a programming

language has become a vital criterion for usability.

To determine the level of genericity there are three questions we can ask:

{ Which entities can be named in a de�nition and then referred to by that given name?

{ Which entities can be supplied as parameters?

{ Which entities can be used \anonymously", in the form of an expression, as parameters?

(For example, in y = sin(2� x), the number resulting from 2� x is not given a name.

In a language allowing numeric parameters, but not anonymously, we would have to

write something like y = sin(z) where z = 2� x.)

An entity for which all three are possible is called a �rst-class citizen of that language.

In one of the �rst high-level programming languages, Fortran (1957), procedures could

be named, but not used as parameters. In Algol 60 procedures (including functions)



were made almost �rst-class citizens: they were allowed as parameters, but only by name.

In neither language could types be named, nor passed as parameters. In Algol 68 proce-

dures were made true �rst-class citizens, making higher-order functions possible (but not

practical, because of an awkward scope restriction

1

). Further, types could be named, but

not used as parameters.

Functional programming languages stand out in the evolution of programming languages

because of the high-level of abstraction that is achieved by the combination of higher-order

functions and parametric polymorphism. In, for example, Haskell higher-order functions

are possible and practical. But the level of genericity still has its limitations. Types can

be de�ned and used as parameters, but : : : types can only be given as parameters in

\type expressions". They cannot be passed to functions. The recent Haskell-like language

Cayenne [2] which extends Haskell with dependent types does allow types as arguments

and results of functions.

In these lecture notes we introduce another dimension to the level of abstraction in pro-

gramming languages, namely parameterisation with respect to classes of algebras of variable

signature. This �rst chapter is intended to introduce the key elements of the lectures in

broad terms and to motivate what is to follow. We begin by giving a concrete example of a

generic algorithm. (The genericity of this algorithm is at a level that can be implemented in

conventional functional programming languages, since the parameter is a class of algebras

with a �xed signature.) This is followed by a plan of the later chapters.

1.3 Path Problems

A good example of parameterising programs by a class of algebras is provided by the

problem of �nding \extremal" paths in a graph.

Extremal path problems have as input a �nite, labelled graph such as the one shown below.

��

��

a

��

��

b

��

��

d

��

��

c

-

3

?

4

6

2

@

@

@

@

@

@

@R

5

�

2

-

8

Formally, a directed graph consists of a �nite set of nodes, V , a �nite set of edges, E,

and two functions source and target, each with domain E and range V . If source e is the

node x and target e is the node y, we say that e is from x to y. (In the �gure the nodes

1

Anything that |in implementation terms| would have required what is now known as a \closure", was forbid-

den.



are circled and an edge e is depicted by an arrow that begins at source e and points to

target e.) A path through the graph from node s to node t of edge length n is a �nite list of

edges [e

1

, e

2

, . . . , e

n

] such that s = source e

1

and t = target e

n

and, for each i, 0 < i < n,

target e

i

= source e

i+1

. A graph is labelled if it is supplied with a function label whose

domain is the set of edges, E.

In an extremal path problem the edge labels are used to weight paths, and the problem is

to �nd the extreme (i.e. best or least, in some sense) weight of paths between given pairs

of nodes. We discuss three examples: the reachability problem, the least-cost path problem

and the bottleneck problem.

Reachability The reachability problem is the problem of determining for each pair of nodes

x and y whether there is a path in the graph from x to y. It is solved by a very elegant

(and now well-known) algorithm discovered by Roy [42] and Warshall [46]. The algorithm

assumes that the nodes are numbered from 1 to N (say) and that the existence of edges

in the graph is given by an N�N matrix a where a

ij

is true if there is an edge from node

numbered i to the node numbered j, and false otherwise. The matrix is updated by the

following code. On termination a

ij

is true if there is a path from node i to node j of edge

length at least one; otherwise a

ij

is false.

for each k, 1 � k � N

do for each pair (i;j), 1 � i;j � N

do a

ij

:= a

ij

_ (a

ik

^ a

kj

)

end for

end for

(The order in which the nodes are numbered, and the order in which pairs of nodes (i;j)

are chosen in the inner loop, is immaterial.)

The reachability problem is an extremal path problem in which all edges have the same

label and all paths have the same weight, namely true.

Least-Cost Paths About the same time as Warshall's discovery of the reachability algo-

rithm, Floyd [17] discovered a very similar algorithm that computes the cost of a least cost

path between each pair of nodes in the graph. The algorithm assumes that the matrix a is

a matrix of numbers such that a

ij

represents the least cost of traversing an edge from node

i to node j. If there is no edge from i to j then a

ij

is 1. The cost of a path is the sum

of the costs of the individual edges on the path. Floyd's algorithm for computing the cost

of a least cost path from each node to each other node is identical to the Roy-Warshall

algorithm above except for the assignment statement which instead is:

a

ij

:= a

ij

# (a

ik

+ a

kj

)

where x # y denotes the minimum of x and y.



Bottleneck Problem A third problem that can be solved with an algorithm of identical

shape to the Roy-Warshall algorithm is called the bottleneck problem. It is most easily

explained as determining the best route to negotiate a high load under a series of low

bridges. Suppose an edge in a graph represents a road between two cities and the label is

the height of the lowest underpass on the road. The height of a path between two nodes is

de�ned to be the minimum of the heights of the individual edges that make up the path.

The problem is to determine, for each pair of nodes i and j, the maximum of the heights

of the paths from node i to node j (thus the maximum of the minimum height underpass

on a path from i to j).

The bridge height problem is solved by an algorithm identical to the Roy-Warshall algo-

rithm above except for the assignment statement which in this case is:

a

ij

:= a

ij

" (a

ik

# a

kj

)

where x # y denotes the minimum of x and y and x " y denotes their maximum. (In the

case that there is no edge from i to j then the initial value of a

ij

is 0.)

A Generic Path Algorithm If we abstract from the general shape of these three algorithms

we obtain a single algorithm of the form

for each k, 1 � k � N

do for each pair (i;j), 1 � i;j � N

do a

ij

:= a

ij

� (a

ik


a

kj

)

end for

end for

where � and 
 are binary operators. The initial value of a

ij

is the label of the edge from i

to j if such an edge exists, and is a constant 0 otherwise. (For the purposes of exposition

we assume that there is at most one edge from i to j for each pair of nodes i and j.) The

algorithm is thus parameterised by an algebra. In the case of the Roy-Warshall algorithm

the carrier of the algebra is the two-element set containing true and false, the constant 0

is false, the operator � is disjunction and the operator 
 is conjunction. In the case of the

least-cost path problem the carrier is the set of positive real numbers, the constant 0 is1,

the operator � is the binary minimum operator, and the operator 
 is addition. Finally,

in the case of the bridge height problem the carrier is also the set of positive real numbers,

the operator � is the binary maximum operator, and the operator 
 is minimum.

Correctness The above generic algorithm will compute \something" whatever actual pa-

rameters we supply for the formal parameters �, 
 and 0, the only proviso being that

the parameters have compatible types. But, that \something" is only guaranteed to be

meaningful if the operators obey certain algebraic properties. The more general transitive

closure algorithm shown below



for each k, 1 � k � N

do for each pair (i;j), 1 � i;j � N

do a

ij

:= a

ij

� (a

ik


 (a

kk

)

�


 a

kj

)

end for

end for

is guaranteed to be correct if the algebra is regular [6, 8]

2

. By correctness is meant that if

initially

a

ij

= �he: e is an edge from i to j: label ei ;

where � is the generalisation of the binary operator � to arbitrary bags, then on termi-

nation

a

ij

= �hp: p is a path of positive edge length from i to j: weight pi

where weight p is de�ned recursively by

weight [ ] = 1

for the empty path [ ], and for paths e : p (the edge e followed by path p)

weight (e : p) = (label e) 
 (weight p) :

Exercise 1.1 Suppose that the edges of a graph are coloured. (So there are blue edges,

red edges, etc.) We say that a path has colour c if all the edges on the path have colour c.

Suggest how to use the above algorithm to determine for each pair of nodes x and y the

set of colours c such that there is a path of colour c from x to y in the graph.

2

1.4 The Plan

The di�erence between executability and correctness is an important one that shows up

time and time again, and it is important to stress it once more. The transitive closure

algorithm presented above can be executed provided only that instantiations are given for

the two constants 0 and 1, the two binary operators � and 
, the unary operator

�

, the

number N and the matrix a. An implementation of the algorithm thus requires just the

speci�cation of these seven parameters. Moreover, if we bundle the �rst �ve parameters

together into an algebra, all that is required for the implementation is the signature of the

algebra: the knowledge that there are two binary operators (with units) and one unary

operator. For the correctness of the algorithm much, much more is needed. We have to

2

Without going into complete details, an algebra is regular if it has two constants 0 and 1, two binary operators

� and 
, and one unary operator

�

. The constants 0 and 1 and operators � and 
 should behave like 0, 1, +

and � in real arithmetic except that � is not required to be commutative, and + is required to be idempotent.

The

�

operator is a least �xed point operator. The three algebras mentioned above are all regular, after suitably

de�ning the constant 1 and de�ning a

�

to be 1 for all a:



supply a speci�cation relative to which correctness is asserted, and establishing correctness

demands that we require the algebra to be in a certain class of algebras (in this case the

class of regular algebras).

As for conventional programs, the speci�cation is absent from a generic program's imple-

mentation. Nevertheless, it is the complete process of program construction|from program

speci�cation to a systematic derivation of the �nal implementation| that will dominate the

discussion in the coming pages. Our aim is not to show how to derive functional programs

but to show how to derive functional programs that are correct by construction. To this

end we borrow a number of concepts from category theory, emphasising the calculational

properties that these concepts entail.

Algebras, Functors and Datatypes The emphasis on calculational properties begins right

at the outset in chapter 2 where we introduce the notion of a functor and an initial algebra

and relate these notions to datatypes.

An algebra (in its simplest form) is a set, called the carrier of the algebra, together with a

number of operations on that set. A Boolean algebra, for example, has as carrier a set with

two elements, commonly named true and false and binary operations ^ (conjunction) and

_ (disjunction) and unary operation : (negation). The signature of the algebra speci�es

the types of the basic operations in the algebra.

In order to implement a generic algorithm we need to provide the compiler with information

on the signature of the operators in the algebra on which the algorithm is parameterised. In

order to calculate and reason about generic algorithms we also need a compact mechanism

for de�ning signatures. The use of functors provides such a mechanism, compactness being

achieved by avoiding naming the operators of the algebra. The use of functors entails much

more however than just de�ning the signature of an algebra. As we shall see, a datatype

is a functor and inductively de�ned datatypes are (the carriers of) initial algebras. The

concepts of functor, datatype and algebra are thus inextricably intertwined.

PolyP Following the discussion of algebras and datatypes, we introduce PolyP, an extension

of the Haskell programming language in which generic functions can be implemented.

The name of PolyP is derived from \polytypic programming", polytypic programs being

generic programs de�ned on a particular class of datatypes, the so-called regular datatypes.

Writing programs in PolyP means that one can get hands-on experience of generic pro-

gramming thus reinforcing one's understanding and, hopefully, leading to further insights.

A Uni�cation Algorithm Chapter 4 presents a more substantial example of generic pro-

gramming | a generic uni�cation algorithm. The basis for the algorithm is a generic

construction of a type representing terms with variables, and substitution of terms for

variables. The algorithm is implemented using type classes in a style similar to object-

oriented programming.



Relations The discussion in chapters 2 and 3 is on functional programs. In chapter 5 we

outline how the concepts introduced in chapter 2 are extended to relations, and we show

how the extension is used in establishing one element of the correctness of the generic

uni�cation algorithm.

There are several reasons for wanting to take the step from functions to relations. The

most pressing is that speci�cations are relations between the input and the output, and our

concern is with both speci�cations and implementations. Related to this is that termination

properties of programs are typically established by appeal to a well-founded relation on

the state space. We will not go into termination properties in these lecture notes but the

use of well-founded relations will play an integral part in our discussion of one element of

the correctness of a generic uni�cation algorithm in chapter 4.

Another reason for wanting to extend the discussion to relations lies in the theoretical basis

of generic programming. In chapter 5 we demonstrate how every parametrically polymor-

phic function satis�es a so-called logical relation.

The �nal reason is why not? As we shall see, extending the theory to relations does not

signi�cantly increase the complexity whilst the bene�ts are substantial.

1.5 Why Generic Programming?

The form of genericity that we present in the coming pages is novel and has not yet proved

its worth. Our goal is to stimulate your interest in exploring it further, and to provide

evidence of its potential value.

Generic programming has indeed, potentially, major advantages over \one-shot" program-

ming, since genericity makes it possible to write programs that solve a class of problems

once and for all, instead of writing new code over and over again for each di�erent instance.

The two advantages that we stress here are the greater potential for reuse, since generic

programs are natural candidates for incorporation in library form, and the increased reli-

ability, due to the fact that generic programs are stripped of irrelevant detail which often

makes them easier to construct. But what we want to stress most of all is that generic

programming is fun. Finding the right generic formulation that captures a class of related

problems can be a signi�cant challenge, whose achievement is very satisfying.
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2 Algebras, Functors and Datatypes

This chapter introduces the concepts fundamental to generic programming. The �rst sec-

tion (section 2.1) introduces algebras and homomorphisms between algebras. In this section

we see that datatypes (like the natural numbers) are also algebras, but of a special kind.

The presentation in section 2.1 is informal. In section 2.4 we make precise in what way

datatypes are special: we introduce the all-important notion of an \initial" algebra and the

notion of a \catamorphism" (a special sort of homomorphism). The link between the two

sections is provided by the intermediate sections on functors. The �rst of these (section

2.2) provides the formal de�nition of a functor, motivating it by examples from functional

programming. Then section 2.3 introduces further examples of functors forming a class

called the \polynomial functors". Section 2.4 augments the class of polynomial functors

with so-called type functors; the resulting class is called the class of \regular functors",

and generic programs de�ned over the regular functors are called \polytypic" programs.

The �nal section (section 2.5) presents an elementary example of a polytypic program.

2.1 Algebras and Homomorphisms

In this section we review the notion of an algebra. The main purpose is to introduce several

examples that we can refer to later. The examples central to the discussion are datatypes.

At the end of the section we consider how we might formalise the notion of an algebra.

We recall a formulation typical of ones in texts on Universal Algebra and remark why this

is inadequate for our purposes. We then present the de�nition of an algebra in category

theory based on the notion of a \functor" and outline how the latter expresses the content

of the traditional de�nitions much more succinctly and in a much more structured way.

Algebras An algebra is a set, together with a number of operations (functions) that return

values in that set. The set is called the carrier of the algebra. Here are some concrete

examples of algebras:

( IN ; 0 ; (+) ); with 0

::

1! IN ; (+)

::

IN� IN ! IN

( IN ; 0 ; (") ); with 0

::

1! IN ; (")

::

IN� IN ! IN

( IR ; 1 ; (�) ); with 1

::

1! IR ; (�)

::

IR� IR ! IR

( IB ; true ; (�) ); with true

::

1! IB ; (�)

::

IB� IB ! IB

( IB ; false; (_) ); with false

::

1! IB ; (_)

::

IB� IB ! IB

( IB ; true ; (^) ); with true

::

1! IB ; (^)

::

IB� IB ! IB

(A

?

; " ; (++)); with "

::

1!A

?

; (++)

::

A

?

�A

?

!A

?

In the last line A

?

stands for the words over some alphabet A, with \++" denoting word

concatenation, and \"" the empty word. This is, of course, basically the same algebra as

(List A; [ ]; (++)), the (�nite) lists of A-elements with list concatenation. Note that in the

typing of the operations we use the notation \source-type! target-type". In an algebra all

operations have the same target type

3

: its carrier. Note further that we use the \uncurried"

3

We freely identify types and sets whenever convenient.



view in which a binary operation takes a pair (2-tuple) of arguments and so has some type

like A� B!C. To make �xed elements, like 0 2 IN, �t in, they are treated here as nullary

operations: operations with a 0-tuple of arguments. This is indicated by the source type

1, which in Haskell would be denoted as \()". Sometimes we will instantiate a generic

program to a speci�c Haskell program, and in doing so we will switch back to the curried

view for binary operations, having some type A! (B!C), and to the view of nullary

operations as plain elements, having type A rather than 1!A. Conversely, going from a

Haskell program to an algebraic view, we will uncurry n-ary functions, n � 2, and treat

constants as nullary functions.

The concrete algebras above were chosen in such a way that they all have the same num-

ber of operations with the same typing pattern. They can be uni�ed generically into the

following abstract algebra:

(A; e;�); with e

::

1!A; �

::

A�A!A

So they all belong to the same class of algebras. An example of another class of algebras

is:

(IN; (+); (+1)); with (+)

::

IN�IN! IN; (+1)

::

IN! IN

(IR; (�); (�2)); with (�)

::

IR�IR! IR; (�2)

::

IR! IR

(A; � ; f ); with �

::

A�A!A; f

::

A!A

Here, the �rst two are concrete, while the last is the generic algebra.

By just looking at an algebra, it is not possible (in general) to tell what class of algebras it

belongs to: a given algebra can belong to several di�erent classes. So the class information

has to be supplied additionally. Take for example the following class:

( IN ; 0 ; (+)); with 0

::

1! IN ; (+)

::

IN� IN ! IN

( IN ; 0 ; (") ); with 0

::

1! IN ; (")

::

IN� IN ! IN

(List IN; [ ]; (

:

)); with [ ]

::

1!List IN; (

:

)

::

IN�List IN!List IN

( A ; e ; � ); with e

::

1! A ; �

::

IN� A ! A

The �rst two concrete algebras also occur in the �rst class treated above, but the generic

algebra reveals that this is a di�erent class.

To give a concluding example of an algebra class:

(IN; 0 ; (+1)); with 0

::

1! IN; (+1)

::

IN! IN

(IR; 1 ; (�2)); with 1

::

1! IR; (�2)

::

IR! IR

(IB; true ; (:) ); with true

::

1! IB; (:)

::

IB! IB

(IB; false; (:) ); with false

::

1! IB; (:)

::

IB! IB

(A; e ; f ); with e

::

1!A; f

::

A!A

A recursively de�ned datatype determines, in a natural way, an algebra. A simple example

is the datatype Nat de�ned by

4

:

data Nat = zero j succ Nat

4

We use Haskell syntax for de�ning datatypes, except that we write constructors using a sans serif font where

Haskell would capitalize the �rst letter. The Haskell de�nition of Nat would be data Nat = Zero | Succ Nat.



The corresponding algebra is:

(Nat ; zero; succ); with zero

::

1!Nat ; succ

::

Nat!Nat

This belongs to the last class mentioned; in fact, if we ignore the possibility of in�nite

data structures |made possible by lazy evaluation| this is essentially the same algebra

as (IN; 0; (+1)). Another example is:

data Natlist = nil j cons IN Natlist

The corresponding algebra is:

(Natlist ; nil; cons); with nil

::

1!Natlist ; cons

::

IN�Natlist!Natlist

This is basically the same as (List IN; [ ]; (

:

)). Both of these examples illustrate the general

phenomenon that a recursively de�ned datatype determines an algebra in which the carrier

of the algebra is the datatype itself, and the constructors of the datatype are the operations

of the algebra.

Homomorphisms A homomorphism between two algebras, which must be from the same

class, is a function between their carrier sets that \respects the structure" of the class. For

example, the function exp

::

IN! IR is a homomorphism with as source algebra (IN; 0; (+))

and as target algebra (IR; 1; (�)). In this case, respecting the structure of this algebra class

means that it satis�es the following two properties:

exp 0 = 1

exp(x + y) = (exp x)� (exp y)

Another example in the same class is length

::

(A

?

; "; (++))! (IN; 0; (+)). (This notation

is shorthand for the statement that the function length

::

A

?

