
PolyP | a polytypic programming language extensionPatrik Jansson and Johan JeuringChalmers University of Technology and University of G�oteborgS-412 96 G�oteborg, Swedenemail: fpatrikj,johanjg@cs.chalmers.seurl: http://www.cs.chalmers.se/~fpatrikj,johanjg/AbstractMany functions have to be written over and over againfor di�erent datatypes, either because datatypes changeduring the development of programs, or because func-tions with similar functionality are needed on di�er-ent datatypes. Examples of such functions are prettyprinters, debuggers, equality functions, uni�ers, patternmatchers, rewriting functions, etc. Such functions arecalled polytypic functions. A polytypic function is afunction that is de�ned by induction on the structureof user-de�ned datatypes. This paper extends a func-tional language (a subset of Haskell) with a constructfor writing polytypic functions. The extended languagetype checks de�nitions of polytypic functions, and infersthe types of all other expressions using an extension ofJones' theories of quali�ed types and higher-order poly-morphism. The semantics of the programs in the ex-tended language is obtained by adding type argumentsto functions in a dictionary passing style. Programs inthe extended language are translated to Haskell.1 IntroductionComplex software systems usually contain many data-types, which during the development of the system chan-ge regularly. Developing innovative and complex soft-ware is typically an evolutionary process. Furthermore,such systems contain functions that have the same func-tionality on di�erent datatypes, such as equality func-tions, print functions, parse functions, etc. Softwareshould be written such that the impact of changes tothe software is as limited as possible. Polytypic pro-grams are programs that adapt automatically to chang-ing structure, and thus reduce the impact of changes.Submitted to the 24th Annual SIGPLAN-SIGACTSymposium on Principles of Programming Languages,Paris, France, January 15{17, 1997.

This e�ect is achieved by writing programs such thatthey work for large classes of datatypes.Consider for example the function length :: Lista -> Int, which counts the number of values of typea in a list. There is a very similar function length:: Tree a -> Int, which counts the number of oc-currences of a's in a tree. We now want to generalisethese two functions into a single function which is notonly polymorphic in a, but also in the type constructor;something like length :: d a -> Int, where d rangesover type constructors. We call such functions polytypicfunctions [15]. Once we have a polytypic length func-tion, function length can be applied to values of anydatatype. If a datatype is changed, length still be-haves as expected. For example, the datatype List ahas two constructors with which lists can be built: theempty list constructor, and the Cons constructor, whichprepends an element to a list. If we add a constructorwith which we can append an element to a list, func-tion length still behaves as expected, and counts thenumber of elements in a list.The equality function in ML and Ada and the func-tions in the classes that can be derived in Haskell are ex-amples of widely used polytypic functions. These func-tions are automatically generated by the compiler, butthe de�nitions of these functions cannot be given in thelanguages themselves. In this paper we investigate alanguage extension with which such functions can bede�ned in the language. Polytypic functions are usefulin many situations; more examples are given in Jeuringand Jansson [16].A polytypic function can be applied to values of alarge class of datatypes, but some restrictions apply. Werequire that a polytypic function is applied to valuesof regular datatypes. A datatype D a is regular if itcontains no function spaces, and if the arguments of thedatatype constructor on the left- and right-hand sidein its de�nition are the same. The collection of regulardatatypes contains all conventional recursive datatypes,such as Nat, List a, and di�erent kinds of trees. We

introduce the class Regular of all regular datatypes,and we write: length :: Regular d => d a -> IntPolytypic functions can be de�ned on a larger class ofdatatypes, including datatypes with function spaces [9,28], but we will not discuss these extensions.1.1 Polymorphism and polytypismPolytypism di�ers from both parametric polymorphismand ad-hoc polymorphism (overloading). This subsec-tion explains how.A traditional polymorphic function such ashead :: [a] -> acan be seen as a family of functions - one for each in-stance of a as a monomorphic type. There need onlybe one de�nition of head; the typing rules ensure thatvalues of type a are never used. A polymorphic functioncan be implemented as a single function that works onboxed values.An ad-hoc polymorphic function such as(+) :: Num a => a -> a -> ais also a family of functions, one for each instance in theNum class. These instances may be completely unrelatedand each instance is de�ned separately. Helped by typeinference a compiler can almost always �nd the correctinstance.The polymorphism of a polytypic function such aslength :: Regular d => d a -> Intis somewhere in between parametric and ad-hoc poly-morphism. A single de�nition of length su�ces, butlength has di�erent instances in di�erent contexts.Here the compiler generates instances from the de�-nition of the polytypic function and the type in thecontext where it is used. A polytypic function maybe parametric polymorphic, but it need not be: func-tion sum :: Regular d => d Int -> Int, which re-turns the sum of the integers in a value of an arbitrarydatatype, is polytypic, but not parametric polymorphic.1.2 Writing polytypic programsThere exist various ways to implement polytypic pro-grams in a typed language. Three possibilities are:� using a universal datatype;� using higher-order polymorphism and constructorclasses;� using a special syntactic construct.

Polytypic functions can be written by de�ning a univer-sal datatype, on which we de�ne the functions we wantto have available for large classes of datatypes. Thesepolytypic functions can be used on a speci�c datatypeby providing translation functions to and from the uni-versal datatype. However, using universal datatypeshas several disadvantages: the user has to write all thetranslation functions, type information is lost in thetranslation phase to the universal datatype, and typeerrors can occur when programs are run. Furthermore,di�erent people will use di�erent universal datatypes,which will make program reuse more di�cult.If we use higher-order polymorphism and construc-tor classes for de�ning polytypic functions [12, 19], typeinformation is preserved, and we can use current func-tional languages such as Gofer and Haskell for imple-menting polytypic functions. However, writing suchprograms is rather cumbersome: programs become clut-tered with instance declarations, and type declarationsbecome cluttered with contexts. Furthermore, it is hardto deal with mutual recursive datatypes.Since the �rst two solutions to writing polytypicfunctions are dissatisfying, we have extended (a subsetof) Haskell with a syntactic construct for de�ning poly-typic functions. Thus polytypic functions can be imple-mented and type checked. We will use the name PolyPboth for the extension and the resulting language. Con-sult the pagehttp://www.cs.chalmers.se/~johanj/polytypism/to obtain a preliminary version of a compiler that com-piles PolyP into Haskell (which subsequently can becompiled with a Haskell compiler), and for the latestdevelopments on PolyP.1.3 PolyPPolyP is an extension of a functional language that al-lows the programmer to de�ne and use polytypic func-tions. The underlying language in this article is a sub-set of Haskell and hence lazy, but this is not essentialfor the polytypic extension. The extension introduces anew kind of (top level) de�nition, the polytypic con-struct, used to de�ne functions by induction over thestructure of datatypes. Since datatype de�nitions canexpress sum- , product-, parametric- and recursive ty-pes, the polytypic construct must handle these cases.PolyP type checks polytypic value de�nitions andwhen using polytypic values types are automaticallyinferred1. The type inference algorithm is based uponJones' theories of quali�ed types [18] and higher-orderpolymorphism [20]. The semantics of PolyP is de�ned1Just as in Haskell, sometimes explicit type annotations are neededto resolve overloading.2

by adding type arguments to polytypic functions in adictionary passing style. We give a type based transla-tion from PolyP to Haskell that uses partial evaluationto completely remove the dictionary values at compiletime. Thus we avoid run time overhead for creatinginstances of polytypic functions.The compiler for PolyP is still under development,and has a number of limitations. Polytypic functionscan only be applied to values of non mutual recursive,regular datatypes with one type argument. Multipletype arguments can be encoded in a single sum-type,but we are working on a more elegant treatment of mul-tiple type arguments. One of PolyP's predecessors (apreprocessor that generated instances of polytypic func-tions [11]) could handle mutual recursive datatypes, andwe hope to port this part of the predecessor to PolyPin the near future. In the future PolyP will be ableto handle mutual recursive datatypes with an arbitrarynumber of type arguments and in which function spacesmay occur.1.4 Background and related workPolytypic functions are standard in the Squiggol com-munity, see [24, 26, 27]. Generating instances for spe-ci�c polytypic functions, such as (==), map, cata, hylo,etc. for a given type, is rather simple and has beendemonstrated by several authors [3, 8, 11, 13, 31].Given a number of prede�ned polytypic functionsmany others can be de�ned, and amongst others Jay etal's type system [2, 13], and Jones' type system based onquali�ed types and higher-order polymorphism [18, 20]can be used to type check expressions in a languagewith prede�ned polytypic functions. Our approach dif-fers from these approaches in that we only give twoprede�ned polytypic functions, and we supply a con-struct to de�ne new polytypic functions by inductionover the structure of datatype de�nitions. This di�er-ence is essential for polytypic programming, and can becompared with the di�erence between the �rst versionsof ML that gave a number of prede�ned datatypes andthe later versions of ML that provided a few built in ty-pes and a construct for de�ning user-de�ned datatypes.Using a two level language, Sheard and Nelson [30]show how to write well-typed polytypic programs. Apolytypic program is obtained by embedding secondlevel type declarations as values in �rst level compu-tations. The two level language is more powerful thanour language, but it is also a much larger extension ofcommon functional programming languages.Adaptive object-oriented programming [23, 29] is aprogramming style similar to polytypic programming.In adaptive OOP methods (corresponding to our poly-typic functions) are attached to groups of classes (ty-