! IN is a homomorphism

from source algebra (A

?

; "; (++)) to target algebra (IN; 0; (+)). In this case, respecting the

structure means:

length " = 0

length(x++y) = (length x) + (length y)

In general (for this class of algebras), h

::

(A; u; 
)! (B; e; �) means:

h

::

A!B

h u = e

h(x
 y) = (h x)� (h y)

So to apply h to a value in A that resulted from a u-operation (and there is only one such

value), we may equally apply h to the operands (of which there are none) and apply e to

the resulting 0-tuple. Similarly, to apply h to a value in A that resulted from a 
-operation,

we may equally well apply h to the operands (which gives two B-values) and combine these

with the operation �. Here are some more examples of homomorphisms in this class:

(# 1)

::

(IN; 0 ; (+))! (IN; 0 ; (") )

even

::

(IN; 0 ; (+))! (IB; true ; (�))

(> 0)

::

(IN; 0 ; (") )! (IB; false; (_))

(:)

::

(IB; false; (_))! (IB; true ; (^))

(:)

::

(IB; true ; (^))! (IB; false; (_))



If we have two homomorphisms h

::

(A; e; �)! (B; u; 
) and k

::

(B; u; 
)! (C; z; �),

in which the target algebra of the �rst is the source algebra of the second, then their

composition is also a homomorphism k

�

h

::

(A; e; �)! (C; z; �). For example,

(> 0)

�

(# 1)

::

(IN; 0 ; (+))! (IB; false; (_))

(:)

�

(:)

::

(IB; false; (_))! (IB; false; (_))

Now (> 0)

�

(# 1) = (> 0) on IN, and (:)

�

(:) = id

IB

(the identity function on IB), so we

have

(> 0)

::

(IN; 0 ; (+))! (IB; false; (_))

id

::

(IB; false; (_))! (IB; false; (_))

The identity function id

A

is of course a homomorphism between any algebra with carrier

A and itself.

For the class of algebras whose generic algebra is

(A; e;�); with e

::

1!A; �

::

IN�A!A

we have that h

::

(A; e; �)! (B; u; 
) means:

h

::

A!B

h e = u

h(x� y) = x
 (h y)

So why is h for this class not applied to the occurrence of x in the righthand side of the

second equality? The answer is that that would not make sense, since h has source type A,

but x is of type IN. (Later, after we have introduced functors, we shall see how to de�ne the

notion of homomorphism generically, independent of the speci�c algebra class.) We have:

sum

::

(List IN; [ ]; (

:

))! (IN; 0; (+))

foldr � e

::

(List IN; [ ]; (

:

))! (A; e; � )

In fact, sum = foldr (+) 0 .

Uniqueness We have given several examples of algebra classes and their homomorphisms.

The �rst class had generic algebra

(A; e; �) with e

::

1!A, �

::

A�A! A .

Note that the fact that a function is a homomorphism of algebras in this class does not

uniquely de�ne the function. For example, we observed above that length is a homomor-

phism with source (A

�

; "; (++)) and target (IN; 0; (+)). But the function that is constantly

0 for all lists is also a homomorphism with exactly the same source and target algebras.

Indeed, in the case of all the examples we gave of homomorphisms between algebras in

this class the constant function returning the value e of the target algebra has the same

homomorphism type as the given function.

Contrast this with the third class of algebras. The generic algebra has the form

(A; e; �) with e

::

1!A, �

::

IN�A! A



Again, the fact that a function is a homomorphism of algebras in this class does not uniquely

de�ne the function. But there is something rather special about the algebra (List IN; []; (:))

in this class of algebras. Speci�cally, foldr � e is the unique homomorphism with source

algebra (List IN; [ ]; (:)) and target algebra (A; e; �). For example, sum is the unique

homomomorphism with source (List IN; [ ]; (:)) and target (IN; 0; (+)). That is, function h

satis�es the equations

h

::

List IN! IN

h [ ] = 0

h(x

:

xs) = x + (h xs)

if and only if h = sum.

This uniqueness is an important property that will be a focus of later discussion.

Isomorphisms Above, we said several times that two algebras were \basically" or \es-

sentially" the same. We want to make this notion precise. The technical term for this is

that these algebras are isomorphic. In set theory, two sets A and B are called isomorphic

whenever there exists a bijection between A and B. Equivalently, A and B are isomorphic

whenever there exist functions f

::

A!B and g

::

B!A that cancel each other, that is:

f

�

g = id

B

g

�

f = id

A

The generalisation for algebras is now that we require these functions to be homomorphisms

between the algebras involved. A homomorphism that has a cancelling homomorphism is

called an isomorphism. From the examples above we see that the algebras (IB; true; (^))

and (IB; false; (_)) are isomorphic.

Algebras with laws Although we will hardly use this, no account of the notion of algebra is

complete without mentioning the following. A class of algebras can be further determined

by a set of laws. In a \lawful" class of algebras, all algebras satisfy the same set of (possibly

conditional) equational laws. Monoids form the best-known example of a lawful algebra

class. The generic monoid is
(A; e;�); with e

::

1!A; �

::

A�A!A
, and the monoid

laws are the following two:

� is associative: (x� y)� z = x� (y � z)

e is neutral for �: e� x = x = x� e

If an operation � has a neutral element, it is unique, and we denote it as �

�

. For example,

�

+

= 0 and �

�

= 1. The examples of concrete algebras from the �rst class treated in this

chapter are actually all monoids. For lawful algebras the de�nition of homomorphism is

the same as before.

Graphs The notion of homomorphism is more general than that of a \structure-respecting"

function between algebras. Homomorphisms can generally be de�ned for anything having



structure. As an example, we consider homomorphisms between directed graphs. Recall

that a directed graph is a structure

(V; E; source; target); with source

::

E!V; target

::

E!V

in which the elements of V are called \vertices" or \nodes", and the elements of E are

called \edges" or \arcs". If edge e is an edge from node m to node n, we have: source e = m

and target e = n. Directed graphs are just like an algebra class, except that we have two

\carrier sets": V and E. (There is a term for algebras with more carrier sets: heterogeneous

or multi-sorted algebras.) A homomorphism from graph (V

0

; E

0

; source

0

; target

0

) to graph

(V

1

; E

1

; source

1

; target

1

) is a pair of functions, one with the typing V

0

!V

1

and one with

the typing E

0

!E

1

, and if we overload the identi�er h to denote both functions, they

satisfy:

h(source a) = source(h a)

h(target a) = target(h a)

As before for algebras, two graphs are isomorphic whenever there are cancelling homomor-

phisms between them. Informally, this means that one graph can be obtained from the

other by systematic renaming. In standard Graph Theory, for unlabelled graphs like the

ones we are considering here, two isomorphic graphs are usually considered identical. Still,

there can be non-trivial automorphisms, that is, isomorphisms between a graph and itself

that are not the identity isomorphism.

Summarising and looking ahead In this section we have introduced the notion of a class of

algebras and homomorphisms between algebras in the same class. We have observed that

datatype de�nitions in a functional programming language de�ne an algebra, the carrier

of the algebra being the datatype itself and the operations being the constructors of the

datatype. We have also made the important observation that in some cases a function is

uniquely characterised by its homomorphism type (the fact that it is a homomorphism

combined with knowledge about its source and target algebras).

In the remaining sections of this chapter our goal is to formalise all these ideas in a way

that facilitates the calculational construction of programs. Let us give an outline of what

is in store.

The notion of an algebra is formalised in many textbooks on Universal Algebra. Here is an

example of such a de�nition. This is not the de�nition we intend to use so you don't need

to understand it in detail.

�-algebra A �-algebra with respect to a signature with operators � = (S;� ) is a pair

(V ;F ) such that

{ V is an S-sorted set, and



{ F = f
: 
 2 [ � : f




g is a set of functions such that


 2 �

hhs

0

;:::;s

n�1

i;ri

) f




2 V

s

0

� : : :�V

s

n�1

! V

r


 2 �

hs;ri

) f




2 V

s

!V

r

V is called the carrier set of the �-algebra and set F is its operator set.

Contrast this with the de�nition we are going to explain in the coming sections.

F -algebra Suppose F is a functor. Then an F -algebra is a pair (A;�) such that � 2 FA!A.

Neither de�nition is complete since in the �rst de�nition the notion of a signature has not

been de�ned, and in the second the notion of a functor hasn't been de�ned. In the �rst

de�nition, however, it's possible to guess what the de�nition of a signature is and, after

struggling some time with the subscripts of subscripts, it is possible to conclude that the

de�nition corresponds to the \intuitive" notion of an algebra. The disadvantage is that the

de�nition is grossly unwieldy. If the de�nitions of one's basic concepts are as complicated

as this then one should give up altogether any hope that one can calculate with them.

The second de�nition is very compact and, as we shall see, gives an excellent basis for

program construction. Its disadvantage, however, is that it is impossible to guess what

the de�nition of a functor might be, and it is di�cult to see how it corresponds to the

familiar notion of an algebra. How is it possible to express the idea that an algebra consists

of a set of operations? On the face of it, it would appear that an F -algebra has just one

operation �. Also, how does one express the fact that the operations in an algebra have

various arities?

The answer to these questions is hidden in the de�nition of a \functor". And, of course,

if its de�nition is long and complicated then all the advantages of the compactness of the

de�nition of an algebra are lost. We shall see, however, that the de�nition of a functor

is also very compact. We shall also see that functors can be constructed from primitive

functors in a systematic way. The \disjoint sum" of two functors enables one to express the

idea that an algebra has a set of operations; the \cartesian product" of functors allows one

to express the arity of the various operations; \constant functors" enable the expression of

the existence of designated constants in an algebra. An additional major bonus is that the

categorical notion of an \initial algebra" leads to a very compact and workable de�nition

of inductively de�ned datatypes in a programming language. The remaining sections of

this chapter thus provide a veritable arsenal of fundamental concepts whose mastery is

tremendously worthwhile.

Exercise 2.1 Check the claim that
even

::

(IN; 0; (+))! (IB; true; (�))
is a homomorphism.

Exercise 2.2 Give the composition of the following two homomorphisms:

(:)

::

(IB; false; (_))! (IB; true ; (^))

(> 0)

::

(IN; 0 ; (+))! (IB; false; (_))



Exercise 2.3 An automorphism is an isomorphism with the same source and target al-

gebra. Show that the only automorphism on the algebra (IB; true; (�)) is the trivial auto-

morphism id.

Exercise 2.4 Give an example of a non-trivial automorphism on the algebra (IR; 0; (�)).

2.2 Functors

To a �rst approximation, datatypes are just sets. A second approximation, which we have

just seen, is that a datatype is the carrier of an algebra. In this section we identify param-

eterised datatypes with the categorical notion of functor, giving us a third approximation

to what it is to be a datatype. It is in this section that we take the �rst steps towards a

generic theory of datatypes.

Examples The best way to introduce the notion of a functor is by abstraction from a

number of examples. Here are a few datatype de�nitions:

data List a = nil j cons a (List a)

data Maybe a = none j one a

data Bin a = tip a j join (Bin a) (Bin a)

data Rose a = fork a (List(Rose a))

Each of these types can be viewed as a structured repository of information, the type of

information being speci�ed by the parameter a in the de�nition. Each of these types has

its own map combinator. \Mapping" a function over an instance of one of these datatypes

means applying the function to all the values stored in the structure without changing the

structure itself. The typings of the individual map combinators are thus as follows.

map

List

::

(a! b)! (List a!List b)

map

Maybe

::

(a! b)! (Maybe a!Maybe b)

map

Bin

::

(a! b)! (Bin a!Bin b)

map

Rose

::

(a! b)! (Rose a!Rose b)

A datatype that has more than one type parameter also has a map combinator, but with

more arguments. For instance, de�ning the type of trees with leaves of type a and interior

nodes of type b by

data Tree a b = leaf a j node (Tree a b) b (Tree a b)

the corresponding map combinator has type

map

Tree

::

(a!c) ! (b!d)! (Tree a b!Tree c d)

Given a tree of type Tree a b, the combinator applies a function of type a!c to all the

leaves of the tree, and a function of type b!d to all the nodes, thus creating a tree of type

Tree c d.



In general, the map combinator for an n-ary datatype maps n functions over the values

stored in the datatype. (This also holds for the case that n is zero. Datatypes having no

type parameter also have a map combinator, but with no functional arguments! The map

in this case is the identity function on the elements of the datatype.)

Functors De�ned The idea that parameterised datatypes are structured repositories of

information over which arbitrary functions can be mapped is captured by the concept of a

functor. We �rst explain the concept informally for unary functors. Consider the world of

typed functions. Functors are the structure-respecting functions for that world. So what is

the structure involved? First, that world can be viewed as a directed graph, in which the

nodes are types and the arcs are functions. So, as for graphs, we require that a functor is

a pair of mappings, one acting on types and one acting on functions, and if we overload

the identi�er F to denote both functions, they satisfy the typing rule:

f

::

a ! b

Ff

::

Fa ! Fb

Further, functions can be composed with the operation \

�

", which is associative and has

neutral element the identity function, id, so this world forms a monoid algebra. Functors

also respect the monoid structure:

F (f

�

g) = (F f)

�

(F g)

F id

a

= id

Fa

The �rst of these laws says that there is no di�erence between mapping the composition of

two functions over an F structure in one go and mapping the functions over the structure

one by one. The second law says that mapping the identity function over an F structure

of a's has no e�ect on the structure.

To be completely precise, the world of functions is not quite a monoid, since the algebra

is partial: the meaning of f

�

g is only de�ned when this composition is well-typed, that is,

when the source type of f is the target type of g. The �rst equality above should therefore

only be applied to cases for which f

�

g is de�ned, and from now on we assume this as a tacit

condition on such equations. It follows from the typing rule that then also the composition

(F f)

�

(F g) is well-typed, so that is not needed as a condition.

Now, in general, an n-ary functor F is a pair of mappings that maps an n-tuple of types

a

0

; : : : ; a

n�1

to a type F a

0

� � � a

n�1

and an n-tuple of functions f

0

; : : : ; f

n�1

to a function

F f

0

� � � f

n�1

in such a way that typing, composition and identity are respected:

f

i

::

a

i

! b

i

for i = 0; : : : ; n� 1

Ff

0

� � � f

n�1

::

Fa

0

� � �a

n�1

! Fb

0

� � � b

n�1

F (f

0

�

g

0

) � � � (f

n�1

�

g

n�1

) = (F f

0

� � � f

n�1

)

�

(F g

0

� � � g

n�1

)

F id � � � id = id



Examples Revisited As anticipated in the introduction to this section, the pairs of mappings

F (on types) and map

F

(on functions) for F = List;Maybe, etcetera, are all unary functors

since they satisfy the typing rule

f

::

a ! b

map

F

f

::

Fa ! Fb

and the functional equalities

map

F

(f

�

g) = (map

F

f)

�

(map

F

g)

map

F

id = id :

An example of a binary functor is the pair of mappings Tree and map

Tree

since the pair

satis�es the typing rule

f

::

a ! c

g

::

b ! d

map

Tree

f g

::

Tree a b ! Tree c d

and the functional equalities

map

Tree

(f

�

g) (h

�

k) = (map

Tree

f h)

�

(map

Tree

g k)

map

Tree

id id = id :

Notational convention Conventionally, the same notation is used for the type mapping and

the function mapping of a functor, and we follow that convention here. Moreover, when

applicable, we use the name of the type mapping. So, from here on, for function f , we

write List f rather than map

List

f .

Exercise 2.5 Consider the following datatype declarations. Each de�nes a mapping

from types to types. For example, Error maps the type a to the type Error a. Extend the

de�nition of each so that it becomes a functor.

data Error a = error String j ok a

data Drawing a = above (Drawing a) (Drawing a)

j beside (Drawing a) (Drawing a)

j atom a

2

2.3 Polynomial Functors

Now that we have de�ned the notion of a functor and have seen some non-trivial examples

it is time to consider more basic examples. Vital to the usefulness of the notion is that

non-trivial functors can be constructed by composing more basic functors. In this section

we consider the polynomial functors. As the name suggests, these are the functors that



can be obtained by \addition" and \multiplication" possibly combined with the use of a

number of \constants".

The technical terms for addition and multiplication are \disjoint sum" and \cartesian prod-

uct". The use of disjoint sum enables one to capture in a single functor the fact that an

algebra has a set of operations. The use of cartesian product enables one to express the fact

that an operator in an algebra has an arity greater than one. We also introduce constant

functors and the identity functor; these are used to express the designated constants (func-

tions of arity zero) and unary functions in an algebra, respectively. For technical reasons,

we also introduce a couple of auxiliary functors in order to complete the class of polynomial

functors. We begin with the simpler cases.

The identity functor The simplest example of a functor is the identity functor which is

the trivial combination of two identity functions, the function that maps every type to

itself and the function that maps every function to itself. Although trivial, this example is

important and shouldn't be forgotten. We denote the identity functor by Id.

Constant functors For the constant mapping that maps any n-tuple of arguments to the

same result x we use the notation x

K

. As is easily veri�ed, the pair of mappings a

K

and

id

a

K

, where a is some type, is also a functor. It is n-ary for all n.

Following the naming convention introduced above, we write a

K

to denote both the

mapping on types and the mapping on functions. That is, we write a

K

where strictly we

should write id

a

K

. So, for functions f

0

: : : f

n�1

, a

K

f

0

: : : f

n�1

= id

a

.

A constant functor that we will use frequently is the constant functor associated with

the unit type, 1. The unit type is the type that is denoted () in Haskell. It is a type having

exactly one element (which element is also denoted () in Haskell). This functor will be

denoted by 1 rather than 1

K

.

Extraction Each extraction combinator

Ex

n

i

z

0

� � � z

n�1

= z

i

; for i = 0; : : : ; n� 1

is an n-ary functor. The extractions that we have particular use for are the identity functor

Id, which is the same as Ex

1

0

, and the binary functors Ex

2

0

and Ex

2

1

, for which we use

the more convenient notations Par and Rec. (The reason for this choice of identi�ers will

become evident in chapter 3. When de�ning recursive datatypes like List , we identify a

binary \pattern functor". The �rst parameter of the pattern functor is the parameter of

the recursive datatype |and is thus called the Par parameter| and the second parameter

is used as the argument for recursion |and is thus called the Rec parameter.)

The sum functor The binary sum functor + gives the \disjoint union" of two types. We

write it as an in�x operator. It is de�ned by:

data a+ b = inl a j inr b



f + g = h where

h(inl u) = inl(f u)

h(inr v) = inr(g v)

f

5

g = h where

h(inl u) = f u

h(inr v) = g v

The datatype de�nition introduces both the type a+b, called the disjoint sum of a and b,

and the two constructor functions inl

::

a! a+ b and inr

::

b! a+ b. The name \disjoint

sum" is used because a+b is like the set union of a and b except that each element of the

sets a and b is, in e�ect, tagged with either the label inl, to indicate that it originated in set

a, or inr, to indicate that it originated in set b. In this way a+a is di�erent from a since it

e�ectively contains two copies of every element in a, one with label inl and one with label

inr. In particular 1+1 has two elements. The constructors inl and inr are called injections

and are said to inject elements of a and b into the respective components of a+b.

In order to extend the sum mapping on types to a functor we have to de�ne the sum of

two functions. This is done in the de�nition of f+g above. Its de�nition is obtained by

type considerations | if + is to be a functor, we require that if f

::

a!b and g

::

c!d

then f+g

::

a+c! b+d. It is easily checked that the above de�nition of f+g meets this

requirement; indeed, there is no other way to do so.