pes) that usually satisfy certain constraints (such asbeing regular). In adaptive OOP one abstracts fromconstructor names instead of datatype structure. Thisresults in a programming style in which typing playsa much less prominent role than in polytypic program-ming. However, the resulting programs have very simi-lar behaviour.1.5 About this paperWe will use Haskell syntax for programs and types inour examples. We will use a backward function arrowin types (and kinds), b <- a, as syntactic sugar for a-> b.Section 2 introduces polytypic programming. Sec-tion 3 discusses the type inference and checking algo-rithms used in PolyP. Section 4 gives the semantics ofPolyP, and Section 5 shows how to generate code forPolyP programs. Section 6 concludes the paper.2 Polytypic programmingIn this section we will show how to write polytypic pro-grams using PolyP. For an extensive introduction topolytypic programming see Jeuring and Jansson [16].2.1 Functors for datatypesTo de�ne a polytypic function, we have to be able tode�ne functions by induction over the structure of adatatype. The structure of a datatype is described bymeans of the functor de�ning the datatype.Consider the datatype List a de�ned bydata List a = Nil | Cons a (List a)Values of this datatype are built by prepending valuesof type a to a list. This datatype can be viewed as the�xed point with respect to the second argument of thedatatype FList a x de�ned bydata FList a x = FNil | FCons a xThe datatype FList a x describes the structure of thedatatype List a. Since we are only interested in thestructure of List a, the names of the constructors ofFList are not important. We de�ne FList using a con-ventional notation by removing FList's constructors(writing () for the empty space we obtain by removingFNil), replacing | with +, and replacing juxtapositionwith �. FList a x = () + a� xWe now abstract from the arguments a and x in FList.Constructor Par returns the parameter a (the �rst argu-ment), and Rec returns the recursive parameter x (the3

second argument). Operators + and � and the emptyproduct () are lifted.FList = () + Par �RecFList is the functor2 of List a.The datatype Tree a is de�ned bydata Tree a = Leaf a | Bin (Tree a) (Tree a)Applying the same procedure as for the datatype Lista, we obtain the following de�nition.FTree = Par+Rec�RecFTree is the functor of Tree a.We have given functors that describe the structureof the datatypes List a and Tree a. We have that foreach regular datatype there exists a (bi)functor F thatdescribes the structure of the datatype3.For our purposes, a functor is a value generated bythe following grammar.F ::=f j F + F j F � F j () j Par j Rec j D@F j Con �where f is a functor variable, D generates datatypeconstructors and � in Con � is a type. The alterna-tive Con � in this grammar is used in the description ofthe structure of a datatype that contains constant typessuch as Bool, Char, etc. The alternative D@F is usedto describe the structure of types that are de�ned interms of other user-de�ned types, such as the datatypeof rose-trees :data Rose a = Fork a (List (Rose a))The functor we obtain for this datatype isFRose = Par � (List @Rec)2.2 The polytypic constructWe introduce a new construct polytypic for de�ningpolytypic functions by induction on the structure of afunctor:polytypic p :: t = case f of ffi -> eigwhere p is the name of the value being de�ned, t is itstype, f is a functor variable, fi are functor patternsand ei are PolyP expressions. The explicit type in thepolytypic construct is needed since we cannot in gen-eral infer the type from the cases.The informal meaning is that we de�ne a functionthat takes a functor (a value describing the structure of2In fact, FList is a bifunctor: a functor that takes two arguments;we will use both terms functor and bifunctor for bifunctors.3A datatype can be modelled as the initial algebra in the categoryof F a-algebras [24], where F is the the functor of the datatype.

a datatype) as its �rst argument. This function selectsthe expression in the �rst branch of the case matchingthe functor. Thus the polytypic construct is a templatefor constructing instances of polytypic functions giventhe functor of a datatype. The functor argument of thepolytypic function need not (and cannot) be suppliedexplicitly but is inserted by the compiler during typeinference.As a running example throughout the paper we takethe function flatten de�ned in �gure 1. When flattenflatten :: Regular d => d a -> [a]flatten = cata flpolytypic fl :: f a [a] -> [a] =case f ofg + h -> either fl flg * h -> \(x,y) -> fl x ++ fl y() -> \x -> []Par -> \x -> [x]Rec -> \x -> xd @ g -> concat . flatten . pmap flCon t -> \x -> []data Either a b = Left a | Right beither :: (a->c) -> (b->c) -> Either a b -> ceither f g (Left x) = f xeither f g (Right x) = g xFigure 1: The de�nition of flattenis used on an element of type Tree a, the compiler per-forms roughly the following rewrite steps to constructthe actual instance of flatten for Tree:flattenTree ! cataTree flFTreeIt follows that we need an instance of cata on the data-type Tree a, and an instance of function fl on the func-tor of Tree a. For the latter instance, we use the def-inition of FTree and the de�nition of fl to transformflFTree as follows.flFTree ! flPar+Rec�Rec ! either flPar flRec�RecWe transform the functions flPar and flRec�Rec sepa-rately. For flPar we haveflPar ! nx -> [x]and for flRec�Rec we haveflRec�Rec! n(x,y) -> flRec x ++ flRec y! n(x,y) -> (nx -> x) x ++ (nx -> x) y4

The last function can be rewritten into uncurry (++),and thus we obtain the following function for
atteninga tree:cataTree (either (nx -> [x]) (uncurry (++)))By expanding cataTree in a similar way we obtain aHaskell function for the instance of flatten on Tree.The catamorphism, or generalised fold, on a data-type takes as many functions as the datatype has con-structors (combined into a single argument by means offunction either), and recursively replaces constructorfunctions with corresponding argument functions. It isa generalisation to arbitrary regular datatypes of func-tion foldr de�ned on lists. We will give the de�nitionof cata in the next subsection.2.3 Basic polytypic functionsIn the de�nition of function flatten we used functionslike cata and pmap. This subsection de�nes these andother basic polytypic functions.Since polytypic functions cannot refer to construc-tor names of speci�c datatypes, we introduce the pre-de�ned functions out and inn. Function out is used inpolytypic functions instead of pattern matching on theconstructors of a datatype. For example out on Tree isde�ned as follows:outTree (Leaf x) = Left xoutTree (Bin l r) = Right (l,r)Function inn is the inverse of function out. It collectsthe constructors of a datatype into a single constructorfunction.out :: Regular d => d a -> fd a (d a)inn :: Regular d => d a <- fd a (d a)where fd abbreviates FunctorOf d. FunctorOf is aspecial type constructor that takes a datatype construc-tor, and returns its functor4. It is our main means forexpressing the relation between datatypes and functors.In category theory, a functor is a mapping betweencategories that preserves the algebraic structure of thecategory. Since a category consists of objects (types)and arrows (functions), a functor consists of two parts:a de�nition on types, and a de�nition on functions. Thefunctors we have seen until now are functions that taketwo types and return a type. The part of the functorthat takes two functions and returns a function is calledfmap, see �gure 2.Using fmap we can de�ne the polytypic version offunction map, pmap, as follows:4With datatypes as �x-points of functors, FunctorOf is the `un�x'.

polytypic fmap ::(a -> c) -> (b -> d) -> f a b -> f c d= \p r -> case f ofg + h -> fmap p r -+- fmap p rg * h -> fmap p r -*- fmap p r() -> idPar -> pRec -> rd @ g -> pmap (fmap p r)Con t -> idf -+- g = either (Left . f) (Right . g)(f -*- g) (x,y) = (f x , g y)Figure 2: De�nition of fmap.pmap :: Regular d => (a -> b) -> d a -> d bpmap f = inn . fmap f (pmap f) . outwhere out takes the argument apart, fmap applies f toparameters and (pmap f) recursively to substructuresand inn puts the parts back together again.Function cata is also de�ned in terms of functionfmap:cata :: Regular d =>(FunctorOf d a b -> b) -> (d a -> b)cata f = f . fmap id (cata f) . outThis one-liner, together with the de�nition of fmap isall that is needed to obtain a catamorphism for everyregular datatype.2.4 Catamorphisms on speci�c datatypesSince catamorphisms are not only useful when de�ningpolytypic functions, but also when de�ning functions onspeci�c datatypes, we provide a shorthand notation forcreating the function argument to cata: fci -> eig.As an example, consider the following datatype of sim-ple expressions.data Expr a = Const a| Add (Expr a) (Expr a)| Mul (Expr a) (Expr a)Function eval evaluates an expression.eval :: Num a => Expr a -> aeval = cata fevalwhere feval = { Const -> idAdd -> (+)Mul -> (*) }Evaluating eval expr for some expr :: Expr a willresult in replacing each constructor in expr with itscorresponding function.5

2.5 More polytypic functionsWe can de�ne a polytypic equality function using apolytypic zip function:(==) :: (Regular d,Eq a) => d a -> d a -> Boola == b = maybe False(all (uncurry (==)) . flatten)(pzip (a,b))pzip :: Regular d =>(d a,d b) -> Maybe (d (a,b))fzip :: Bifunctor f =>(f a b,f c d) -> Maybe (f (a,c) (b,d))where maybe, all and uncurry are prede�ned Haskellfunctions. Function pzip is a generalisation of the Has-kell function zip :: [a] -> [b] -> [(a,b)]. Func-tion zip takes a pair of lists to a list of pairs. If the listsare of unequal length (that is their structures are di�er-ent) the longer list is truncated (replaced by the emptystructure). In pzip a pair of structures is mapped toJust a structure of pairs if the structures are equal, andNothing otherwise, since it is in general impossible toknow what `truncate' or an `empty structure' means fora type d a. Function pzip is de�ned using the nonre-cursive variant fzip, which is de�ned by means of thepolytypic construct.The evaluation of a == b gives False if pzip (a,b)gives Nothing and checks that all pairs in the zippedstructure are equal otherwise.In the next subsection we will use function separatewhich separates a value into its structure and its con-tents.separate :: Regular d => d a -> (d (),[a])separate x = (pmap (const ()) x, flatten x)Function separate is the central function in Jay's [14]representation of values of shapely types: a value of ashapely type is represented by its structure, obtainedby replacing all contents of the value with (), and itscontents, obtained by
attening the value.2.6 Polytypic data compressionA considerable amount of internet tra�c consists of�les that possess structure | examples are databases,html �les, and JavaScript programs | and it will payto compress these structured �les. Structure-speci�ccompression methods give much better compression re-sults than conventional compression methods such asthe Unix compress utility [1, 32]. For example, Unixcompress typically requires four bits per byte of Pascalprogram code, whereas Cameron [4] reports compres-sion results of one bit per byte Pascal program code.