In addition to de�ning f+g we have de�ned another way of combining f and g, namely

f

5

g, which we pronounce f \junc" g. (\Junc" is short for \junction".) As we'll see shortly,

f

5

g is more basic than f+g. The meaning of f

5

g is only de�ned when f and g have the

same target type; its source type is a disjoint sum of two types. Operationally, it inspects

the label on its argument to see whether the argument originates from the left or right

component of the disjoint sum. Depending on which component it is, either the function

f or the function g is applied to the argument after �rst stripping o� the label. In other

words, f

5

g acts like a case statement, applying f or g depending on which component of

the disjoint sum the argument comes from.

The typing rule for

5

is a good way of memorising its functionality:

f

::

a !c

g

::

b!c

f

5

g

::

a+b!c

(Haskell's prelude contains a de�nition of disjoint sum:

data Either a b = Left a j Right b

with either playing the role of

5

.)

Now that we have de�ned + on types and on functions in such a way as to ful�ll the

typing requirements on a (binary) functor it remains to verify that it respects identities



and composition. We do this now. In doing so, we establish a number of calculational

properties that will prove to be very useful for other purposes.

Note �rst that the de�nitions of + (on functions) and of

5

can be rewritten in point-free

style as the following characterisations:

h = f+g � h

�

inl = inl

�

f ^ h

�

inr = inr

�

g

h = f

5

g � h

�

inl = f ^ h

�

inr = g

This style is convenient for reasoning. For example, we can prove the identity rule:

inl

5

inr = id

by calculating as follows:

id = �

5

�

� f characterisation of

5

g

id

�

inl = � ^ id

�

inr = �

� f id is the identity of composition g

inl = � ^ inr = � :

This last calculation is a simple illustration of the way we often derive programs. In this

case the goal is to express id in terms of

5

. We therefore introduce the unknowns � and �,

and calculate expressions for � and � that satisfy the goal.

If we substitute f + g or f

5

g for h in the corresponding characterisation, the left-hand

sides of the equivalences become trivially true. The right-hand sides are then also true,

giving the computation rules:

(f+g)

�

inl = inl

�

f (f+g)

�

inr = inr

�

g

(f

5

g)

�

inl = f (f

5

g)

�

inr = g

The validity of the so-called

5

-fusion rule:

h

�

(f

5

g) = (h

�

f)

5

(h

�

g)

is shown by the following calculation

5

:

h

�

f

5

g = �

5

�

� f characterisation of

5

g

h

�

f

5

g

�

inl = � ^ h

�

f

5

g

�

inr = �

� f computation rules for

5

g

h

�

f = � ^ h

�

g = � :

5

We adopt the convention that composition has lower precedence than all other operators. Thus h

�

f

5

g should

be read as h

�

(f

5

g). In the statement of the basic rules, however, we always parenthesise fully.



Note once again the style of calculation in which the right side of the law is constructed

rather than veri�ed.

It is also possible to express + in terms of

5

, namely by:

f + g = (inl

�

f)

5

(inr

�

g)

We derive the rhs of this rule as follows:

f+g = �

5

�

� f characterisation of

5

g

f+g

�

inl = � ^ f+g

�

inr = �

� f computation rules for + g

inl

�

f = � ^ inr

�

g = � :

Another fusion rule is the

5

-+ fusion rule:

(f + g)

�

(h

5

k) = (f

�

h)

5

(g

�

k)

We leave its derivation as an exercise.

These rules are useful by themselves, but they were proved to lead to the result that +

respects function composition:

(f + g)

�

(h+ k) = (f

�

h) + (g

�

k)

The proof is simple:

f+g

�

h+k

= f de�nition of + g

(inl

�

f)

5

(inr

�

g)

�

h+k

= f

5

-+ fusion g

(inl

�

f

�

h)

5

(inr

�

g

�

k)

= f de�nition of + g

(f

�

h) + (g

�

k) :

The proof that + also respects id, that is,

id+ id = id

is also left as an exercise.

An important property that we shall use is that the mapping

5

is injective, that is:

f

5

g = h

5

k � f = h ^ g = k :

Just two simple steps are needed for the proof. Note, in particular, that there is no need

for separate \if" and \only if" arguments.



f

5

g = h

5

k

� f characterisation g

f

5

g

�

inl = h ^ f

5

g

�

inr = k

� f computation rules g

f = h ^ g = k :

Further, the mapping is surjective (within the typing constraints): if h

::

a + b! c, then

there exist functions f

::

a! c and g

::

b! c such that h = f

5

g. In fact, they can be given

explicitly by f = h

�

inl and g = h

�

inr.

The product functor While sums give a choice between values of two types, products

combine two values. In Haskell the product type former and the pair constructor are

syntactically equal. However, we want to distinguish between the type former � and the

value constructor ( ; ). The binary product functor � is given by:

data a� b = (a; b)

exl(u; v) = u

exr(u; v) = v

f � g = h where

h(u; v) = (f u; g v)

f

4

g = h where

h u = (f u; g u)

The functions exl

::

a� b! a and exr

::

a� b! b are called projections and are said to

project a pair onto its components.

Just as for disjoint sum, we have de�ned f�g in such a way that it meet the type require-

ments on a functor. Speci�cally, if f

::

a!b and g

::

c!d then f�g

::

a�c! b�d, as is

easily checked. Also, we have de�ned a second combination of f and g, namely f

4

g, which

we pronounce f \split" g.

The operational meaning of f�g is easy to see. Given a pair of values, it produces a pair

by applying f to the �rst component and g to the second component. The operational

meaning of f

4

g is that it constructs a pair of values from a single value by applying both

f and g to the given value. (In particular, id

4

id constructs a pair by \splitting" a given

value into two copies of itself.)

A curious fact is the following. All the rules for sums are also valid for products under the

following systematic replacements: replace + by �,

5

by

4

, inl and inr by exl and exr, and

switch the components f and g of each composition f

�

g. (In category theory this is called

dualisation.) This gives us the characterisations:

h = f�g � exl

�

h = f

�

exl ^ exr

�

h = g

�

exr

h = f

4

g � exl

�

h = f ^ exr

�

h = g



the identity rule:

exl

4

exr = id

the computation rules:

exl

�

(f�g) = f

�

exl exr

�

(f�g) = g

�

exr

exl

�

(f

4

g) = f exr

�

(f

4

g) = g

the

4

-fusion rule:

(f

4

g)

�

h = (f

�

h)

4

(g

�

h)

� expressed in terms of

4

:

f � g = (f

�

exl)

4

(g

�

exr)

the �-

4

-fusion rule:

(f � g)

�

(h

4

k) = (f

�

h)

4

(g

�

k)

and �nally the fact that � is a binary functor:

(f � g)

�

(h� k) = (f

�

h)� (g

�

k)

id� id = id

Functional Composition of Functors It is easily veri�ed that the composition of two unary

functors F and G is also a functor. By their composition we mean the pair of mappings,

the �rst of which maps type a to F (Ga) and the second maps function f to F (Gf). We

use juxtaposition |thus FG| to denote the composition of unary functors F and G. For

example, Maybe Rose denotes the composition of the functors Maybe and Rose. The order

of composition is important, of course. The functor Maybe Rose is quite di�erent from the

functor Rose Maybe .

It is also possible to compose functors of di�erent arities. For instance we may want to com-

pose a binary functor like disjoint sum with a unary functor like List . A simple notational

device to help de�ne such a functor is to overload the meaning of the symbol \+" and write

List+List , whereby we mean the functor that maps x to (List x) + (List x). Similarly we

can compose disjoint sum with two unary functors F and G: we use the notation F+G

and mean the functor that maps x to (F x) + (G x).

Two ways of reducing the arity of a functor are specialisation and duplication. An example

of specialisation is when we turn the binary disjoint sum functor into a unary functor by

specialising its �rst argument to the unit type. We write 1+Id and mean the functor that

maps type a to the type 1+a, and function f to the function id

1

+f . Duplication means



that we duplicate the argument as many times as necessary. For example, the mapping

x 7! x+x is a unary functor.

Both duplication and specialisation are forms of functional composition of functors. To

formulate them precisely we need to extend the notion of functor so that the arity of the

target of a functor may be more than one. (Up till now we have always said that a functor

maps an n-tuple of types/functions to a single type/function.) Then a tuple of functors

is also a functor, and, for each n, there is a duplication functor of arity n: In this way

duplication and specialisation can be expressed as the composition of a functor with a

tuple of functors. (In the case of specialisation, one of the functors is a constant functor.)

For our current purposes, a complete formalisation is an unnecessary complication and the

ad hoc notation introduced above will su�ce. Formalisations can be found in [18, 19, 37,

22].

Polynomial functors A functor built only from constants, extractions, sums, products and

composition is called a polynomial functor.

An example of a polynomial functor is Maybe introduced in section 2.2. Recalling its

de�nition:

data Maybe a = none j one a

we see that, expressed in the notation introduced above, Maybe = 1+Id

The remaining examples introduced in section 2.2 are not polynomial because they are

de�ned recursively. We need one more mechanism for constructing functors. That is the

topic of the next section.

Exercise 2.6 (

5

-

4

abide) Prove that, for all f , g, h and k,

(f

5

g)

4

(h

5

k) = (f

4

h)

5

(g

4

k) :

2

Exercise 2.7 (Abide laws) The law proved in exercise 2.6 is called the

5

-

4

abide

law because of the following two-dimensional way of writing the law in which the two

operators are written either above or beside each other. (The two-dimensional way of

writing is originally due to C.A.R.Hoare, the catchy name is due to Richard Bird.)

f

5

g f g

4

=

4 5 4

h

5

k h k

What other operators abide with each other in this way? (You have already seen examples

in this text, but there are also other examples from simple arithmetic.)

2



Exercise 2.8 Consider the mapping Square that takes a type a to a � a and a function

f to f � f . Check that Square is a functor.

Exercise 2.9 In checking that something is a functor, we must check that it respects

composition and identity. The last part may not be omitted, as is shown by the existence

of \almost-functors". Call F an almost-functor when F is a pair of mappings on types and

functions (just like true functors) that respects typing and composition, but fails to respect

identity: F id 6= id. Can you �nd a simple example of such an almost-functor? (Hint: Look

at constant mappings.)

Exercise 2.10 If inl

::

a! a + b and inr

::

b! a+ b, what is the typing of id in the identity

rule inl

5

inr = id?

Exercise 2.11 Complete the veri�cation that + is a functor by proving the

5

-+ fusion

rule and the identity rule (id+ id = id). In the calculation you may use all the other rules

stated before these two rules.

2

2.4 Datatypes Generically

By now the notion of a functor should be becoming familiar to you. Also, it should be clear

how to extend the de�nition of non-inductive datatypes not involving function spaces to a

polynomial functor. In this section we take the step to inductively de�ned datatypes.

The basic idea is that an inductively de�ned datatype is a �xed point of a functor, which

functor we call the pattern functor of the datatype. For the simplest examples (such as the

natural numbers) the pattern functor is polynomial but for more complicated examples

(like the Rose datatype) it is not. We therefore need to extend the class of functors we

can de�ne beyond the polynomial functors to the so-called regular functors by adding the

type functors. The basic technical device to achieve this is the catamorphism, which is a

generalisation of the fold function on lists.

We begin by discussing pattern functors following which we can, at long last, de�ne the

notion of an F -algebra. Catamorphisms form the next |substantial| topic, following

which we introduce type functors and the class of regular functors.

Pattern functors and recursion We �rst look at a simple inductively ( = recursively) de�ned

datatype, that of the Peano naturals, which we also saw in section 2.1:

data Nat = zero j succ Nat

There is only one number zero, which we can make explicit by:

data Nat = zero 1 j succ Nat

Instead of fancy constructor function names like succ and zero we now employ boring

standard ones:



data Nat = inl 1 j inr Nat

The choice here is that a�orded by sum, so we replace this by

data Nat = in(1 + Nat)

in which there is one explicit constructor function left, called \in".

Now note that Nat occurs both on the left and the right of the datatype de�nition (which

is why it is called an inductively de�ned or recursive datatype). In order to view this as a

�xed point de�nition, let us abstract from Nat on the right side replacing it by the variable

z. In this way we are led to consider the unary functor N de�ned by

N z = 1+ z

(Note that, although we have only de�ned N explicitly on types, we understand its ex-

tension to a functor. Using the notations introduced earlier, this functor is expressed as

N = 1

K

+ Id.) The functor N captures the pattern of the inductive formation of the Peano

naturals. The point is that we can use this to rewrite the de�nition of Nat to

data Nat = in(N Nat)

Apparently, the pattern functor N uniquely determines the datatype Nat . Whenever F is

a unary polynomial functor, as is the case here, a de�nition of the form data Z = in(F Z)

uniquely determines Z.

We need a notation to denote the datatype Z that is obtained, and write Z = �F . So

Nat = �N . Replacing Z by �F in the datatype de�nition, and adding a subscript to the

single constructor function in in order to disambiguate it, we obtain:

data �F = in

F

(F �F )

Now in

F

is a generic function, with typing

in

F

::

F �F !�F

We can \reconstruct" the original functions zero and succ by de�ning:

zero = in

N

�

inl

::

1 !Nat

succ = in

N

�

inr

::

Nat!Nat

Conversely, in

N

::

N Nat!Nat is then of course

in

N

= zero

5

succ

Playing the same game on the de�nition of List gives us:

data List a = in(1 + (a� List a))

Replacing the datatype being de�ned, List a, systematically by z, we obtain the \equation"

data z = in(1 + (a� z))



Thus, we see that the pattern functor here is (z 7! 1 + (a � z)). It has a parameter a,

which we make explicit by putting

L a = (z 7! 1 + (a� z))

Now List a = �(L a), or, abstracting from a:

List = (a 7! �(L a))

Exercise 2.12 What is the pattern functor for Bin? Is it polynomial? What is the pattern

functor for Rose? Is it polynomial?

2

F -algebras Before we traded in the names of the constructor functions for the uniform `in',

we saw that the algebra naturally corresponding to the datatype Nat , together with the

generic algebra of its class, were:

(Nat ; zero; succ); with zero

::

1!Nat ; succ

::

Nat!Nat

( A ; e ; f ); with e

::

1! A ; f

::

A ! A

Using `in', this should be replaced by:

(Nat ; in

N

); with in

N

::

1+Nat!Nat

( A ; ' ); with '

::

1+ A ! A

in which the relation between ' and the pair (e; f) is, of course,

' = e

5

f

e = '

�

inl

f = '

�

inr

Using the pattern functor N , we can also write:

(Nat ; in

N

); with in

N

::

N Nat!Nat

( A ; ' ); with '

::

N A ! A

In general, for a functor F , an algebra (A;') with '

::

FA!A is called an F -algebra and

A is called the carrier of the algebra. So Nat is the carrier of an N -algebra, and likewise

List a is the carrier of an (La)-algebra.

Catamorphisms In the class of F -algebras, a homomorphism h

::

(A;')! (B; ) is a func-

tion h

::

A!B that satis�es:

h

�

' =  

�

Fh

This can be expressed in a diagram:

FA

'

! A

i

^

. .

. .

. .

. .

. .

FB

Fh

#

 

! B

#

h



The smiley face signi�es that the diagram commutes: the two paths from FA to B are

equivalent.

A speci�c example of such a diagram is given by the homomorphism even from the natural

numbers to the booleans:

1+Nat

zero

5

succ

! Nat

i

^

. .

. .

. .

. .

. .

1+Bool

1+even

#

true

5

not

! Bool

#

even

which expresses the equation

even

�

(zero

5

succ) = (true

5

not)

�

(1+even) :

Rather than use such a diagram, the standard way of de�ning a function on an inductive

datatype is by \pattern matching" on the argument, giving a clause for each constructor

function. For the naturals, the typical de�nition has this form:

data Nat = zero j succ Nat

h zero = e

h (succ n) = f (h n)

For example, the function even is de�ned by the equations:

even zero = true

even (succ n) = not (even n)

(Exercise 2.13 asks you to show that these two equations are equivalent to the commuting

diagram above.) For lists, the typical pattern-matching has the form:

data List a = nil j cons a (List a)

h nil = e

h (cons x xs) = x � h xs

In these de�nitions, the function being de�ned, h, is \pushed down" recursively to the

components to which the constructor functions are applied. The e�ect is to replace the

constructor functions by the corresponding arguments in the de�nition of h | in the case

of the natural numbers, zero is replaced by e and succ is replaced by f , and in the case of

lists nil is replaced by e and cons is replaced by �.

For the naturals, the function h de�ned above is determined uniquely by e and f . Likewise,

for lists, h is uniquely determined by e and �, and there is a standard notation for the

function thus de�ned, namely foldr � e. Generalizing this, we get the following:



data �F = in

F

(F �F )

h (in

F

x) = ' ((F h) x )

in which simple typing considerations show that ' has to have a typing of the form FA!A,

and then h has the typing �F !A; in other words, ' is the operation of some F -algebra

whose carrier is the target type of h. The function h thus de�ned is uniquely determined

by '. We call such functions catamorphisms and use the following notation: h = ([']). So

([ ]) is de�ned by:

([']) = h where

h (in

F

x) = ' ((F h) x )

In words, when catamorphism ([']) is applied to a structure of type �F , this means it is

applied recursively to the components of the structure, and the results are combined by

applying its \body" '. Specialised to lists, the ([ ])-combinator becomes foldr restricted

to �nite lists. The importance of having generic catamorphisms is that they embody a

closed expression for a familiar inductive de�nition technique and thereby allow the generic

expression of important programming rules.

Exercise 2.13 Show that the single equation

even

�

zero

5

succ = true

5

not

�

1+even

is equivalent to the two equations

even zero = true

even (succ n) = not (even n) :

2

Initial Algebras Catamorphisms enjoy a number of attractive calculational properties which

we now discuss.

We start with giving the typing rule for ([ ]):

'

::

Fa! a

(['])

::

�F ! a

Taking the de�nition

h (in

F

x) = ' ((F h) x )

we can rewrite this equivalently as:

(h

�

in

F

) x = ('

�

F h) x

or, abstracting from x :

h

�

in

F

= '

�

F h



This functional equation in h has a unique solution, so we conclude that ([']) is characterised

by

h = ([']) � h

�

in

F

= '

�

Fh

The right-hand side of this equivalence states that h is a homomorphism, and if A is the

carrier of ', we can also express this characterisation as:

h = ([']) � h

::

(�F; in

F

)! (A;')

In words, every F -algebra is the target algebra of a unique homomorphism with (�F; in

F

) as

its source algebra, and the catamorphisms consist of these unique homomorphisms. Source

algebras that have the property that there is a unique homomorphism to any target algebra

are known as initial algebras. So (�F; in

F

) is an initial algebra. It is easy to prove that all

initial algebras in a given algebra class are isomorphic.

The following diagram expresses the fact that (['])

::

(�F; in)! (A;') (but not the unique-

ness):

F �F

in

! �F

i

^

. .

. .

. .

. .

. .

FA

F (['])

#

'

! A

#

(['])

In formula form we get the computation rule for catamorphisms:

(['])

�

in = '

�

F (['])

The function in is itself an F -algebra, so ([in]) is de�ned. What is it? By substituting

(A;') := (�F; in) in the last equivalence above, we obtain:

h = ([in]) � h

::

(�F; in)! (�F; in)

But we know that id

::

(�F; in)! (�F; in) ! The conclusion is the identity rule for catamor-

phisms:

([in]) = id

�F

This generalises the equality for lists: foldr cons nil = id.



Further properties of catamorphisms The identity rule is easy to remember if one thinks of

a catamorphism as a function that replaces the constructor functions of the datatype by

the supplied arguments. Thus foldr cons nil is the identity function on lists because cons is

replaced by cons and nil is replaced by nil. In general, ([in]) replaces all occurrences of in by

itself in an element of the datatype �F .