The basic idea of the structure-speci�c compressionmethods is simple: parse the input �le into a structuredvalue, separate structure from contents, compress thestructure into a bit-string by representing constructorsby numbers, and compress the resulting string and thecontents with a conventional compression method. Forexample, suppose we have the following datatype fortrees:data Tree a = Leaf a | Bin (Tree a) (Tree a)and a �le containing the following tree tBin (Bin (Leaf "bar") (Leaf "car"))(Bin (Leaf "far") (Leaf "war"))Separating structure from contents gives:Bin (Bin (Leaf ()) (Leaf ()))(Bin (Leaf ()) (Leaf ()))and a list containing the four words bar, car, far andwar. Assigning 0 to Leaf and 1 to Bin , the above struc-ture can be represented by 1100100. This bit-stringequals 100 when read as a binary number, and hencethis list can be represented by the 100'th ASCII char-acter `d'. So the tree t can be represented by the listof words [d,bar,car,far,war]. The tree t is storedin 68 bytes, and its compressed counterpart requires 19bytes. This list can be further compressed using a con-ventional compression method.Most authors of program code compression programs[4, 5] observe that this method works for arbitrary struc-tured objects, but most results are based on compress-ing Pascal programs. To compress JavaScript programswe will have to write a new compression program. Itis desirable to have a polytypic data compression pro-gram.The description of the basic idea behind polytypicdata compression is translated into a polytypic programpcompress as follows. Function pcompress takes asargument a description (concrete syntax) of how toprint values of a datatype (the abstract syntax).pcompress :: (Regular d,Text a) =>Syntax d -> String -> Stringpcompress concrete_syntax =ccompress. structure_compress -*- show. separate. parse concrete_syntaxWe will describe each of the new functions above inturn. We will omit the precise de�nitions of these func-tions.Function parse is a polytypic function of typeparse::Regular d => Syntax d -> String -> d a6

It takes a description of the concrete syntax of a data-type, and returns a parser for that concrete syntax. Itis only de�ned if the grammar for the concrete syntaxsatis�es certain properties.Function structure compress takes a structure, re-places its constructors by numbers, and turns the result-ing structure into a string.structure_compress :: d () -> StringFunction show :: Text a => a -> String printsthe content list generated by separate and, �nally,function ccompress uses a conventional compressionprogram to compress the pair of strings.ccompress :: (String,String) -> String3 Type inferencePolytypic value de�nitions can be type checked, andfor all other expressions the type can be inferred. Thissection discusses the type checking and type inferencealgorithms.The �rst subsection introduces the core languagewithout the polytypic construct, but with quali�edand higher-order polymorphic types. The second sub-section extends the core with PolyP in two steps. Thethird subsection discusses uni�cation in the extendedlanguage, and the fourth subsection shows how to typecheck a polytypic value de�nition.3.1 The core languageOur core language is an extension of core-ML with qual-i�ed types and higher order polymorphism [20], see �g-ure 3. Each constructor in this language has a super-script denoting its kind. For example, a basic type haskind *, and a datatype constructor such as List haskind * -> *. We call the resulting language QML. Theset of constructor constants contains:->, (,), Either :: * -> * -> *A program consists of a list of datatype declarationsand a binding for main.The typing rules and the type inference algorithmare based on the extensions of the standard rules and al-gorithm [6] that handle quali�ed and higher-order poly-morphic types, see Jones [18, 20]. Compared to the tra-ditional Hindley-Milner system the type judgements areextended with a set of predicates P . The rules involv-ing essential changes in the predicate set are shown in�gure 4. The other rules and the algorithm are omitted.The entailment relation k� relates sets of predicates andis used to reason about quali�ed types, see [18].

E ::= x variablej EE applicationj �x:E abstractionj let Q in E let-expressionQ ::= x = E variable bindingC� ::= �� constantsj �� variablesj C�0!�C�0 applications� ::= C� types� ::= P) � quali�ed types� ::= 8t�i :� type schemesFigure 3: The core language QML()E) P j � ` e : �) � P k��P j � ` e : �()I) P; � j � ` e : �P j � ` e : �) �Figure 4: Some of the typing rules for QML3.2 The polytypic language extensionThe polytypic extension of QML consists of two parts- an extension of the type system and an extension ofthe expression language. We call the extended QMLlanguage polyQML.3.2.1 Extending the type systemThe type system is extended by generalising the uni�-cation algorithm and by adding new types, kinds andclasses to the initial type environment. The initial typ-ing environment of the language polyQML consists offour components: the typings of the functions inn andout, the type classes Regular and Bifunctor, two typeconstructors FunctorOf and Mu, and the collection offunctor constructors (+, *, @, (), Par, Rec and Con t).� Functions inn and out were introduced in sec-tion 2.3.out :: Regular d => d a -> fd a (d a)inn :: Regular d => d a <- fd a (d a)where fd abbreviates FunctorOf d. Note thatthese functions have quali�ed higher-order poly-morphic types.7