The identity rule is surprisingly important. As an illustration of its importance, we prove

that in is a bijection between �F and F�F . That is, we use the rule to construct a function

out of type �F ! F�F such that in

�

out = id

�F

and out

�

in = id

F�F

. Our calculation starts

with the �rst requirement and derives a candidate for out in a systematic way:

in

�

out = id

�F

� f identity rule g

in

�

out = ([in])

� f catamorphism characterisation g

in

�

out

�

in = in

�

F (in

�

out)

( f cancel in

�

from both sides g

out

�

in = F (in

�

out)

� f F respects composition g

out

�

in = F in

�

Fout

� f catamorphism characterisation g

out = ([F in]) :

This completes the �rst step in the calculation: we have derived the candidate ([F in]) for

out.

Note that the identity rule is not used to simplify ([in]) to id

�F

in this calculation; rather,

it is used in quite the opposite way to complicate id

�F

to ([in]). There is a tendency to view

algebraic properties as left-to-right rewrite rules, where the left side is the complicated

side and the right side is its simpli�ed form. Calculations that use the rules in this way

are straightforward and do not require insight. On the other hand, calculations (such as

the one above) which include at least one complication step are relatively di�cult and

do require insight. The importance of the identity rule for catamorphisms is its use in

introducing a catamorphism into a calculation (see also the MAG system [38], in which

identity catamorphisms are introduced in calculations in order to be able to apply fusion).

It can require ingenuity to use because it involves replacing an identity function which is

not visible. That is, a step in a calculation may involve replacing some composition f

�

g by

f

�

([in])

�

g, the invisible intermediate step being to replace f

�

g by f

�

id

�F

�

g. This is valid if f

has source �F (equivalently, g has target �F ) so it is important to be aware of the types

of the quantities involved.

To complete the calculation we have to check that the candidate ([F in]) we have derived for

out satis�es the second requirement on out. That is, we have to verify that ([F in])

�

in = id

F�F

.



This is an exercise in the use of the computation rule which we leave to the reader (specif-

ically, exercise 2.14).

As another illustration of the use of the properties of catamorphisms we derive a condition

under which it is possible to fuse a post-composed function with a catamorphism. The goal

of the calculation is to eliminate the catamorphism brackets from the equation.

h

�

([']) = ([ ])

� f characterisation of ([ ]) g

h

�

(['])

�

in =  

�

F (h

�

([']))

� f computation rule for ([']) g

h

�

'

�

F ([']) =  

�

F (h

�

([']))

� f F respects composition g

h

�

'

�

F ([']) =  

�

Fh

�

F (['])

( f cancel

�

F ([']) from both sides g

h

�

' =  

�

Fh :

So we have derived the ([ ])-fusion rule:

h

�

([']) = ([ ]) ( h

�

' =  

�

Fh

Note that the condition states that h is a homomorphism. So the rule states that composing

a homomorphism after a catamorphism is a catamorphism.

The way this rule is typically used is that we want to fuse a given function h into a given

catamorphism ([']), for example to improve e�ciency. In order to do so, we try to solve the

equation h

�

' =  

�

Fh for the unknown  . If we �nd a solution, we know that the answer

is ([ ]).

An example We show this in action on a simple example: sum

�

concat on lists of lists of

numbers. Recall that the pattern functor of List Nat is

L Nat = (z 7! 1 + (Nat � z)) :

By de�nition, concat = ([nil

5

(++)]), so we try to fuse sum and concat into a catamorphism.

Applying the fusion rule we have:

sum

�

concat = ([ ])

( f concat = ([nil

5

(++)]), fusion g

sum

�

nil

5

(++) =  

�

(L Nat) sum :

Now, the pattern functor (L Nat) is a disjoint sum of two functors. Also, the composition

on the left side can be fused together:

sum

�

nil

5

(++)

= f

5

fusion g

(sum

�

nil)

5

(sum

�

(++)) :



This suggests that we should try instantiating  to �

5

� for some � and �. In this way, we

get:

sum

�

concat = ([ ])

( f two steps above, de�nition of (L Nat) g

(sum

�

nil)

5

(sum

�

(++)) =  

�

(id + (id � sum))

� f postulate  = �

5

�, fusion g

(sum

�

nil)

5

(sum

�

(++)) = (�

�

id)

5

(�

�

id�sum)

� f

5

is injective, simpli�cation g

sum

�

nil = � ^ sum

�

(++) = �

�

id�sum :

We now continue with each conjunct in turn. The �rst conjunct is easy: sum

�

nil = zero.

For the second conjunct, we have:

sum

�

(++)

= f property of summation g

(+)

�

sum�sum

= f � is a binary functor g

(+)

�

sum�id

�

id�sum :

And thus we have found that � = (+)

�

sum�id satis�es sum

�

(++) = �

�

id�sum.

Combining everything, we have found that

sum

�

concat = ([zero

5

((+)

�

sum�id)])

or, expressed in a more familiar style:

sum

�

concat = foldr � 0 where

xs � y = sum xs + y

This derivation was not generic but speci�c for lists of lists. Meertens [37] shows how to do

this generically, and also that the generic solution is no more complicated to obtain than

this speci�c one, whilst being much more general.

Exercise 2.14 We calculated above that out = ([F in]) satis�es in

�

out = id

�F

. Verify

that out

�

in = id

F�F

.

2

Exercise 2.15 Suppose that (A;') is an initial F -algebra. Prove that (A;') is isomorphic

to (�F; in

F

). Hint. Consider the unique homomorphism h

::

(A;')! (�F; in

F

).

Exercise 2.16 Consider the datatype Bin a for some arbitrary type a. The pattern

functor for this type is F where Ff = id

a

+ (f�f). Catamorphisms over this type take

the form ([f

5

�]) where f is a function and � is a binary operator.



De�ne a catamorphism that counts the number of tips in a Bin. De�ne, in addition, a

catamorphism that counts the number of joins in a Bin. Use the fusion rule for catamor-

phisms to determine a relation between the number of tips and the number of joins in a

Bin. That is, derive the de�nition of a function f such that

f

�

NoOfTips = NoOfJoins :

2

Banana split In this subsection we demonstrate the beauty of generic programming.

We solve the following problem. Given are two catamorphisms ([f ])

::

�F ! a and

([g])

::

�F ! b, and we need to have a function that returns the combined result of both.

One solution is the program ([f ])

4

([g]), but this can be ine�cient since, computationally,

the source data value is traversed twice, once for each of the two catamorphisms. So the

question we want to solve is: can we combine these two into a single catamorphism ([�])?

This generic problem is motivated by our knowledge of speci�c cases. Take, for example,

the problem of �nding both the sum and the product of a list of numbers. The sum can

of course be expressed as a catamorphism |it is the catamorphism ([0

5

add]), where add is

ordinary addition of real numbers| . Similarly the product function is a catamorphism,

namely ([1

5

mul]), where mul is the ordinary multiplication of real numbers. Equally obvious

is that it should be possible to combine the sum and product of a list of numbers into one

catamorphism. After all, the function sp = sum

4

product is straightforward to express as a

fold in Haskell:

sp = foldr � e where

x� (u; v) = (x + u; x� v)

e = (0; 1)

We can try to derive this special case in our calculus but more e�ective is to derive the

solution to the generic problem. The bene�t is not only that we then have a very general

result that can be instantiated in lots of ways (one of which is the sum

4

product problem),

but also that the derivation is much simpler because it omits irrelevant detail.

We begin the calculation of � as follows:

([f ])

4

([g]) = ([�])

� f There is a choice here. We can either use the

characterisation of ([�]) or the characterisation of f

4

g.

For no good reason, we choose the latter. g

([f ]) = exl

�

([�]) ^ ([g]) = exr

�

([�]) :

This �rst step involves a di�cult choice. At this point in time there is no reason why the

use of one characterisation is preferable to the other (since both are equivalences). In fact,

choosing to use the characterisation of ([�]) �rst does lead to a successful calculation of �

of a similar length. We leave it as an exercise.



We now have to satisfy two conjuncts. Since the two conjuncts are symmetrical we proceed

with just the �rst.

([f ]) = exl

�

([�])

( f Fusion g

f

�

F exl = exl

�

�

� f � � := �

4

� : g

f

�

F exl = exl

�

�

4

�

� f

4

computation g

f

�

F exl = � :

The crucial step here (indicated by the bullet) is where we postulate the form of the

solution, the motivation being the step that immediately follows.

In summary we have calculated that

([f ]) = exl

�

([�]) ( � = �

4

� ^ � = f

�

F exl :

Similarly,

([g]) = exr

�

([�]) ( � = �

4

� ^ � = g

�

F exr :

Putting everything together, we conclude that

([f ])

4

([g]) = ([(f

�

F exl)

4

(g

�

F exr)]) :

This is a�ectionately called the banana-split theorem (because the brackets denoting a

catamorphism look like bananas, and the

4

operator is pronounced \split").

Exercise 2.17 Calculate � but start by using the characterisation of ([f ]). In other

words, calculate � as a solution of the equation

([f ])

4

([g])

�

in = �

�

F (([f ])

4

([g])) :

(You may �nd that you get a solution that is equivalent to the one above but not syntac-

tically identical.)

2

Type functors In general, a binary functor gives rise to a new functor by a combination

of parameterisation and constructing an initial algebra. For example, the binary pattern

functor L that maps x and y to 1+(x�y) gives rise to the functor List . Such functors are

called type functors. Here we show how this is done.

For greater clarity we will use an in�x notation for binary functors. Suppose that � is a

binary functor, which we write as an in�x operator. That is, for types a and b, a�b is a

type and, for functions f

::

a!b and g

::

c!d, f�g is a function of type a�c! b�d.

Suppose a is an arbitrary type. Then the pair of mappings b 7! a�b and f 7! id

a

�f



is a functor (the functor formed by specialising the �rst operand of � to the type a). We

denote this functor by (a�) and call it a parameterised functor.

Now, since (a�) is a unary functor, we can consider an initial (a�)-algebra with carrier

�(a�). Abstracting from a we have constructed a mapping from types to types. Let us

introduce a special notation for this mapping:

�(�) = (a 7! �(a�))

So List = �(L), with L the binary functor de�ned above.

For �(�) to be a functor, we need, in addition to the action on types, an action on functions,

which has to satisfy, for a function f

::

a! b,

�(�) f

::

�(�) a! �(�) b :

We derive a candidate for �(�) f from type considerations. In the calculation, catamor-

phisms are (a�) catamorphisms and in

b�

is an initial (b�)-algebra.

�(�) f

::

�(�) a! �(�) b

� f de�nition of �(�) on types g

�(�) f

::

�(a�)! �(b�)

( f � �(�) f := ([']) ; typing rule for ([ ]) g

'

::

a � �(b�) ! �(b�)

( f � ' := in

b�

�

 ; type of in g

 

::

a � �(b�) ! b � �(b�)

( f f

::

a!b, id

�(b�)

::

�(b�)! �(b�),

� respects typing g

 = f � id

�(b�)

:

Performing the collected substitutions gives us this candidate de�nition

�(�) f = ([in

b�

�

(f � id

�(b�)

)])

Exercise 2.20 is to show that �(�) respects composition and identities. According to the

notational convention introduced earlier the action of �(�) on functions can also be written

map

�(�)

.

A �nal comment: The parameter a in a parameterised functor may actually be an n-tuple

if functor � is (n + 1)-ary, and then �(�) is an n-ary functor. However, we only consider

unary type functors, derived with �(�) from binary functors in these lectures.

Exercise 2.18 Consider the datatype Bool = �((1+1)

K

). De�ne false = in

Bool

�

inl, true =

in

Bool

�

inr. Examine and explain the meaning of the catamorphism ([u

5

v]) for Bool .



Exercise 2.19 (cata-map fusion) Derive a fusion rule of the form

([f ])

�

(�(�) g) = ([h]) :

Hint: instantiate the fusion rule for catamorphisms with F := (b�). Note also that �(�)g

is a catamorphism.

2

Exercise 2.20 Complete the veri�cation of the fact that �(�) is a functor by showing

that �(�) id

a

= id

�(�)a

and �(�) (f

�

g) = (�(�) f)

�

(�(�) g). (Hint: make use of exercise

2.19.)

2

Exercise 2.21 Specialise the de�nition of �(�) f for � = L, the bifunctor giving the type

functor List = �(L), using in = nil

5

cons, and verify that this is the familiar map function

for lists. Also, instantiate your solution to exercise 2.19 and use it to express the sum of

the squares of a list of numbers as a catamorphism. (That is, express the sum of a list of

numbers as a catamorphism, and the list of squares of a list on numbers as a map. Then

fuse the two functions together.)

Regular Functors and Datatypes We are now in a position to complete our discussion of

the datatypes introduced in section 2.2 by giving a complete analysis of the de�nition of

the Rose datatype. As we saw in exercise 2.12, its pattern functor is a�z = a�(List z),

or, in terms of the extraction functors Par and Rec, (�) = Par�(List Rec), which is not a

polynomial functor, because of the appearance of the type functor List . Yet �(�) is well

de�ned. Incorporating type functors into the ways of constructing functors extends the

class of polynomial functors to the class of regular functors.

A functor built only from constants, extractions, sums, products, composition and �() is

called a regular functor. All the datatypes we have seen, including List and Rose are regular

functors, and their constructor functions (combined together using the

5

combinator) are

initial algebras with respect to the pattern functors of the datatype.

This concludes the theory development. We have shown precisely what it means to say

that a datatype is both an algebra and a functor.

2.5 A Simple Polytypic Program

We began section 2.2 with four representative examples of datatypes: List , Maybe , Bin

and Rose: For each of these datatypes we can de�ne a summation function that sums all

the values stored in an instance of the datatype | assuming the values are numbers. Here

is how one would do that in a non-generic programming style.



sum

List

nil = 0

sum

List

(cons u us) = u + sum

List

us

sum

Maybe

none = 0

sum

Maybe

(one u) = u

sum

Bin

(tip u) = u

sum

Bin

(join x y) = sum

Bin

x + sum

Bin

y

sum

Rose

(fork u rs) = u + sum

List

(map

List

sum

Rose

rs)

We now want to replace all these de�nitions by a single generic de�nition sum

F

for arbitrary

unary functor F , which can be specialised to any of the above datatype constructors and

many more by taking F to be List , Maybe , Bin, and so on. We do this by induction on

the structure of the regular functors. That is, we de�ne summation for a constant functor,

for the extraction functors, for the composition of functors, for disjoint sum and cartesian

product, and �nally for a type functor. Let us begin with the type functors since this is

where we see how to formulate the induction hypothesis.

For the type functor �(�), the requirement is to construct a function sum

�(�)

of type

�(IN�) ! IN. The obvious thing to do here is to de�ne sum as a catamorphism, ([f ]) say. In

that case, the type requirement on f is that f

::

IN�IN! IN. Note that the two arguments

to the binary functor � are both IN. This suggests the inductive hypothesis that there is a

sum function of type F IN! IN for all unary regular functors F obtained from an arbitrary

non-constant n-ary regular functor by copying the (single) argument n times. We also need

to de�ne sum for the constant functor 1. With this preparation, we can begin the analysis.

For the constant functor 1, we de�ne

sum

1

= 0 :

This is because the sum of zero numbers is zero.

For the extraction functors, it is clear that

sum

Ex

= id

IN

since the sum of a single number is that number itself.

For disjoint sum and cartesian product, we have:

sum

F+G

= sum

F

5

sum

G

and sum

F�G

(x; y) = sum

F

x + sum

G

y .

In the case of disjoint sum, either the sum

F

function has to be applied, or the sum

G

function,

depending on the type of the argument. In the case of cartesian product, an element of an

F�G structure is a pair consisting of an element of an F structure and an element of a G

structure, and the two sums have to be added together.

For the composition of two functors, we have:

sum

FG

= sum

F

�

F sum

G

:



Here the argument is that an FG structure is an F structure of G structures. The function

F sum

G

applies sum

G

to all the individual G structures, and then sum

F

adds their values.

The �nal case is a type functor, which we have already discussed.

sum

�(�)

= ([sum

�

]) :

We leave it to the reader to check that application of the above rules results in the particular

instances of sum given above.



3 PolyP

The previous chapter introduces datatypes and functions on datatypes such as the cata-

morphism. The formal language used to introduce datatypes and functions is the language

of category theory. The language of category theory is not a programming language, and

although the accompanying text mentions programming, it is impossible to `run' cata-

morphisms. This chapter introduces PolyP, a programming language with which generic

functions such as the catamorphism can be implemented. The name of PolyP is derived

from `polytypic programming', an alternative name for generic programming.

PolyP is an extension of (a subset of) the functional programming language Haskell. The

extension introduces a new kind of (top level) de�nition, the polytypic construct, which is

used to de�ne functions by induction over pattern functors, which describe the structure of

(a subset of) regular datatypes. PolyP is based on the initial algebra approach to datatypes

and work in the Squiggol community on datatypes. It is a tool that supports polytypic

programming, and as such it has spurred the development of new polytypic programs.

In Haskell, datatypes are de�ned by means of the data construct, examples of which have

been given in chapter 2. PolyP extracts the pattern functor from a datatype de�nition, and

uses this structure information to instantiate generic programs on particular datatypes. We

will use the name polytypic function for a generic program in PolyP.

PolyP has a number of limitations. The datatypes PolyP can handle are a subset of the

datatypes induced by the regular functors de�ned in the previous chapter: PolyP's pattern

functors are binary and the type functors are unary which means that it can only handle

datatypes with one type argument. Furthermore, datatypes cannot be mutually recursive.

Information about PolyP and polytypic programming in general can be found on

http://www.cs.chalmers.se/~patrikj/poly/

The names of pattern functors in PolyP di�er slightly from the names in the previous chap-

ter. Section 3.1 introduces PolyP's functor names. Section 3.2 gives an implementation of

the polytypic function sum from section 2.5. Section 3.3 de�nes most of the basic polytypic

concepts. Type checking of polytypic functions is explained in section 3.4. Since we will use

a number of polytypic functions in the rest of these notes, section 3.5 gives more examples

of polytypic functions, and section 3.6 introduces PolyLib: a library of polytypic functions.

3.1 Regular Functors in PolyP

The previous chapter explains how datatypes are de�ned by means of pattern functors. A

pattern functor is a regular functor, i.e., a polynomial functor possibly extended with a

type functor. PolyP de�nes polytypic functions by induction over the pattern functor of a

datatype. The names for the pattern functors constructors used in PolyP di�ers slightly

from the names in the previous chapter. This section de�nes the syntax for pattern functors

used in PolyP.

PolyP's functors are speci�ed by the following context-free grammar:



f,g ::= f + g | f * g | Empty | Par | Rec | d @ g | Const t

The following table relates this syntax to the functors introduced in the previous chapter.

+ * Empty Par Rec d @ g Const t

+� 1

K

exl exr a 7! b 7! d(g a b) t

K

+ and * are the standard sum and product functors lifted to act on functors. Empty is the

constant binary version of functor 1

K

. Par and Rec are mentioned in chapter 2, and are

exl and exr, respectively. Composition of functors d and g is denoted by d @ g and is only

de�ned for a unary functor d and a binary functor g. Finally, Const t is the binary variant

of t

K

. The t stands for a monotype such as Bool, Char or (Int,[Float]).

In PolyP, as in Haskell, type functors (recursive datatypes) are introduced by the data

construct. Every Haskell datatype constructor d is equal to �(f) for some pattern functor f.

In PolyP this f is denoted by FunctorOf d. A datatype d a is regular (satis�es Regular d)

if it contains no function spaces, and if the argument of the type constructor d is the same

on the left- and right-hand side of its de�nition. For each one parameter regular datatype

d a, PolyP automatically generates FunctorOf d using roughly the same steps as those

used manually in section 2.4. For example, for

data Error a = Error String | Ok a

data List a = Nil | Cons a (List a)

data Bin a = Tip a | Join (Bin a) (Bin a)

data Rose a = Fork a (List (Rose a))

PolyP generates the following functors:

FunctorOf Error = Const String + Par

FunctorOf List = Empty + Par * Rec

FunctorOf Bin = Par + Rec * Rec

FunctorOf Rose = Par * (List @ Rec)

Pattern functors are only constructed for datatypes de�ned by means of the data con-

struct. If somewhere in a program a polytypic function is applied to a value of type

Error (List a), PolyP will generate an instance of the polytypic function on the datatype

Error b, not on the type (Error @ List) a. This also implies that the functor d in the

functor composition d @ g is always a type functor.