� The class Regular contains all regular datatypesand the class Bifunctor contains the functors ofall regular datatypes. To re
ect this the entail-ment relation is extended as follows for polyQML:k� Regular D, for all regular datatypes D aRegular d k� Bifunctor (FunctorOf d)� FunctorOf is a type constructor that takes a data-type constructor and represents its functor. Typeconstructor Mu is the inverse of FunctorOf: it takesa functor, and represents the datatype that hasthe functor as structure. As there may be di�er-ent datatypes with the same structure, we add asecond argument of Mu to disambiguate types. Thetype constructor Mu is useful when we want to re-late similar but di�erent types. FunctorOf and Muhave the following kinds:FunctorOf :: 1 -> 2Mu :: 1 <- (2,1)where 1 abbreviates the kind of regular type con-structors (*->*) and 2 abbreviates the kind of bi-functors (*->*->*).� The functor constructors obtained from the non-terminal F are added to the constructor constants,and have the following kinds:* , + :: 2 -> 2 -> 2@ :: 1 -> 2 -> 2(),Par,Rec,Con t :: 2Each of these constructors has one rule in the en-tailment relation of one of the following forms:Bifunctor f,Bifunctor g k� Bifunctor(f+g)Regular d, Bifunctor g k� Bifunctor (d@g)k� Bifunctor ParThe resulting type system is quite powerful; it canbe used to type check many polytypic programs in acontext assigning types to a number of basic polytypicfunctions. But although we can use and combine poly-typic functions, we cannot de�ne new polytypic func-tion by induction on the structure of datatypes.At this point we could choose to add some basic poly-typic functions that really need an inductive de�nitionto the typing environment. This would give us roughlythe same expressive power as the language given byJay [13] extended with quali�ed types. As a minimalexample we could add fmap to the initial environment:fmap :: Bifunctor f =>(a->b) -> (c->d) -> f a c -> f b dletting us de�ne and type check polytypic functions likepmap and cata. The type checking algorithm wouldfor example derive pmap (+1) (Leaf 4) :: Regular

�0 = (�;
);
 = (x : �)Pi j �0 ` ei : ff 7! fig�P1; : : : ; Pn j � `polytypic x : � = case f of ffi ! eig :
Figure 5: The typing rule for polytypictype (f + g) a b = Either (f a b) (g a b)type (f * g) a b = (f a b , g a b)type () a b = ()type Par a b = atype Rec a b = btype (d @ g) a b = d (g a b)type Con t a b = tFigure 6: Interpreting functors as type synonymsTree => Tree Int. But it would, at best, be hard towrite a polytypic version of a function like zip. Addingthe polytypic construct to our language will make writ-ing polytypic programs much simpler.3.2.2 Adding the polytypic constructTo add the polytypic construct, the production forvariable bindings in the let-expression, Q, is extendedwithpolytypic x : � = case f�!�!� of fFi ! Eigwhere f is a functor variable, and F is the nonterminalthat describes the language of functors de�ned in Sec-tion 2.1. The resulting language is polyQML. To be ableto do the case analysis over a functor, it must be builtup using the operators +, *, @ and the type constants(), Par, Rec and Con t. This is equivalent to being inthe class Bifunctor and thus the context Bifunctor fis always included in the type � of a function de�nedby the polytypic construct. (But it need not be givenexplicitly.)The typing rules for polyQML are the rules fromQML together with the rule for typing the polytypicconstruct given in �gure 5. For the notation used, see[18]. Note that the polytypic construct is not an ex-pression but a binding, and hence the typing rule re-turns a binding. The rule is not as simple as it looks- the substitution ff 7! fig replaces a functor variablewith a functor interpreted as a partially applied typesynonym, see �gure 6.
8

3.3 Uni�cationThe (omitted) typing rule for application uses a uni�-cation algorithm to unify the argument type of a func-tion with the type of its argument. The presence ofthe equalities concerning Mu and FunctorOf complicateuni�cation.The uni�cation algorithm we use is an extension ofthe kind-preserving uni�cation algorithm of Jones [20],which in its turn is an extension of Robinson's well-known uni�cation algorithm. We unify under the equal-ities Mu (FunctorOf d,d) = d (1)FunctorOf (Mu (f,d)) = f (2)Mu(FD,D) = Mu(FunctorOf D,D)(3)where FD is the functor corresponding to the datatype Da built with the functor constructors. The last equalityrepresents a set of equalities: one such equality is gener-ated for each regular datatype declared in the program.For example, if a program declares the datatype Lista, the equalityMu(()+Par*Rec,List) = Mu(FunctorOf List,List)is generated.We will write C �� C 0 if C and C 0 are uni�ed un-der equalities (1), (2), and (3) by substitution �. Forexample, we haveTree a ��1 Mu (f,d) aMu (f + g,d) ��2 Mu (FunctorOf List,List)where � �1 = ff 7! FunctorOf Tree;d 7! Treeg�2 = ff 7! ();g 7! Par*Rec; d 7! ListgUni�cation under equalities is known as semanticuni�cation, and is considerably more complicated thansyntactic uni�cation. In fact, for many sets of equali-ties it is impossible to construct a (most general) uni-�er. However, if we can turn the set of equalities underwhich we want to unify into a complete (normalisingand con
uent) set of rewriting rules, we can use oneof the two algorithms (using narrowing or lazy termrewriting) from Martelli et al. [21, 25] to obtain a mostgeneral uni�er for terms that are uni�able.If we replace the equality symbol by! in our equali-ties, we obtain a complete set of rewriting rules. We usethe recursive path orderings technique as developed byDershowitz [7, 21] to prove that the rules are normal-ising, and we use the Knuth-Bendix completion proce-dure [21, 22] to prove that the rules are con
uent. Bothproofs are simple.Theorem. If there is a uni�er for two given types C,C 0, then C �� C 0 using Jones [20] for kind-preserving