3.2 An Example: psum

PolyP introduces a new construct polytypic for de�ning polytypic functions by induction

on the structure of a binary pattern functor:

polytypic p :: t = case f of {fi -> ei}

where p is the name of the value being de�ned, t is its type, f is a functor variable, fi

are functor patterns and ei are PolyP expressions. The explicit type in the polytypic

construct is needed since we cannot in general infer the type from the cases.



The informal meaning is that we de�ne a function that takes (a representation of) a pat-

tern functor as its �rst argument. This function selects the expression in the �rst branch of

the case matching the functor, and the expression may in turn use the polytypic function

(on subfunctors). Thus the polytypic construct is a (recursive) template for constructing

instances of polytypic functions given the pattern functor of a datatype. The functor argu-

ment of the polytypic function need not (and cannot) be supplied explicitly but is inserted

by the compiler during type inference.

psum

d

:: Regular d => d Int -> Int

psum

d

= cata

d

fsum

FunctorOf d

polytypic fsum

f

:: f Int Int -> Int

= case f of

g + h -> fsum

g

`either` fsum

h

g * h -> \(x,y) -> fsum

g

x + fsum

h

y

Empty -> \x -> 0

Par -> id

Rec -> id

d @ g -> psum

d

. (pmap

d

fsum

g

)

Const t -> \x -> 0

Fig. 1. The de�nition of psum

As an example we take the function psum de�ned in �gure 1. (The subscripts indicating the

type are included for readability and are not part of the de�nition.) Function psum sums

the integers in a structure with integers. It is the PolyP implementation of the function

sum de�ned in section 2.5. The function either :: (a -> c) -> (b -> c) -> Either a b

-> c (corresponding to

5

) and datatype Either a b (corresponding to a+b) are de�ned

in Haskell's prelude. The de�nition of functions cata and pmap (the implementations in

PolyP of the catamorphism and the map, see chapter 2) will be given later. When psum is

used on an element of type Bin Int, the compiler performs roughly the following rewrite

steps to construct the actual instance of psum for Bin:

psum

Bin

! cata

Bin

fsum

FunctorOf Bin

It follows that we need an instance of cata for the type functor Bin, and an instance of

function fsum for the pattern functor FunctorOf Bin = Par + Rec * Rec. For the latter

instance, we use the de�nition of fsum to transform as follows:

fsum

FunctorOf Bin

! fsum

Par+Rec�Rec

! fsum

Par

`either` fsum

Rec�Rec

We transform the functions fsum

Par

and fsum

Rec�Rec

separately. For fsum

Par

we have

fsum

Par

! id



and for fsum

Rec�Rec

we have

fsum

Rec�Rec

! \(x,y) -> fsum

Rec

x + fsum

Rec

y

! \(x,y) -> id x + id y

The last function can be rewritten into uncurry (+), and thus we obtain the following

function for summing a tree:

cata

Bin

(id `either` (uncurry (+)))

By expanding cata

Bin

in a similar way we obtain a Haskell function for the instance of psum

on Bin. The function we obtain is the same as the function sum

Bin

de�ned in section 2.5.

3.3 Basic Polytypic Functions

In the de�nition of function psum we used functions like cata and pmap. This subsection

de�nes these and other basic polytypic functions.

Since polytypic functions cannot refer to constructor names of speci�c datatypes, we in-

troduce the prede�ned functions out and inn. Function out is used in polytypic functions

instead of pattern matching on the constructors of a datatype. For example out on Bin is

de�ned as follows:

out

Bin

:: Bin a -> Either a (Bin a,Bin a)

out

Bin

(Tip x) = Left x

out

Bin

(Join l r) = Right (l,r)

Function inn is the inverse of function out. It collects the constructors of a datatype into

a single constructor function.

out :: Regular d => FunctorOf d a (d a) <- d a

inn :: Regular d => FunctorOf d a (d a) -> d a

Function inn is an implementation of in from chapter 2. The following calculation shows

that the type of inn really corresponds to the type of in:

FunctorOf d a (d a) -> d a

= f d = �(f) for some regular functor f. g

FunctorOf �(f) a (�(f) a) -> �(f) a

= f De�nition of FunctorOf g

f a (�(f) a) -> �(f) a

= f De�nition of �() g

f a �(f a) -> �(f a)

PolyP generates de�nitions of inn and out for all datatypes.

As explained in chapter 2, a functor is a mapping between categories that preserves the

algebraic structure of the category. Since a category consists of objects (types) and arrows



(functions), a functor consists of two parts: a de�nition on types, and a de�nition on

functions. A pattern functor f in PolyP is a function that take two types and return a

type. The part of the functor that takes two functions and returns a function is called

fmap

f

, see �gure 2.

polytypic fmap

f

:: (a -> c) -> (b -> d) -> f a b -> f c d

= \p r -> case f of

g + h -> (fmap

g

p r) -+- (fmap

h

p r)

g * h -> (fmap

g

p r) -*- (fmap

h

p r)

Empty -> id

Par -> p

Rec -> r

d @ g -> pmap

d

(fmap

g

p r)

Const t -> id

(-*-) :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)

(f -*- g) (x,y) = (f x , g y)

(-+-) :: (a -> c) -> (b -> d) -> Either a b -> Either c d

(f -+- g) = either (Left . f) (Right . g)

Fig. 2. The de�nition of fmap.

Using fmap we can de�ne the polytypic version of function map, pmap, as follows:

pmap :: Regular d => (a -> b) -> d a -> d b

pmap f = inn . fmap f (pmap f) . out

where out takes the argument apart, fmap applies f to parameters and (pmap f) recursively

to substructures and inn puts the parts back together again. Function pmap

d

is the function

action of the type functor d.

Function cata is also de�ned in terms of function fmap:

cata :: Regular d => (FunctorOf d a b -> b) -> (d a -> b)

cata f = f . fmap id (cata f) . out

Note that this de�nition is a copy of the computation rule for the catamorphism in sec-

tion 2.4, with in on the left-hand side replaced by out on the right-hand side.

3.4 Type Checking Polytypic Functions

We want to be sure that functions generated by polytypic functions are type correct, so that

no run-time type errors occur. For that purpose PolyP type checks de�nitions of polytypic

functions. This subsection brie
y discusses how to type check polytypic functions, the

details of the type checking algorithm can be found in [25].

Functor expressions contain +, *, etc., and such expressions have to be translated to real

types. For this translation we interpret functor constructors as type synonyms:



type (f + g) a b = Either (f a b) (g a b)

type (f * g) a b = (f a b , g a b)

type Empty a b = ()

type Par a b = a

type Rec a b = b

type (d @ g) a b = d (g a b)

type Const t a b = t

So, for example, interpreting the functors in the pattern functor for List as type synonyms,

we have:

FunctorOf List a b

= f FunctorOf List = Empty + Par * Rec g

(Empty + Par * Rec) a b

= f Type synonym for + g

Either (Empty a b) ((Par * Rec) a b)

= f Type synonyms for Empty and * g

Either () (Par a b,Rec a b)

= f Type synonyms for Par and Rec g

Either () (a,b)

To infer the type of a polytypic de�nition from the types of the expressions in the case

branches, higher-order uni�cation would be needed. As general higher-order uni�cation is

undecidable we require inductive de�nitions of polytypic functions to be explicitly typed,

and we only check that this type is valid. Given an inductive de�nition of a polytypic

function

polytypic foo :: ... f ...

= case f of

g + h -> bar

...

where f is a functor variable, the rule for type checking these de�nitions checks among

other things that the declared type of function foo, with g + h substituted for f, is an

instance of the type of expression bar. For all of the expressions in the branches of the

case it is required that the declared type is an instance of the type of the expression in the

branch with the left-hand side of the branch substituted for f in the declared type. The

expression g + h is an abstraction of a type, so by substituting g + h (or any of the other

abstract type expressions) for f in the type of foo we mean the following: substitute g + h

for f, and rewrite the expression obtained thus by interpreting the functor constructors as

type synonyms. As an example we take the case g * h in the de�nition of fsum:

polytypic fsum :: f Int Int -> Int

= case f of

...

g * h -> \(x,y) -> fsum x + fsum y

...



The type of the expression \(x,y) -> fsum x + fsum y is (r Int Int, s Int Int) -> Int.

Substituting the functor to the left of the arrow in the case branch, g * h, for f in the

declared type f Int Int -> Int gives (g * h) Int Int -> Int, and rewriting this type using

the type rewrite rules, gives (g Int Int, h Int Int) -> Int. This type is �-convertible to

(and hence certainly an instance of) the type of the expression to the right of the arrow in

the case branch, so this part of the polytypic function de�nition is type correct.

3.5 More Examples of Polytypic Functions

This section describes some polytypic functions that will be used in the sequel. These

functions can be found in PolyLib, the library of PolyP. The next section gives an overview

of PolyLib.

Function flatten takes a value of type d a and 
attens it into a list of values of type

[a]. It is de�ned using function fflatten :: f a [a] -> [a], which takes a value v of

type f a [a], and returns the concatenation of all the values (of type a) and lists (of type

[a]) occurring at the top level in v. The de�nition of flatten and fflatten is given in

�gure 3. As an example, we unfold the de�nition of fflatten when used on the type List

flatten

d

:: Regular d => d a -> [a]

flatten

d

= cata

d

fflatten

FunctorOf d

polytypic fflatten

f

:: f a [a] -> [a]

= case f of

g + h -> either fflatten

g

fflatten

h

g * h -> \(x,y) -> fflatten

g

x ++ fflatten

h

y

Empty -> nil

Par -> singleton

Rec -> id

d @ g -> concat . flatten

d

. pmap

d

fflatten

g

Const t -> nil

nil x = []

singleton x = [x]

Fig. 3. The de�nition of flatten and fflatten.

a (remember that FunctorOf List = Empty+Par*Rec):

fflatten

Empty+Par�Rec

! either fflatten

Empty

fflatten

Par�Rec

! either nil (\(x,y) -> fflatten

Par

x ++ fflatten

Rec

y)

! either nil (\(x,y) -> id x ++ id y)

! either nil (uncurry (++))

The expression pequal eq x y checks whether or not the values x and y are equivalent

using the equivalence operator eq to compare the elements pairwise. It is de�ned in terms



of function fequal eq (pequal eq), where the �rst argument, eq, compares parameters for

equality and the second argument, (pequal eq), compares the subterms recursively. The

third and fourth arguments are the two (unfolded) terms to be compared. These functions

are de�ned in �gure 4.

polytypic fequal

f

:: (a -> b -> Bool) -> (c -> d -> Bool) ->

f a c -> f b d -> Bool

= \p r -> case f of

g + h -> sumequal (fequal

g

p r) (fequal

h

p r)

g * h -> prodequal (fequal

g

p r) (fequal

h

p r)

Empty -> \_ _ -> True

Par -> p

Rec -> r

d @ g -> pequal

d

(fequal

g

p r)

Const t -> (==)

pequal :: (a -> b -> Bool) -> d a -> d b -> Bool

pequal eq x y = fequal eq (pequal eq) (out x) (out y)

sumequal :: (a -> b -> Bool) -> (c -> d -> Bool) ->

Either a c -> Either b d -> Bool

sumequal f g (Left x) (Left v) = f x v

sumequal f g (Right y) (Right w) = g y w

sumequal f g _ _ = False

prodequal :: (a -> b -> Bool) -> (c -> d -> Bool) ->

(a,c) -> (b,d) -> Bool

prodequal f g (x,y) (v,w) = f x v && g y w

Fig. 4. The de�nition of pequal and fequal.

3.6 PolyLib: a Library of Polytypic Functions

Using di�erent versions of PolyP (and its predecessors) we have implemented a number of

polytypic programs. For example, we have implemented a polytypic equality function, a

polytypic show function, and a polytypic parser. Furthermore, we have implemented some

more involved polytypic programs for pattern matching, uni�cation and rewriting. These

polytypic programs use several basic polytypic functions, such as the relatively well-known

cata and pmap, but also less well-known functions such as propagate and thread. We

have collected these basic polytypic functions in the library of PolyP: PolyLib [27, app. B].

This paper describes the polytypic functions in PolyLib, motivates their presence in the

library, and gives a rationale for their design. This section �rst introduces the format used

for describing polytypic library functions, then it gives an overview of the contents of the

library, followed by a description of each of the submodules in the library.



Describing Polytypic Functions The description of a polytypic function consists of

(some of) the following components: its name and type; an (in)formal description of the

function; other names the function is known by; known uses of the function; and its back-

ground and relationship to other polytypic functions. For example:

pmap :: (a -> b) -> d a -> d b

Function pmap takes a function f and a value x of datatype d a, and applies f . . .

Also known as: map [31], map

n

[29]. Known uses: Everywhere! Background:

This was one of the �rst . . .

A problem with describing a library of polytypic functions is that it is not completely clear

how to specify polytypic functions. The most basic combinators have immediate category

theoretic interpretations that can be used as a speci�cation, but for more complicated

combinators the matter is not all that obvious. Thus, we will normally not provide formal

speci�cations of the library functions, though we try to give references to more in-depth

treatments.

The polytypic functions in the library are only de�ned for regular datatypes d a. In the

type this is indicated by adding a context Regular d => ..., but we will omit this for

brevity.

Library Overview We have divided the library into six parts, see �gure 5. The �rst part

of the library contains powerful recursion combinators such as map, cata and ana. This part

is the core of the library in the sense that it is used in the de�nitions of all the functions in

the other parts. The second part deals with zips and some derivates, such as the equality

function. The third part consists of functions that manipulate monads (see section 4.1). The

fourth and �fth parts consist of simpler (but still very useful) functions, like 
attening and

summing. The sixth part consists of functions that manipulate constructors and constructor

names. The following sections describe each of these parts in more detail.

pmap, fmap, cata

ana, hylo, para

crush, fcrush

(a) Recursion op's

pzip, fzip

punzip, funzip

pzipWith, pzipWith'

pequal, fequal

(b) Zips etc.

pmapM, fmapM, cataM

anaM, hyloM, paraM

propagate, cross

thread, fthread

(c) Monad op's

flatten, fflatten

fl par, fl rec, conc

(d) Flatten functions

psum, size, prod

pand, pall

por, pany, pelem

(e) Miscellaneous

constructorName, fconstructorName

constructors, fconstructors

constructor2Int, fconstructor2Int

int2constructor, int2fconstructor

(f) Constructor functions

Fig. 5. Overview of PolyLib



Recursion Operators

pmap :: (a -> b) -> d a -> d b

fmap :: (a -> c) -> (b -> d) -> f a b -> f c d

Function pmap takes a function f and a value x of datatype d a, and applies f recursively

to all occurrences of elements of type a in x. With d as a functor acting on types, pmap

d

is

the corresponding functor action on functions. Function fmap

f

is the corresponding functor

action for a pattern functor f. Also known as: map [31], map

n

[29]. In charity [13] map

d

f

x is written d{f}(x). Known uses: Everywhere! Function fmap is used in the de�nition of

pmap, cata, ana, hylo, para and in many other PolyLib functions. Background: The map

function was one of the �rst combinators distinguished in the work of Bird and Meertens,

[12, 35]. The traditional map in functional languages maps a function over a list of elements.

The current Haskell version of map is overloaded:

map :: Functor f => (a->b) -> f a -> f b

and can be used as the polytypic pmap if instance declarations for all regular type construc-

tors are given. Function pmap can be used to give default instances for the Haskell map.

cata :: (FunctorOf d a b -> b) -> (d a -> b)

ana :: (FunctorOf d a b <- b) -> (d a <- b)

hylo :: (f a b -> b) -> (c -> f a c) -> (c -> b)

para :: (d a -> FunctorOf d a b -> b) -> (d a -> b)

Four powerful recursion operators on the type d a: The catamorphism, cata, \evaluates"

a data structure by recursively replacing the constructors with functions. The typing of

cata may seem unfamiliar but with the explanation of FunctorOf above it can be seen as

equivalent to:

cata :: (f a b -> b) -> (�(f) a -> b)

The anamorphism, ana, works in the opposite direction and builds a data structure. The

hylomorphism, hylo, is the generalisation of these two functions that simultaneously builds

and evaluates a structure. Finally, the paramorphism, para, is a generalised form of cata

that gives its parameter function access not only to the results of evaluating the substruc-

tures, but also the structure itself. Also known as:

PolyLib Functorial ML [9] Squiggol charity [13]

cata i fold

1

i ([i]) {| i |}

ana o - [(o)] (| o |)

Functions cata and para are instances of the Visitor pattern in [21]. Known uses:

Very many polytypic functions are de�ned using cata: pmap, crush, thread, flatten,



propagate, and all our applications use it. Function para is used in rewrite. Back-

ground: The catamorphism, cata, is the generalisation of the Haskell function foldr and

the anamorphism, ana, is the (category theoretic) dual. Catamorphisms were introduced

by Malcolm [33, 34]. A hylomorphism is the fused composition of a catamorphism and an

anamorphism speci�ed by: hylo i o = cata i . ana o. The paramorphism [36], para, is

the elimination construct for the type d a from Martin{L�of type theory. It captures the

recursion pattern of primitive recursive functions on the datatype d a.

crush :: (a->a->a) -> a -> d a -> a

fcrush :: (a->a->a) -> a -> f a a -> a

The function crush op e takes a structure x and inserts the operator op from left to right

between every pair of values of type a at every level in x. (The value e is used in empty

leaves.) Known uses: within the library see section 3.6. Many of the functions in that

section are then used in the di�erent applications. Background: The de�nition of crush

is found in [37]. For an associative operator op with unit e, crush op e can be de�ned as

foldr op e . flatten. As crush has the same arguments as fold on lists it can be seen

as an alternative to cata as the generalisation of fold to regular datatypes.

Zips

pzip :: (d a,d b) -> Maybe ( d (a,b) )

punzip :: d (a,b) -> (d a,d b)

fzip :: (f a b,f c d) -> Maybe ( f (a,c) (b,d) )

funzip :: f (a,c) (b,d) -> (f a b,f c d)

Function punzip takes a structure containing pairs and splits it up into a pair of structures

containing the �rst and the second components respectively. Function pzip is a partial

inverse of punzip: it takes a pair of structures and zips them together to Just a structure

of pairs if the two structures have the same shape, and to Nothing otherwise. Also known

as: zip

m

[29], zip.�.d [23], Known uses: Function fzip is used in the de�nition of

pzipWith. Background: The traditional function zip

zip :: [a] -> [b] -> [(a,b)]

combines two lists and does not need the Maybe type in the result as the longer list can

always be truncated. (In general such truncation is possible for all types that have a nullary

constructor, but not for all regular types.) A more general (\doubly polytypic") variant of

pzip: transpose (called zip.d.e in [23])

transpose :: d (e a) -> e (d a)



was �rst described by Fritz Ruehr [43]. For a formal and relational de�nition, see Hoogen-

dijk & Backhouse [23].

pzipWith :: ((a,b) -> Maybe c) -> (d a,d b) -> Maybe (d c)

pzipWith' :: (FunctorOf d c e -> e) -> ((d a,d b) -> e) ->

((a,b) -> c) -> (d a,d b) -> e

Function pzipWith op works like pzip but uses the operator op to combine the values

from the two structures instead of just pairing them. As the zip might fail, we also give

the operator a chance to signal failure by giving it a Maybe-type as a result.

6

Function pzipWith' is a generalisation of pzipWith that can handle two structures of

di�erent shape. In the call pzipWith' ins fail op, op is used as long as the structures

have the same shape, fail is used to handle the case when the two structures mismatch,

and ins combines the results from the substructures. (The type of ins is the same as

the type of the �rst argument to cata.) Also known as: zipop

m

[29]. Known uses:

Function pzipWith' is used in the de�nition of equality, matching and even uni�cation.

Background: Function pzipWith is the polytypic variant of the Haskell function zipWith

zipWith :: (a->b->c) -> [a] -> [b] -> [(a,b)]

but pzipWith' is new. Function pzip is just pzipWith Just.

pequal :: (a->b->Bool) -> d a -> d b -> Bool

fequal :: (a->b->Bool) -> (c->d->Bool) -> f a c -> f b d -> Bool

The expression pequal eq x y checks whether or not the structures x and y are equivalent

using the equivalence operator eq to compare the elements pairwise.Known uses: fequal

is used in the uni�cation algorithm to determine when two terms are top level equal.

Background: An early version of a polytypic equality function appeared in [44]. Function

pequal can be instantiated to give a default for the Haskell Eq-class for regular datatypes:

(==) :: Eq a => d a -> d a -> Bool

(==) = pequal (==)

In Haskell the equality function can be automatically derived by the compiler, and our

polytypic equality is an attempt at moving that derivation out of the compiler into the

prelude.

6

The type constructor Maybe can be replaced by any monad with a zero, but we didn't want to clutter up the

already complicated type with contexts.



Monad Operations

pmapM :: Monad m => (a -> m b) -> d a -> m (d b)

pmapMr :: Monad m => (a -> m b) -> d a -> m (d b)

fmapM :: Monad m => (a->m c) -> (b->m d) -> f a b -> m (f c d)

cataM :: Monad m => (FunctorOf d a b->m b) -> (d a -> m b)

anaM :: Monad m => (b->m (FunctorOf d a b)) -> (b -> m (d a))

hyloM :: Monad m => (f a b->m b) -> (c->m (f a c)) -> c -> m b

paraM :: Monad m => (d a->FunctorOf d a b->m b) -> d a -> m b

Function pmapM is a variant of pmap that threads a monad m from left to right through a

structure after applying its function argument to all elements in the structure. Function

pmapMr is the same but for threading a monad m from right to left through a structure.

For symmetry's sake, the library also contains a function pmapMl, which is equal to pmapM.

Furthermore, the library also contains the left and right variants of functions like cataM

etc. A monadic map can, for example, use a state monad to record information about the

elements in the structure during the traversal. The other recursion operators are gener-

alised in the same way to form even more general combinators. Also known as: traversals

[29]. Known uses: in unify and in the parser. Background: Monadic maps and cata-

morphisms are described in [20]. Monadic anamorphisms and hylomorphisms are de�ned

in [39]. The monadic map (also called active traversal) is closely related to thread (also

called passive traversal):

pmapM f = thread . pmap f

thread = pmapM id

propagate :: d (Maybe a) -> Maybe (d a)

cross :: d [a] -> [d a]

Function propagate propagates Nothing to the top level. Function cross is the cross (or

tensor) product that given a structure x containing lists, generates a list of structures of

the same shape. This list has one element for every combination of values drawn from

the lists in x. These two functions can be generalised to thread any monad through a

value. Known uses: propagate is used in the de�nition of pzip. Background: Function

propagate is an instance of transpose [43], and both propagate and cross are instances

of thread below.



thread :: Monad m => d (m a) -> m (d a)

fthread :: Monad m => f (m a) (m b) -> m (f a b)

Function thread is used to tie together the monad computations in the elements from

left to right. Also known as: dist

d

[20]. Known uses: Function thread can be used to

de�ne the monadic map: pmapM f = thread . pmap f. Function fthread is also used in

the parser to thread the parsing monad through di�erent structures. Function thread can

be instantiated (with d = []) to the Haskell prelude function

accumulate :: Monad m => [m a] -> m [a]

but also orthogonally (with m = Maybe) to propagate and (with m = []) to cross.

Flatten Functions

flatten :: d a -> [a]

fflatten :: f a [a] -> [a]

fl par :: f a b -> [a]

fl rec :: f a b -> [b]

Function flatten x traverses the structure x and collects all elements from left to right in

a list. The other three function are variants of this for a pattern functor f. Also known as:

extract

m;i

[29], listify [23]. Known uses: fl rec is used in the uni�cation algorithm to

�nd the list of immediate subterms of a term. Function fflatten is used to de�ne flatten

flatten = cata fflatten

Background: In the relational theory of polytypism [23] there is a membership relation

mem.d for every relator (type constructor) d. Function flatten can be seen as a functional

implementation of this relation:

a mem.d x � a `elem` (flatten

d

x)

Miscellaneous A number of simple polytypic functions can be de�ned in terms of crush

and pmap. For brevity we present this part of PolyLib below by providing only the name,

the type and the de�nition of each function.



psum :: d Int -> Int

prod :: d Int -> Int

conc :: d [a] -> [a]

pand :: d Bool -> Bool

por :: d Bool -> Bool

psum = crush (+) 0

prod = crush (*) 1

conc = crush (++) []

pand = crush (&&) True

por = crush (||) False

size :: d a -> Int

flatten :: d a -> [a]

pall :: (a->Bool) -> d a -> Bool

pany :: (a->Bool) -> d a -> Bool

pelem :: Eq a => a -> d a -> Bool

size = psum . pmap (\_->1)

flatten = conc . pmap (:[])

pall p = pand . pmap p

pany p = por . pmap p

pelem x = pany (\y->x==y)

Constructors

constructorName :: d a -> String

fconstructorName :: f a b -> String

constructors :: [d a]

fconstructors :: [f a b]

constructor2Int :: d a -> Int

fconstructor2Int :: f a b -> Int

int2constructor :: Int -> d a

int2fconstructor :: Int -> f a b

Function constructorName takes a value of type d a and returns its outermost constructor

name. Function constructors returns a list with all the constructors of a datatype d a. For

example, for the datatype Bin it returns [Tip undefined,Join undefined undefined].

The functions constructor2Int and int2constructor take constructors to integers and

vice versa. Known uses: constructorName is used in pshow, the polytypic version of the

derived show function in Haskell, constructors is used in showing, parsing and compress-

ing values, and both int2constructor and constructor2Int in compressing values.



4 Generic Uni�cation

This chapter presents a substantial application of the techniques that have been developed

thus far. The topic is a generic uni�cation algorithm.

Brie
y, uni�cation is the process of making two terms (such as arithmetic expressions or

type expressions) equal by suitably instantiating the variables in the terms. It is very widely

used in, for example, pattern matching, type checking and theorem proving. For those who

haven't already encountered it, let us �rst give an informal explanation before giving a

summary of the development of the generic algorithm.

We explain the process in terms of a speci�c case before considering the generic version.

Consider the datatype de�nition

data Expr = var V

j number Nat

j plus Expr Expr

j times Expr Expr

This can be read as the datatype of abstract syntax trees for a context-free grammar

E ::= V j N j (E +E ) j (E *E )

for terms like \((1+x)*3)" when V produces variables and N produces numbers.

Another view is that a term of the datatype Expr is a tree with the constructors var,

number, plus and times at the nodes, and numbers and variables at the leaves. In this

view, the constructors are uninterpreted, which means that trees corresponding to equal

but non-identical arithmetic expressions are considered di�erent. For example, the trees

corresponding to ((1+x)*3) and (3+(x*3)) are di�erent. It is this view of terms as tree

structures that is used in uni�cation. Nevertheless, for ease of writing we shall use the

concrete syntax of arithmetic expressions to write terms.

Now consider two terms, say ((1+x)*3) and ((y+z)*3). \Unifying" these terms means

substituting terms for the variables x, y and z so that the terms become identical. One

possibility, in this case, is to substitute z for x and 1 for y. After this substitution both terms

become equal to ((1+z)*3). There are many other possibilities. For example, we could

substitute 1 for all of x, y and z, thus unifying the two terms in the term ((1+1)*3). This

latter substitution is however less general than the former. Uni�cation involves seeking a

\most general" uni�er for two given terms. Of course, some pairs of terms are not uni�able:

a trivial example is the pair of terms 0 and 1. These are not uni�able because they contain

no variables. The pair of terms x and (1+x) is also not uni�able, but for a di�erent

reason: namely, the �rst term will always have fewer constructors than the second whatever

substitution we make for x.

We have described uni�cation for arithmetic expressions but uni�cation is also used for

other term algebras. A major application is in polymorphic type inference, as in most

modern functional languages. In this application it is type expressions that are uni�ed.



Suppose that a program contains the function application f x, and at that stage the term

representing the type inferred for f is (p->q), and for x it is r. Then �rst p and r are

uni�ed. If that fails, there is a type error. Otherwise, let (p

0

->q

0

) be the result of applying

the most general uni�er to (p->q). That is the new type inferred for f, while we get p

0

for

x, and q

0

for the application f x.

In a generic uni�cation algorithmwe make the term structure a parameter of the algorithm.

So, one instance of the algorithm uni�es arithmetic expressions, another type expressions.

In order to formalise this we use F to denote a functor (the pattern functor of the constant

terms we want to unify) and show how to extend F to a functor F

?

such that F

?

V , for

type V of variables, is the set of all terms. We also de�ne substitution of variables, and

most general uni�ers.

The functor F

?

is (the functor part of) a monad. In the last ten years, monads have been

recognised to be an important concept in many applications of functional programming.

We therefore begin in section 4.1 by introducing the concept at �rst without reference to

uni�cation. There is much that can be said about monads but our discussion is brief and

restricted to just what we need to present the uni�cation algorithm. The monad F

?

de�ned

by an arbitrary functor F is then discussed along with the de�nition of a substitution.

The discussion of the uni�cation algorithm proper begins in section 4.2. Here the discussion

is also brief since we assume that the non-generic algorithm is known from the literature.

In order to compare the calculational method of proof with traditional proofs, chapter

5 presents a generic proof of one aspect of the algorithm's correctness, namely that a

non-trivial expression is not uni�able with any variable that occurs properly in it.

4.1 Monads and Terms

Monads and Kleisli composition A monad is a concept introduced in category theory that

has since proved its worth in functional programming. It is a general concept which we

introduce via a particular instance, the Maybe monad.

Suppose we have two functions

f

::

a!Maybe b

g

::

b!Maybe c

Think of these total functions as modelling partial functions: f computes a b-value from

an a-value, or fails, and likewise, g computes a c-value from a b-value, or fails. Can we

combine these functions into a single function

g � f

::

a!Maybe c

that combines the computations of f and g when both succeed, and fails when either of

them fails? The types don't �t for normal composition, but here is how to do it:

(g � f) x = h (f x) where

h none = none

h (one y) = g y



This form of composition is called Kleisli composition. Kleisli composition shares some

pleasant properties with normal composition. First, the operation is associative:

f � (g �h) = (f � g) �h

for f , g and h such that the expressions involved are well-typed. We may therefore drop the

parentheses in chains of Kleisli compositions and write f � g �h. Moreover, � has neutral

element one, which we call the Kleisli identity :

one � f = f = f � one :

Kleisli composition gives a convenient way to �t functions together that would not �t

together with normal composition. Kleisli composition is not just possible for Maybe , but

for many other functors as well. A functor with a Kleisli composition and Kleisli identity

|that satisfy a number of laws to be discussed shortly| is called a monad. A trivial

example is the functor Id: take normal function composition as its Kleisli composition. A

less trivial example is the functor Set . For this functor, Kleisli composition takes the form

(f�g)x = fz j 9(y:: y2gx ^ z2fy)g :

Its Kleisli identity is the singleton former f g. We shall encounter more monads later.

Formally, the triple (M; � ; �) is a monad, where M is a functor, � and � are its Kleisli

composition and Kleisli identity, if the following properties hold. First, � is a function of

polymorphic type

(b!Mc)�(a!Mb) ! (a!Mc)

and � is a function of polymorphic type

a!Ma :

Second, � is associative with � as neutral element. Finally, the following rules are satis�ed:

Mf

�

(g �h) = (Mf

�

g) �h

(f � g)

�

h = f � (g

�

h)

(f

�

g) �h = f � (Mg

�

h)

In fact, these equalities are automatically satis�ed in all the monads that we consider here.

They are consquences of the so-called free theorem for � . Their validity depends on a

property called (polymorphic) parametricity that is satis�ed by Haskell restricted to total

functions which we discuss in section 5.2.

Exercise 4.1 Let (M; � ; �) be a monad. Express Mf in terms of Kleisli composition

and identity. De�ne

mul = id � id

::

MMa! Ma

(The function mul is called the multiplier of the monad.) What is the function mul for the

case M = Set?



Prove that f � g = mul

�

Mf

�

g. Also prove the following three equalities:

mul

�

mul = mul

�

Mmul

mul

�

� = id = mul

�

M� :

2

Terms with variables Recall the datatype Expr introduced at the beginning of this section.

We can regard it as a datatype for terms involving numbers, addition and multiplication

to which has been added an extra alternative for variables.

Let F be the pattern functor corresponding to the de�nition of Expr without variables.

Then Expr = �G, where G a = V + Fa. This can be done generically. Consider, for unary

functor F , the unary functor V

K

+F . This, we recall, is de�ned by

(V

K

+F )a = V + Fa

where a ranges over types, and

(V

K

+F )f = id

V

+ Ff

where f ranges over functions. For �xed F , the mapping a 7! �(a

K

+F ) is a functor,

namely the type functor �(�) of the bifunctor a�b = a+Fb. Denote this type functor by

F

?

(so F

?

V = �(V

K

+F ))

7

. Its action on functions is as follows. For f

::

a! b:

F

?

f = ([a

K

+F ; in

b

K

+F

�

f+id])

Note that we have speci�ed the pattern functor \a

K

+F " inside the catamorphism brackets

here since there is a possibility of confusion between di�erent algebras. Note also that

(V

K

+F )F

?

V = V + FF

?

V

so that

in

V

K

+F

::

V + FF

?

V ! F

?

V :

Given a datatype �F , we can then extend it with variables by switching to F

?

V . We de�ne

two embeddings by:

embl

V

::

V ! F

?

V

embl

V

= in

V

K

+F

�

inl

embr

V

::

F F

?

V ! F

?

V

embr

V

= in

V

K

+F

�

inr

The functor F

?

forms the substitution monad (F

?

;�;�) with, for functions f

::

a! F

?

b

and g

::

b! F

?

c,

g�f = ([b

K

+F ; g

5

embr

c

])

�

f

7

The star notation is used here to suggest a link with the Kleene star, denoting iteration in a regular algebra.

F

?

can be seen as iterating functor F an arbitrary number of times. More signi�cantly, the notation highlights

a formal link between monads and closure operators. See, for example, [3] for more details.



� = embl :

Note that the catamorphism in the de�nition of g�f has pattern functor b

K

+F , as indicated

by the parameter before the semicolon. We omit explicit mention of this information later,

but it is vital to the correct use of the computation and other laws. In addition we omit

type information on the initial algebra, although again it is vitally important.

Exercise 4.2 Take F to be a� for some type a. What is the type (a�)

?

1? What is the

multiplier, what is Kleisli identity and what is Kleisli composition? (Hint: use exercise 4.1

for the last part of this exercise.)

2

Exercise 4.3 Consider the case F = (1+). Show that (1+)

?

V

�

=

IN�(V+1). Speci�-

cally, construct an initial algebra.

in

::

V + (1 + (IN�(V+1))) ! IN�(V+1)

and express catamorphisms on elements of type IN�(V+1) in terms of catamorphisms

on IN.

2

Exercise 4.4 Verify that Kleisli composition as de�ned above is indeed associative and

that embl is its neutral element.

2

Assignments and Substitutions An assignment is a mapping of variables to terms, for

example f x := (y+x) ; y := 0 g. An assignment can be performed on a term. This means

a simultaneous and systematic replacement of the variables in the term by the terms to

which they are mapped. For example, performed on the term (x+y) our example assignment

gives ((y+x)+0) . We model assignments as functions with the typing V ! F

?

V . Because

we want functions to be total, this means we also have to de�ne the assignment for all

variables in V . If V = f x ; y ; z g, we can make the above assignment total by writing it

as f x := (y+x) ; y := 0 ; z := z g. Note that to the left of \:=" in an assignment we have an

element of V , and to the right an element of F

?

V . So to be precise, if assignment f has

\ z := z ", this means that f z = � z . In particular, the (empty) identity assignment is

�.

Given an assignment f

::

V ! F

?

V , we want to de�ne the substitution subst f as a

function performing f on a term. The result is again a term. The term consisting of the

single variable x is � x. Applying subst f to it, the result should be f x. So

(subst f)

�

�

= f desired result g

f



= f Kleisli identity g

f � �

= f monad equality g

(f�id)

�

� :

Since subst f is clearly a catamorphism that distributes through constructors | for exam-

ple, (subst f) (x+y) = ((subst f x) + (subst f y)) | it is fully determined by its action on

variables. We have found:

subst

::

(V!F

?

V )! (F

?

V!F

?

V )

subst f = f�id

Two substitutions can always be merged into a single one:

(subst f)

�

(subst g)

= f de�nition of subst g

(f � id)

�

(g � id)

= f monad equalities g

f � (id

�

(g � id))

= f id is identity of

�

g

f � (g � id)

= f � is associative g

(f � g) � id

= f de�nition of subst g

subst (f � g) :

4.2 Generic Uni�cation

Uni�ers Two terms x and y containing variables can be uni�ed if there is some assignment

f such that performing f on x gives the same result as performing f on y. For example,

the two terms

(u+((1*v)*2)) and ((w*v)+(u*2))

can be uni�ed by the assignment

fu := (1*(z+3)); v := (z+3); w := 1g

into the uni�cation

((1*(z+3))+((1*(z+3))*2))

Such a unifying assignment is called a uni�er of the terms. Uni�ers are not unique. Another

uni�er of the same two terms of the example is

fu := (1*z); v := z; w := 1g



which results in the uni�cation

((1*z)+((1*z)*2))

This last uni�cation is more general. If f is a uni�er, then, for any assignment h, the

combined substitution h � f is also a uni�er, since

h � f is a uni�er of (x;y)

� f de�nition of uni�er g

subst (h � f) x = subst (h � f) y

� f combined substitutions g

(subst h) (subst f x) = (subst h) (subst f y)

( f cancel (subst h) g

subst f x = subst f y

� f de�nition of uni�er g

f is a uni�er of (x;y) :

In the example, the �rst, less general uni�er, can be formed from the more general one by

taking h = fv := (z+3)g. This notion of generality gives a pre-ordering on uni�ers (and

actually on all assignments): de�ne

f v g � 9(hsuch thatf = h � g)

The relation v is obviously transitive and re
exive, but in general not anti-symmetric. If

two uni�ers are equally general: f v g ^ g v f , then f and g can be di�erent. But they

are to all intents and purposes equivalent: they di�er at most in the choice of names for

the variables in the result.

If two terms are uni�able at all, then among all uni�ers there is a most general uni�er.

That term is commonly abbreviated to mgu. Clearly, any two mgu's are equivalent. In the

example, the second uni�er is an mgu.

A generic shell for uni�cation We develop the uni�cation algorithm in two stages. In this

stage we give a generic \shell" in terms of type classes. In the second stage, we show how

to make any regular functor into an instance of the classes involved.