�0 = (�;
);
 = (x : 8fg(�))Pi j Si(Ti�1�0) ẁ ei : �i8Tn�0(Sn � � �Si+1(Pi) �i)) � ff 7! fig�T0 = fg; Ti = SiTi�1� ẁ polytypic x : � = case f of ffi ! eig :
Figure 7: The alternative for polytypic in Wuni�cation and Martelli et al's [25] algorithm for seman-tic uni�cation, and � is a most general uni�er for C andC 0. Conversely, if no uni�er exists, then the uni�cationalgorithm fails.3.4 Type checking the polytypic constructInstances of polytypic functions generated by means ofa function de�ned with the polytypic construct shouldbe type correct. For that purpose we type check poly-typic functions.Type checking a polytypic value de�nition amountsto checking that the inferred types for the case branchesare more general than the corresponding instances ofthe explicitly given type. So for each polytypic valuede�nition polytypic x : � = case f of ffi ! eig wehave to do the following for each branch of the case:� Infer the type of ei : �i.� Calculate the type the alternative should have ac-cording to the explicit type: �i = ff 7! fig�.� Check that �i is an instance of �i.When calculating the types of the alternatives the func-tor constructors are treated as type synonyms de�nedin �gure 6. The complete type inference/checking algo-rithmW is obtained by extending Jones' type inferencealgorithm [20] with the alternative for the polytypicconstruct given in �gure 7. As an example we will sketchhow the de�nition of fl in �gure 1 is type checked:In the g*h branch of the polytypic case, we �rst inferthe type of the expression e� = n(x,y) -> fl x ++fl y. Using fresh instances of the explicit type � =f a [a] -> [a] for the two occurrences of fl we get�� = (x b [b],y b [b]) -> [b]. We then calculatethe type �� = ff 7! g*hg� = (g*h) a [a] -> [a] =(g a [a],h a [a]) -> [a]. Since �� = fx 7! f;y 7!g; b 7! ag�� we see that �� is an instance of ��.In the Rec branch of the polytypic case, we �rst inferthe type of the expression eRec = nx -> x. The type ofthis expression is �Rec = b -> b. We then calculate thetype �Rec = ff 7! Recg� = Rec a [a] -> [a] = [a]-> [a]. Since �Rec = fb 7! [a]g�Rec we see that �Rec9

is an instance of �Rec. The other branches are handledsimilarly.If a polytypic binding can be type checked usingthe typing rules, algorithm W also manages to typecheck the binding. Conversely, if algorithmW can typecheck a polytypic binding, then the binding can betype checked with the typing rules too. Together withthe results from Jones [18] we obtain the following the-orem.Theorem. The type inference/checking algorithm issound and complete.4 SemanticsThe meaning of a QML expression is obtained by trans-lating the expression into a version of the polymorphic�-calculus called QP that includes constructs for evi-dence application and evidence abstraction. Evidenceis needed in the code generation process to constructcode for functions with contexts. For example, if thefunction (==) of type 8a . Eq a => a -> a -> Boolis used on integers somewhere, we need evidence for thefact Eq Int, meaning that Int has an equality. Oneway to give evidence in this case is simply to supplythe function primEqInt. Again, the results from thissection are heavily based on Jones' work on quali�edtypes [18].The language QP has the same expressions as QMLplus two new constructions:E ::= � � � same as for QML expressionsj Ee evidence applicationj �v:E evidence abstraction� ::= C� typesj P) � quali�ed typesj 8t�i :� polymorphic typesFor notational convenience we will also use case-state-ments. The typing rules for QP are omitted.Except for the translation rule for the polytypicconstruct given in �gure 8, the translation rules aresimple and omitted. A translation rule of the formP j S(�) ẁ e ; e0 : � can be read as an attributegrammar. The inherited attributes (the input data)consist of a type context � and an expression e andthe synthesised attributes (the output data) are the ev-idence context P , the substitution S, the translated QPexpression e0 and the inferred type � .For example, if we translate function fl :: Bifunc-tor f => f a [a] -> [a], we obtain after simpli�ca-tion the code in �gure 9.

fl = �v:case v off + g ! either flf flgf � g ! n(x,y) -> flf x ++ flg y() ! nx -> []Par ! nx -> [x]Rec ! nx -> xd @ g ! concat : flattend : pmapd flgCon t ! nx -> []Figure 9: The translation of function fl into QPIn this translation we use a conversion function C ,which transforms evidence abstractions applied to evi-dence parameters into an application of the right type.Function C is obtained from the expression � �C �0,which expresses that � is more general than �0 and thata witness for this statement is the conversion functionC : � ! �0. The inputs to function � are the two typeschemes � and �0, and the output (if it succeeds) is theconversion function C. It succeeds if the uni�cation al-gorithm succeeds on the types and the substitution isfrom the left type to the right type only, and if the ev-idence for the contexts in � can be constructed fromthe evidence for the contexts in �0. The function C isconstructed from the entailment relation extended withevidence values.As evidence for the fact that a functor f is a bifunc-tor we take a symbolic representation f of the functor(an element of the datatype described by nonterminalF from Section 2.1). So f : Bifunctor f for all f forwhich k� Bifunctor f holds. The evidence for regular-ity of a datatype D a is a dictionary with three compo-nents: the de�nitions of inn and out on the datatypeand evidence that the corresponding functor is indeeda bifunctor.Theorem. The translation from polyQML to QP pre-serves well-typedness and succeeds for programs withunambiguous type schemes.5 Code generationTo generate code for a polyQML program, we generatea QML expression from a polyQML expression in twosteps:� A polyQML expression is translated to a QP ex-pression with explicit evidence parameters (dictio-naries).� The QP expression is partially evaluated with re-spect to the evidence parameters giving a programin QML.10