Terms may have children, they may happen to be variables, and we should be able to see

if super�cially |at the top level of the term trees| the constructors are equal. As before,

we assume a �xed type V for variables. Here are the corresponding class declarations:

class Children t where children

::

t!List t

mapChildren

::

(t! t)! (t! t)

class VarCheck t where varcheck

::

t!Maybe V

class TopEq t where topEq

::

t� t!Bool

class (Children t ;VarCheck t ;TopEq t) ) Term t



We give a concrete instantiation as an example | illustrating some �ne points at the same

time. Let C be some type for representing constructors. Here is the datatype we will use

to instantiate the classes:

data T = Var V j Con C (List T )

First we make T into an instance of Children:

instance Children T where

children (Var v) = nil

children (Con c ts) = ts

mapChildren f (Var v) = Var v

mapChildren f (Con c ts) = Con c (List f ts)

Note here that mapChildren f only maps function f over the immediate children of its

argument. No recursion is involved.

Here is how T �ts in the VarCheck class:

instance VarCheck T where

varcheck (Var v) = one v

varcheck (Con c ts) = none

For TopEq we assume that eq is an equality test on C and on V :

instance TopEq T where

topEq ((Var v

0

) ; (Var v

1

) ) = eq v

0

v

1

topEq ((Con c

0

ts

0

) ; (Con c

1

ts

1

)) = (eq c

0

c

1

^ length ts

0

= length ts

1

)

topEq ( ; ) = false

Note that for this test the children of the terms are irrelevant. This is why we give it the

name topEq .

Having made T an instance of the three superclasses of Term, we can now proudly an-

nounce:

instance Term T

So much for this concrete instantiation. We continue with the generic problem. Here is a

function to collect all subterms of a term in the Term class (or actually the Children class):

subTerms

::

Children t ) t!List t

subTerms x = cons x (concat (List subTerms (children x )))

and here is a function that uses a list comprehension to collect all variables occurring in a

term:

vars

::

Term t ) t!List V

vars x = [ v j one v  List varCheck (subTerms x ) ]



Earlier we saw a treatment of assignments as functions. Here we introduce a class for

assignments, so that it is also possible to make other concrete representations into instances.

The parameter t stands for terms.

class Assig t where idAssig

::

V ! t

modBind

::

V � t ! ((V ! t)! (V ! t))

lookupIn

::

(V ! t)� V ! Maybe t

The type F

?

V can be made into a generic instance by:

instance Assig (F

?

V ) where

idAssig = embl

modBind (v; x) = (f 7! (v

0

7! if eq v

0

v then x else f v

0

))

lookupIn (f; v) = if eq (f v) (idAssig v) then none else one (f v)

in which we see both the Kleisli identity embl of the substitution monad, and one of the

Maybe monad. The result none signi�es that v is mapped to itself (embedded in the term

world).

We have chosen a particular implementation for assignments: assignments are functions. If

Haskell would allow multiple parameter type classes we could abstract from the particular

implementation, and replace the occurrences of V ! t in the types of the functions of the

class Assig by a type variable a. Thus we could obtain a more concrete instance of Assig

by taking list of pairs (v; x), with v a variable and x a term, instead of functions. Then

idAssig is the empty list, modBind can simply cons the pair onto the list, and lookupIn

looks for the �rst pair with the given variable and returns the corresponding term. If the

given variable is not found, it fails. An e�cient implementation of Assig would use balanced

trees, or even better hash tables. With the class mechanism the implementation can be

encapsulated, that is, hidden to the rest of the program, so that the program can �rst be

developed and tested with a simple implementation. It can later be replaced by a more

e�cient sophisticated implementation without a�ecting the rest of the program. It should

be clear that this is an important advantage.

The uni�cation algorithm proper We give the algorithm| which is basically the algorithm

found in the literature | without much explanation. As to notation, we use the monad

(Maybe; � ; �).

unify

::

(Term t ;Assig t) ) t� t!Maybe (V ! t)

unify

0

::

(Term t ;Assig t) ) t� t! ((V ! t)!Maybe (V ! t))



The de�nition of unify is now simply to start up unify

0

with the empty assignment. The

function unify

0

is de�ned as a higher order function, threading \assignment transforma-

tions" together with � .

unify (x; y) = unify

0

(x; y) idAssig

unify

0

(x; y) = uni (varCheck x ; varCheck y) where

uni (none ; none ) j topEq (x ; y) = uniTerms (x ; y)

j otherwise = const none

uni (one u ; one v) j eq u v = �

uni (one u ; ) = u 7! y

uni ( ; one v) = v 7! x

uniTerms (x ; y) = threadList(List unify

0

(zip (children x ) (children y)))

All the right-hand sides here are functions that return maybe an assignment, given an

assignment. The function threadList is simply the list catamorphism with Kleisli composi-

tion:

threadList

::

Monad m) List (a! m a)! (a! m a)

threadList = foldr (�) �

The auxiliary operator ( 7!) should \modBind" its arguments into the uni�er being col-

lected, but there are two things to be taken care of. No binding may be introduced that

would mean an in�nite assignment. This is commonly called the occurs check. And if the

variable is already bound to a term, that term must be uni�ed with the new term, and the

uni�er obtained must be threaded into the assignment being collected.

( 7!)

::

(Term t ;Assig t) ) V � t! ((V ! t)!Maybe (V ! t))

(v 7! x) s = if occursCheck (v ; s; x )

then none

else case lookupIn (s; v) of

none ! (�

�

modBind (v ; x )) s

one y ! ((�

�

modBind (v ; x )) �unify

0

(x ; y)) s

The following is a hack to implement the occurs check. This is basically a reachability

problem in a graph | is there a cycle from v to itself?, or rather: are we about to create

a cycle? We must take account both of the uni�er collected already, and the new term.

Because we know no cycles were created yet, the graph is more like a tree, so any search

strategy terminates. The approach here is not optimally e�cient, but in practice quite

good with lazy evaluation (and horrible with eager evaluation). There exist linear-time

solutions, but they require much more bookkeeping.

occursCheck

::

(Term t ;Assig t) ) V � (V ! t)� t!Bool

occursCheck (v ; s; x ) = v 2 reachlist (vars x ) where

reachlist vs = vs ++ concat (List reachable vs)

reachable v = reachlist (mayvars (lookupIn (s; v)))

mayvars none = [ ]

mayvars (one y) = vars y



Here, reachlist collects the variables reachable from a list of variables, while reachable

collects the variables reachable from a single variable.

The generic Term instance All we have to do now is make F

?

V an instance of the Term

class. That is surprisingly easy. For the Children class:

instance Children (F

?

V ) where

children = ((nil

�

!)

5


 rec)

�

out

mapChildren f = in

�

(id

V

+ Ff)

�

out

where 
 rec is de�ned in PolyLib, see Section 3.6. For the VarCheck class:

instance VarCheck (F

?

V ) where

varcheck = (one

5

(none

�

!))

�

out

For TopEq we use the fact that fequal tests on equality of functor structures. fequal is

de�ned in PolyLib, see Section 3.6.

instance TopEq (F

?

V ) where

topEq (t; t

0

) = fequal (==) (x 7! y 7! True) (out t) (out t

0

)

For a complete implementation of the generic uni�cation program, see [26].



5 From Functions to Relations

In the preceding chapter we have done what we ourselves have decried: we have presented

an algorithm without even a veri�cation of its correctness, let alone a construction of the

algorithm from its speci�cation. An excuse is that a full discussion of correctness would

have distracted from the main goal of that chapter, which was to show how the generic

form of the |known to be correct| algorithm is implemented. That is, however, only an

excuse since, so far as we know, no proof of correctness of the generic algorithm has ever

been constructed. In section 5.4 we remedy this lacuna partially by presenting one lemma

in such a proof of correctness. To that end, however, we need to extend the programming

calculus from total functions to relations.

5.1 Why Relations?

In a summer school on advanced functional programming, it may seem odd to want to

introduce relations but there are several good reasons for making it an imperative. In the

�rst place, speci�cations are typically relations, not total functions. The speci�cation of

the uni�cation algorithm is a case in point since it embodies both nondeterminism and

partiality. Nondeterminism is embodied in the requirement to compute a most general

uni�er, not the most general uni�er. It would be infeasible to require the latter since, in

general, there is no single most general uni�er of two terms. Partiality is also present in

the fact that a most general uni�er may not exist. Partiality can be got around in the

implementation by using the Maybe monad as we did here, but avoiding nondeterminism

in the speci�cation is undesirable.

A second reason for introducing relations is that termination arguments are typically based

on well-founded relations. Our discussion of the correctness of the uni�cation algorithm in

section 5.4 is based on the construction of a well-founded relation, although in this case

termination is not the issue at stake.

A third, compelling reason for introducing relations is that the \free theorem" for poly-

morphic functions alluded to above and discussed in detail below is based on relations

on functions and necessitates an extension of the concept of functor to relations. Also,

the most promising work we know of that aims to be precise about what is really meant

by \generic" is that due to Hoogendijk [22] which is based on a relational semantics of

higher-order polymorphism .

5.2 Parametric Polymorphism

Space does not allow us to consider the extension to relations in full depth and so we will

have to make do with a brief account of the issues involved. For more detail see [11, 1].

We believe, nevertheless, that a discussion of generic programming would be incomplete

without a summary of Reynolds' [40] abstraction theorem which has since been popularised

under the name \theorems for free" by Wadler [45]. (This summary is taken from [23] which

may be consulted for additional references.)



Reynolds' goal in establishing the abstraction theorem was to give a precise meaning to

the statement that a function is \parametrically polymorphic". Suppose we have a poly-

morphic function f of type T� for all types �. That is, for each type A there is an instance

f

A

of type TA. The action of T is extended |in a way to be made precise shortly| to

binary relations, where if relation R has type A � B, relation TR has type TA � TB.

Then parametricity of the polymorphism of f means that for any binary relation R of

type A � B we have (f

A

; f

B

) 2 TR. Reynolds' abstraction theorem is the theorem that

any polymorphic function expressible in the language de�ned in his paper is parametric.

Wadler called this a \theorem for free" because, as we show shortly, the parametricity of a

polymorphic function predicts algebraic properties of that function just from knowing the

type of the function! Another way of viewing the theorem is as a healthiness property of

functions expressible in a programming language | a programming language that guar-

antees that all polymorphic functions are parametric is preferable to one that cannot do

so.

In order to make the notion of parametricity completely precise, we have to be able to

extend each type constructor T in our chosen programming language to a function R 7!

TR from relations to relations. Reynolds did so for function spaces and product. For

product he extended the (binary) type constructor � to relations by de�ning R�S for

arbitrary relations R of type A � B and S of type C � D to be the relation of type

A�C � B�D satisfying

((u; v) ; (x; y)) 2 R�S � (u; x) 2 R ^ (v; y) 2 S :

For function spaces, Reynolds extended the ! operator to relations as follows. For all

relations R of type A � B and S of type C � D the relation R!S is the relation of type

(A!C) � (B!D) satisfying

(f; g) 2 R!S � 8(x; y:: (x; y) 2 R ) (fx; gy) 2 S) :

Note that if we equate a function f of type A!B with the relation f of type B � A

satisfying

b = fa � (b; a) 2 f

then the de�nition of f�g, for functions f and g, coincides with the de�nition of the

cartesian product of f and g given in section 2.3. Thus, not only does Reynolds' de�nition

extend the de�nition of product beyond types, it also extends the de�nition of the product

functor. Note also that the relational composition f

�

g of two functions is the same as their

functional composition. That is, a = f(gc) � (a; c) 2 f

�

g. So relational composition also

extends functional composition. Note �nally that h!k is a relation even for functions h

and k. It is the relation de�ned by

(f; g) 2 h!k � 8(x; y:: x = hy ) fx = k(gy)) :

Simpli�ed and expressed in point-free form this becomes:

(f; g) 2 h!k � f

�

h = k

�

g :



Writing the relation h!k as an in�x operator makes the rule easy to remember:

f (h!k) g � f

�

h = k

�

g :

An example of Reynolds' parametricity property is given by function application. The

type of function application is (�!�)��! �. The type constructor T is thus the function

mapping types A and B to (A!B)�A ! B. The extension of T to relations maps relations

R and S to the relation (R!S)�R ! S. Now suppose @ is any parametrically polymorphic

function with the same type as function application. Then Reynolds' claim is that @

satis�es

(@

A;C

; @

B;D

) 2 (R!S)�R ! S

for all relations R and S of types A � B and C � D, respectively. Unfolding the de�nitions,

this is the property that, for all functions f and g, and all c and d,

8(x; y:: (x; y) 2 R ) (fx; gy) 2 S) ^ (c; d) 2 R ) (f@c ; g@d) 2 S :

The fact that function application itself satis�es this property is in fact the basis of

Reynolds' inductive proof of the abstraction theorem (for a particular language of typed

lambda expressions). But the theorem is stronger because function application is uniquely

de�ned by its parametricity property. To see this, instantiate R to the singleton set f(c; c)g

and S to the singleton set f(fc ; fc)g. Then, assuming @ satis�es the parametricity prop-

erty, (f@c ; f@c) 2 S. That is, f@c = fc. Similarly, the identity function is the unique

function f satisfying the parametricity property (f

A

; f

B

) 2 R!R for all types A and B

and all relations R of type A � B |the parametricity property corresponding to the poly-

morphic type, �!� for all �, of the identity function|, and the projection function exl

is the unique function f satisfying the parametricity property (f

A;B

; f

C;D

) 2 R�S ! R

for all types A, B, C and D and all relations R and S of types A � B and C � D, respec-

tively |the parametricity property corresponding to the polymorphic type, ��� ! � for

all � and �, of the exl function.

The import of all this is that certain functions can be speci�ed by a parametricity prop-

erty. That is, certain parametricity properties have unique solutions. Most parametricity

properties do not have unique solutions however. For example, both the identity function

on lists and the reverse function satisfy the parametricity property of function f , for all

R

::

A � B ,

(f

A

; f

B

) 2 List R ! List R :

Here List R is the relation holding between two lists whenever the lists have the same

length and corresponding elements of the two lists are related by R.

Free Theorem for Monads Let us show the abstraction theorem at work on Kleisli compo-

sition. Kleisli composition is a polymorphic function of type

(b!Mc) � (a!Mb) ! (a!Mc)



for all types a, b and c. If it is parametrically polymorphic then it satis�es the property

that, for all relations R, S and T and all functions f

0

, f

1

, g

0

and g

1

, if

((f

0

; g

0

) ; (f

1

; g

1

)) 2 (S!MT ) � (R!MS)

then

(f

0

�g

0

; f

1

�g

1

) 2 R!MT :

This assumes that we have shown how to extend the functor M to relations. For our

purposes here, we will only need to instantiate R, S and T to functions, and it simpli�es

matters greatly if we use the point-free de�nition of h!k given above. Speci�cally, we

have, for all functions h, k and l,

((f

0

; g

0

) ; (f

1

; g

1

)) 2 (k!Ml) � (h!Mk)

� f de�nition of � g

f

0

(k!Ml) f

1

^ g

0

(h!Mk) g

1

� f point-free de�nition of ! for functions g

f

0

�

k = Ml

�

f

1

^ g

0

�

h = Mk

�

g

1

:

In this way, we obtain the property that for all functions f

0

, f

1

, g

0

, g

1

, h, k and l, if

f

0

�

k = Ml

�

f

1

^ g

0

�

h = Mk

�

g

1

(1)

then

(f

0

�g

0

)

�

h = Ml

�

(f

1

�g

1

) :(2)

With its seven free variables, this is quite a complicated property. More manageable proper-

ties can be obtained by instantiating the functions in such a way that the premise becomes

true. An easy way to do this is to reduce the premise to statements of the form

f

i

= : : : ^ g

j

= : : : ;

where i and j are either 0 or 1, by instantiating suitable combinations of h, k and l to

the identity function. For instance, by instantiating h and k to the identity function the

premise (1) reduces to

f

0

= Ml

�

f

1

^ g

0

= g

1

:

Substituting the right sides for f

0

and g

0

in the conclusion (2) together with the identity

function for h and k, we thus obtain

(Ml

�

f

1

) � g

1

= Ml

�

(f

1

�g

1

) :

for all functions l, f

1

and g

1

. This is the �rst of the \free theorems" for Kleisli composition

listed in section 4.1.

Exercise 5.1 Derive the other two \free theorems" stated in section 4.1 from the above

parametricity property. Investigate other properties obtained by setting combinations of

f

0

, f

1

, g

0

, g

1

to the identity function.



2

Exercise 5.2 Instantiating M to the identity functor we see that the free theorem

for Kleisli composition predicts that any parametrically polymorphic function with the

same type as (ordinary) function composition is associative. Can you show that function

composition is uniquely de�ned by its parametricity property?

2

Exercise 5.3 Derive the free theorem for catamorphisms from the polymorphic type of

f 7! ([f ]). Show that the fusion law is an instance of the free theorem.

2

5.3 Relators

As we have argued, an extension of the calculus of datatypes to relations is desirable from

a practical viewpoint. In view of Reynolds' abstraction theorem, it is also highly desirable

from a theoretical viewpoint, at least if one's goal is to develop generic programming. We

have also shown how the product functor is extended to relations. In a relational theory

of datatypes, all functors are extended to relations in such a way that when restricted to

functions all their algebraic properties remain unchanged. Functors extended in this way

are called relators.

The formal framework for this extension is known as an allegory . An allegory is a category

with additional structure, the additional structure capturing the most essential character-

istics of relations. The additional axioms are as follows. First of all, relations of the same

type are ordered by the partial order � and composition is monotonic with respect to this

order. That is,

S

1

�

T

1

� S

2

�

T

2

( S

1

� S

2

^ T

1

� T

2

:

Secondly, for every pair of relations R ; S

::

A � B, their intersection (meet) R\S exists

and is de�ned by the following universal property, for each X

::

A � B,

X � R ^ X � S � X � R \ S :

Finally, for each relationR

::

A � B its converse R

[

::

B � A exists. The converse operator

satis�es the requirements that it is its own Galois adjoint, that is,

R

[

� S � R � S

[

;

and is contravariant with respect to composition,

(R

�

S)

[

= S

[

�

R

[

:

All three operators of an allegory are connected by the modular law , also known as

Dedekind's law [41]:

R

�

S \ T � (R \ T

�

S

[

)

�

S :



Now, a relator is a monotonic functor that commutes with converse. That is, the functor

F is a relator i�,

FR

�

FS = F (R

�

S) for each R

::

A � B and S

::

B � C,(3)

F id

A

= id

FA

for each A,(4)

FR � FS ( R � S for each R

::

A � B and S

::

A � B,(5)

(FR)

[

= F (R

[

) for each R

::

A � B.(6)

Relators extend functors A design requirement which led to the above de�nition of a

relator [4, 5] is that a relator should extend the notion of a functor but in such a way

that it coincides with the latter notion when restricted to functions. Formally, relation

R

::

A � B is everywhere de�ned or total i�

id

B

� R

[

�

R ;

and relation R is single-valued or simple i�

R

�

R

[

� id

A

:

A function is a relation that is both total and simple. It is easy to verify that total and

simple relations are closed under composition. Hence, functions are closed under composi-

tion too. In other words, the functions form a sub-category. For an allegory A, we denote

the sub-category of functions by Map(A). Moreover, it is easily shown that our de�nition

guarantees that relators preserve simplicity and totality, and thus functionality of relations.

Having made the shift from categories to allegories, the extension of the functional theory

of datatypes in chapter 2 is surprisingly straightforward (which is another reason why

not doing it is short-sighted). The extension of the disjoint sum functor to a disjoint sum

relator can be done in such a way that all the properties of + and

5

remain valid, as is the

case for the extension of the theory of initial algebras, catamorphisms and type functors.

For example, catamorphisms with relations as arguments are well-de�ned and satisfy the

fusion property, the map-fusion property etc. There is, however, one catch | the process of

dualising properties of disjoint sum to properties of cartesian product is not valid. Indeed,

almost all of the properties of cartesian product that we presented are not valid, in the

form presented here, when the variables range over arbitrary relations. (The banana split

theorem is a notable exception.)

An example of what goes wrong is the fusion law. Consider id

4

id

�

R and R

4

R, where R

is a relation. If R is functional |that is, if for each y there is at most one x such that

(x; y) 2 R then these two are equal. This is an instance of the fusion law presented earlier.

However, if R is not functional then they may not be equal. Take R to be, for example,

the relation f(0; 0) ; (1; 0)g in which both 0 and 1 are related to 0. Then,

id

4

id

�

R = f((0; 0) ; 0) ; ((1; 1) ; 0)g



whereas

R

4

R = f((0; 0) ; 0) ; ((1; 1) ; 0) ; ((0; 1) ; 0) ; ((1; 0) ; 0)g :

The relation id

4

id is the doubling relation: it relates a pair of values to a single value

whereby all the values are equal. Thus, id

4

id

�

R relates a pair of equal values to 0. On the

other hand, R

4

R relates a pair of values to a single value, whereby each component of the

pair is related by R to the single value. The di�erence thus arises from the nondeterminism

in R.

In conclusion, extending the functional theory of datatypes to relations is desirable but not

without pitfalls. The pitfalls are con�ned, however, to the properties of cartesian product.

We give no formal justi�cation for this. The reader will just have to trust us that in the

ensuing calculations, where one or more argument is a relation, that the algebraic properties

that we exploit are indeed valid.

Membership We have argued that a datatype is not just a mapping from types to types

but also a functor. We have now argued that a datatype is a relator. For the correctness

of the generic uni�cation algorithm we also need to know that a membership relation can

be de�ned on a datatype.

The full theory of membership and its consequences has been developed by Hoogendijk

and De Moor [24, 22]. Here we give only a very brief account.

Let F be a relator. A membership relation on F is a parametrically polymorphic relation

mem of type a � Fa for all a. Parametricity means that for all relations R,

mem

�

FR � R

�

mem :

In fact, mem is required to be the largest parametrically polymorphic relation of this type.

The existence of a membership relation captures the idea that a datatype is a structured

repository of information. The relation mem

a

holds between a value x of type a and an

F -structure of a's if x is stored somewhere in the F -structure. The parametericity property

expresses the fact that determining membership is independent of the type a, and the fact

that mem is the largest relation of its type expresses the idea that determining membership

is independent of the position in the data structure at which a value is stored.

The parametricity property has the following consequence which we shall have occasion to

use. For all (total) functions f of type a!b,

f

�

mem

a

= mem

b

�

Ff :

5.4 Occurs-in

This section contains a proof of the generic statement that two expressions are not uni�-

able if one occurs in the other. We de�ne a (generic) relation occurs properly in and we

then show that occurs properly in is indeed a proper ordering on expressions (that is, if

expression x occurs properly in expression y then x and y are di�erent). We also show



that the occurs properly in relation is invariant under substitution. Thus, if expression x

occurs properly in expression y no substitution can unify them. To show that occurs properly in

is proper we de�ne a (generic) function size of type F

?

V ! IN and we show that size is

preserved by the relation occurs properly in. The de�nition of size involves a restriction on

the relator F which is used to guarantee correctness of the algorithm

8

.

De�nition 7 The relation occurs properly in of type F

?

V � F

?

V is de�ned by

occurs properly in = (mem

�

embr

V

[

)

+

:

(Recall that mem is the membership relation of F and that embr

V

= in

V

K

+F

�

inr where

(F

?

V , in

V

K

+F

) is an initial algebra.) Informally, the relation embr

V

[

(which has type

FF

?

V � F

?

V ) destructs an element of F

?

V into an F structure and then mem identi-

�es the data stored in that F structure. Thus mem

�

embr

V

[

destructs an element of F

?

V

into a number of immediate subcomponents. Application of the transitive closure operation

repeats this process thus breaking the structure down into all its subcomponents.

2

In our �rst lemma we show that the occurs properly in relation is closed under substi-

tutions. That is, for all substitutions f ,

x occurs properly in y ) (fx) occurs properly in (fy) :

The property is formulated without mention of the points x and y and proved using point-

free relation algebra.

Lemma 8 For all substitutions f ,

occurs properly in � f

[

�

occurs properly in

�

f :

Proof Suppose f is a substitution. That is, f = g�id for some g. Since occurs properly in

is the transitive closure of the relation mem

�

embr

V

[

it su�ces to establish two properties:

�rst, that f

[

�

occurs properly in

�

f is transitive and, second,

mem

�

embr

V

[

� f

[

�

occurs properly in

�

f :

The �rst of these is true for all functions f (i.e. relations f such that f

�

f

[

� id). (To be

precise, if R is a transitive relation and f is a function then f

[

�

R

�

f is transitive.) We

leave its simple proof to the reader. The second is proved as follows:

f

[

�

occurs properly in

�

f

� f R

+

� R g

f

[

�

mem

�

embr

V

[

�

f

� f embr

V

is a function, de�nition of embr

V

g

f

[

�

mem

�

embr

V

[

�

f

�

in

�

inr

�

embr

V

[

8

A more general proof [7] using the generic theory of F -reductivity [15, 14, 16] avoids this assumption and, indeed,

avoids the introduction of the size function altogether.



= f f = g�id = ([g

5

embr

V

]), computation g

f

[

�

mem

�

embr

V

[

�

g

5

embr

V

�

id+Ff

�

inr

�

embr

V

[

= f computation g

f

[

�

mem

�

embr

V

[

�

embr

V

�

Ff

�

embr

V

[

= f embr

V

[

�

embr

V

= id g

f

[

�

mem

�

Ff

�

embr

V

[

� f parametricity of mem g

mem

�

Ff

[

�

Ff

�

embr

V

[

� f F is a relator and f is a total function.

Thus, Ff

[

�

Ff � id g

mem

�

embr

V

[

:

2

We now de�ne a function size of type F

?

V ! IN by

size = ([zero

5

(succ

�

�mem)]) :

Here, � is the summation quanti�er. That is, for an arbitrary relation R with target IN,

(�R)x = �(m: m R x: m) :

The assumption in the de�nition of size is that F is �nitely branching: that is, for each F

structure x, the number of m such that m mem x is �nite.

Expressed in terms of points, the next lemma says that if a term x occurs properly in a

term y then the size of x is strictly less than the size of y.

Lemma 9

occurs properly in � size

[

�

<

�

size :

Proof Note that occurs properly in and < are both transitive relations. This suggests that

we use the leapfrog rule:

a

�

b

�

� c

�

�

a ( a

�

b � c

�

a

which is easily shown to extend to transitive closure:

a

�

b

+

� c

+

�

a ( a

�

b � c

�

a :

We have:

occurs properly in � size

[

�

<

�

size

� f size is a total function,

de�nition of occurs properly in g

size

�

(mem

�

embr

V

[

)

+

� <

�

size

( f < is transitive. Thus, < = <

+

.



Leapfrog rule g

size

�

mem

�

embr

V

[

� <

�

size

� f embr

V

is a total function g

size

�

mem � <

�

succ

�

embr

V

� f de�nition of size, embr

V

and computation g

size

�

mem � <

�

succ

�

�mem

�

F size

� f <

�

succ = � g

size

�

mem � �

�

�mem

�

F size

( f property of natural numbers: for all R, R � �

�

�R

That is, m R x ) m � �(m: m R x: m). g

size

�

mem � mem

�

F size

� f size is a total function,

parametricity of mem for functions g

true :

2

Corollary 10 Suppose F is a �nitely branching relator. Then

x occurs properly in y ) x 6= y :

Proof By the above lemma,

x occurs properly in y ) size x < size y :

Thus, since m < n) m 6= n,

x occurs properly in y ) x 6= y :

2

Corollary 11 If x occurs properly in y then x and y are not uni�able.

Proof By lemma 8, if x occurs properly in y then, fx occurs properly in fy, for every sub-

stitution f . Thus, for every substitution f , fx 6= fy.

2

Exercise 5.4 Take F to be (1+). What is occurs properly in? Show that the relation is

proper. (Note that the membership relation for (1+) is inr

[

.)

Take F to be a� for some �xed a. What is occurs properly in?

2



6 Solutions to Exercises

1.1 Take 
 to be set intersection, � to be set union, 0 to be the empty set and 1 to

be the universe of all colours. The initial value of a[i; j] is the singleton set containing the

edge colour as its element

2

2.5

map

Error

f (error s) = error s

map

Error

f (ok x) = ok (fx)

map

Drawing

f (above x y) = above (map

Drawing

f x) (map

Drawing

f y)

map

Drawing

f (beside x y) = beside (map

Drawing

f x) (map

Drawing

f y)

map

Drawing

f (atom x) = atom (f x)

2

2.6

(f

5

g)

4

(h

5

k) = (f

4

h)

5

(g

4

k)

� f

4

-characterisation g

f

5

g = exl

�

(f

4

h)

5

(g

4

k) ^ h

5

k = exr

�

(f

4

h)

5

(g

4

k)

� f

5

-fusion g

f

5

g = (exl

�

(f

4

h))

5

(exl

�

(g

4

k))

^ h

5

k = (exr

�

(f

4

h))

5

(exr

�

(g

4

k))

� f injectivity of

5

g

f = exl

�

(f

4

h) ^ g = exl

�

(g

4

k)

^ h = exr

�

(f

4

h) ^ k = exr

�

(g

4

k)

� f

4

- computation g

true :

2

2.7 The most obvious example is multiplication and division in ordinary arithmetic.

(Indeed this is where the two-dimensional notation is commonly used.) Addition and sub-

traction also abide with each other.

Examples in the text are: disjoint sum and composition, and cartesian product and

composition. (Indeed all binary functors abide with composition.)

The example used by Hoare was conditionals. The binary operator if p, where p is a

proposition, (which has two statements as arguments) abides with if q, where q is also a

proposition.

2

2.11 First, the

5

-+ fusion rule:

f

5

g

�

h+k = (f

�

h)

5

(g

�

k)

� f

5

characterisation g



f

5

g

�

h+k

�

inl = f

�

h

�

inl ^ f

5

g

�

h+k

�

inr = g

�

k

�

inr

� f computation rules (applied four times) g

true :

Second, the identity rule:

id+id

= f de�nition of + g

inl

5

inr

= f above g

id :

2

2.12 The pattern functor for Bin is Exl + (Exr�Exr) and for Rose is (Exl � (List Exr)) .

That is, for Bin it is the binary functor mapping a and z to a + (z�z), which is polyno-

mial, and for Rose it is the binary functor mapping a and z to a � (List z), which is not

polynomial.

2

2.13

even

�

zero

5

succ = true

5

not

�

1+even

� f

5

fusion and

5

-+ fusion,

de�nition of functor +1 g

(even

�

zero)

5

(even

�

succ) = (true

�

id

1

)

5

(not

�

even)

� f true

�

id

1

= true,

5

is injective g

even

�

zero = true ^ even

�

succ = not

�

even

� f extensionality, identifying values zero and true

with functions zero and true with domain 1 g

even(zero) = true ^ 8(n:: even(succ n) = not(even n)) :

2

2.14

out

�

in

= f de�nition of out g

([F in])

�

in

= f computation rule g

F in

�

F ([F in])

= f F is a functor g

F (in

�

([F in]))



= f de�nition of out g

F (in

�

out)

= f in

�

out = id

�F

g

F id

�F

= f F is a functor g

id

F�F

:

2

2.16 We have

NoOfTips = ([1

K

5

add0])

where add0(m;n) = m+n, and

NoOfJoins = ([0

K

5

add1])

where add1(m;n) = m+n+1. Now,

f

�

NoOfTips = NoOfJoins

( f de�nitions and fusion g

f

�

1

K

5

add0 = 0

K

5

add1

�

id + (f�f)

� f fusion g

(f

�

1

K

)

5

(f

�

add0) = 0

K

5

(add1

�

f�f)

� f injectivity g

f

�

1

K

= 0

K

^ f

�

add0 = add1

�

f�f

� f pointwise de�nitions, for all m and n g

f1 = 0 ^ f(m+n) = fm+1+fn

( f arithmetic, for all m g

fm = m�1 :

We conclude that there is always one less join in a Bin than there are tips.

2

2.17

([f ])

4

([g])

�

in = �

�

F (([f ])

4

([g]))

� f

4

fusion g

(([f ])

�

in)

4

(([g])

�

in) = �

�

F (([f ])

4

([g]))

� f catamorphism computation g

(f

�

F ([f ]))

4

(g

�

F ([g])) = �

�

F (([f ])

4

([g]))

� f

4

characterisation g

f

�

F ([f ]) = exl

�

�

�

F (([f ])

4

([g]))

^ g

�

F ([g]) = exr

�

�

�

F (([f ])

4

([g])) :



Once again, we continue with just one of the conjuncts, the other being solved by symmetry.

f

�

F ([f ]) = exl

�

�

�

F (([f ])

4

([g]))

� f postulate � = �

4

� g

f

�

F ([f ]) = exl

�

�

4

�

�

F (([f ])

4

([g]))

� f

4

computation g

f

�

F ([f ]) = �

�

F (([f ])

4

([g]))

� f postulate � = f

�


 g

f

�

F ([f ]) = f

�




�

F (([f ])

4

([g]))

( f F respects composition,

4

computation g


 = F exl :

Combining the two postulates with the �nal statement, we get

([�]) = ([f ])

4

([g]) ( � = (f

�

F exl)

4

(g

�

F exr) :

2

2.19 Substituting (a�) for F in the catamorphism rule we get the rule:

h

�

([']) = ([ ]) ( h

�

' =  

�

id�h :

This is the fusion rule used below.

([f ])

�

(�(�) g) = ([h])

� f �(�) g = ([in

�

g�id]) g

([f ])

�

([in

�

g�id]) = ([h])

( f fusion rule g

([f ])

�

in

�

g�id = h

�

id�([f ])

� f catamorphism computation g

f

�

id�([f ])

�

g�id = h

�

id�([f ])

� f � is a binary functor. Thus,

id�([f ])

�

g�id = g�([f ]) = g�id

�

id�([f ]) g

f

�

g�id

�

id�([f ]) = h

�

id�([f ])

( f cancellation g

f

�

g�id = h :

We have thus established the rule:

([f ])

�

(�(�) g) = ([f

�

g�id]) :

2



2.20 First,

�(�) id

a

= f de�nition g

([in

�

id�id])

= f � respects identities,

identity is the unit of composition g

([in])

= f identity rule g

id

�(�) a

:

Second,

�(�) (f

�

g)

= f de�nition g

([in

�

(f

�

g)�id])

= f id = id

�

id, � respects composition g

([in

�

f�id

�

g�id])

= f exercise 2.19 g

([in

�

f�id])

�

(�(�) g)

= f de�nition g

(�(�) f)

�

(�(�) g) :

2

4.1 To express Mf we use the last of the three monad equalities:

Mf

= f identities g

� � (Mf

�

id)

= f monad equality g

(�

�

f) � id :

Using mul = id�id, we obtain that, for the functor Set ,

mul x = fz j 9(y:: z2y ^ y2x)g :

The equalities are proven as follows: First,

mul

�

Mmul

= f mul = id�id g

(id�id)

�

Mmul

= f 2nd monad equality, id is identity of composition g



id�Mmul

= f id is identity of composition,

3rd monad equality, id is identity of composition g

mul�id

= f mul = id�id, Kleisli composition is associative,

mul = id�id g

id�mul

= f id is identity of composition, 2nd monad equality g

(id�id)

�

mul

= f mul = id�id g

mul

�

mul :

Second,

mul

�

�

= f mul = id�id, 2nd monad equality g

id��

= f � is unit of Kleisli composition g

id :

Third,

mul

�

M�

= f mul = id�id, 2nd monad equality g

id�M�

= f id is identity of composition, 3rd monad equality,

id is identity of composition g

��id

= f � is unit of Kleisli composition g

id :

2

4.2 (a�)

?

1 is List a. The Kleisli identity is the function mapping x to [x]. The multiplier

is the function concat that concatenates a list of lists to a list, preserving the order of the

elements. The Kleisli composition g�f �rst applies f to a value x of type a, which results

in a list of b's. Then g is mapped to all the elements of this list, and the resulting list of

lists of c's is 
attened to a list of c's.

2

4.3 Since (1+)

?

; = IN we obtain from the fusion theorem that (1+)

?

V = IN�(V+1).

Speci�cally,



IN�(V+1) is an initial X:: V+(1+X) algebra

( f fusion, IN is an initial 1+ algebra g

8(X:: (1+X)�(V+1)

�

=

V+(1+(X�(V+1))))

( f rig g

true :

The witness to the last step, rig, is the inverse of a natural isomorphism rig of type

Y+(1+(X�(Y+1)))! (1+X)�(Y+1) :

It is easily constructed:

rig = ((inl

�

!)

4

inl)

5

((inl

4

inr)

5

(inr�id)) :

The initial algebra is in

(1+)

?

= (zero

5

succ) � id

�

rig.

2

4.4

f�(g�h) = (f�g)�h

� f de�nition g

([f

5

embr])

�

(g�h) = ([(f�g)

5

embr])

�

h

( f de�nition of f�g, cancel

�

h g

([f

5

embr])

�

([g

5

embr]) = ([(f�g)

5

embr])

( f fusion, de�nition of embr g

([f

5

embr])

�

g

5

(in

�

inr) = (f�g)

5

(in

�

inr)

�

id + F ([f

5

embr])

� f fusion properties of disjoint sum,

5

is injective g

([f

5

embr])

�

g = f�g

^ ([f

5

embr])

�

in

�

inr = in

�

inr

�

F ([f

5

embr])

� f de�nition of f�g, computation laws g

true :

The veri�cation that embl is its neutral element is a straightforward use of the computation

rules.

2

5.1 Substituting the identity function for h and l, we get

f

0

� (Mk

�

g

1

) = (f

0

�

k) � g

1

:

Substituting the identity function for k and h, we get

(f

0

� g

0

)

�

l = f

1

� (g

0

�

l) :

2



5.2 Suppose

�

is a function that has the same polymorphic type as function composition.

Then, if it satis�es the parametricity property of composition, it is the case that, for all

relations R, S and T and all functions f

0

, f

1

, g

0

and g

1

, if

(f

0

; f

1

) 2 S!R ^ (g

0

; g

1

) 2 T!S

then

(f

0

�

f

1

; g

0

�

g

1

) 2 T!R :

Take R to be the singleton set f(f(gc) ; f(gc))g, S to be the singleton set f(gc ; gc)g and

T to be the singleton set f(c; c)g, where f and g are two functions, and c is some value such

that f(gc) is de�ned. Then (f ; f) 2 S!R and (g ; g) 2 T!S. So (f

�

g ; f

�

g) 2 T!R.

That is, (f

�

g)(c) = f(gc). Thus, by extensionality, f

�

g = f

�

g. The parametricity property

does indeed uniquely characterise function composition!

2

5.3 The type of an F -catamorphism is

(Fa!a) ! (�F ! a) :

The free theorem is thus that, for all relations R and all functions f and g, if

(f ; g) 2 FR!R

then

(([f ]) ; ([g])) 2 id

�F

!R :

Taking R to be a function h and use the point-free de�nition of !, this is the statement

that

f

�

Fh = h

�

g ) ([f ]) = h

�

([g]) :

2

5.4 Instantiating F to (1+) we get

occurs properly in

1+

= f de�nition g

(mem

1+

�

(in

(1+)

?

�

inl)

[

)

+

= f mem

1+

= inr

[

, in

(1+)

?

= (zero

5

succ) � id

�

rig g

((zero

5

succ) � id

�

rig

�

inl

�

inr)

[

+

= f de�nition of rig, computation g

(succ � id)

[
+

:

A pair (m; x) \occurs properly in" a pair (n; y) ifm < n and x = y. This particular instance

of occurs properly in is thus proper in the sense that if u \occurs properly in" v then u and

v are not equal.

F

?

1 is List a, membership is the projection exr and occurs properly in is the relation

\is a (proper) tail of".

2
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