�0 = (�;
);
 = (x : 8fg(�))vi : Pi j Si(Ti�1�0) ẁ ei ; e0i : �i8Tn�0(Sn � � �Si+1(Pi) �i)) �Ci 8fg(ff 7! fig�)T0 = fg; Ti = SiTi�1� ẁ (polytypic x : � = case f of ffi ! eig); (x = �v:case v of ffi ! Ci(�vi:e0i)vg) :
Figure 8: The translation of the polytypic constructWhen the program has been translated to QP all occur-rences of the polytypic construct and all references tothe classes Regular and Bifunctor have been removedand the program contains evidence parameters instead.We remove all evidence parameters introduced by poly-typism by partial evaluation [17]. The partial evalua-tion is started at the main expression (which must havean unambiguous type) and is propagated through theprogram by generating requests from the main expres-sion and its subexpressions.The evidence for regularity of a datatype D a (theentailment k� Regular D) is a dictionary containing thefunctions inn, out and the bifunctor FD. PolyP con-structs these dictionaries with a number of straightfor-ward inductive functions over the abstract syntax ofregular datatypes. Functions inn and out are now ob-tained by selecting the correct component of the dictio-nary.In practice, a PolyP program (a program written in asubset of Haskell extended with the polytypic construct)is compiled to Haskell (Hugs). In the appendix we havegiven an example PolyP program and the code that isgenerated for this program.If the size of the original program is n, and the to-tal number of subexpressions of the bifunctors of theregular datatypes occurring in the program is m, thenthe size of the generated code is at most n �m. Eachrequest for an instance of a function de�ned by meansof the polytypic construct on a datatype D a results inas many functions as there are subexpressions in the bi-functor f for datatype D a (including the bifunctors ofthe datatypes used in f). The e�ciency of the generatedcode is only a constant factor worse than hand-writteninstances of polytypic functions.6 Conclusions and future workWe have shown how to extend a functional languagewith the polytypic construct. The polytypic con-struct considerably simpli�es writing programs that ha-ve the same functionality on a large class of datatypes(polytypic programs). The extension is a small butpowerful extension of a language with quali�ed types

and higher-order polymorphism. We have developeda compiler that compiles Haskell with the polytypicconstruct to plain Haskell.A lot of work remains to be done. The compilerhas to be extended to handle mutual recursive data-types with an arbitrary number of type arguments andin which function spaces may occur. For example, forthe purpose of multiple type arguments we will intro-duce a class Functor n, with Regular = Functor 1,and Bifunctor = Functor 2. The constructors Mu andFunctorOf have to be extended in a similar fashion.The partial evaluation approach to code generationimplies that we cannot compile a module containinga de�nition of a polytypic function separately from amodule in which it is used. A solution might be totranslate polytypic programs into a language with in-tensional polymorphism [10] instead of translating poly-typic programs into QP.AcknowledgementsThe discussions on type systems for polytypic program-ming with Graham Hutton, Mark Jones, Oege de Moor,Rinus Plasmeijer, Fritz Ruehr, Tim Sheard and thecomments from an anonymous referee are gratefully ac-knowledged. Oege de Moor, Graham Hutton and Ar-jan van IJzendoorn helped implementing predecessorsof PolyP.References[1] Timothy C. Bell, John G. Cleary, and Ian H. Wit-ten. Text Compression. Prentice Hall, 1990.[2] G. Bell�e, C.B. Jay, and E. Moggi. Functorial ML.In PLILP '96. Springer-Verlag, 1996. LNCS.[3] C. B�ohm and A. Berarducci. Automatic synthesisof type �-programs on term algebras. TheoreticalComputer Science, 39:135{154, 1985.[4] Robert D. Cameron. Source encoding using syntac-tic information source models. IEEE Transactionson Information Theory, 34(4):843{850, 1988.11

[5] J.F. Contla. Compact coding of syntactically cor-rect source programs. Software{Practice and Ex-perience, 15(7):625{636, 1985.[6] L. Damas and R. Milner. Principal type-schemesfor functional programs. In 9th Symposium onPriciples of Programming Languages, POPL '82,pages 207{212, 1982.[7] N. Dershowitz. A note on simpli�cation order-ings. Information Processing Letters, 9(5):212{215,1979.[8] J.H. Fasel, P. Hudak, S. Peyton Jones, and P. Wad-ler. Sigplan Notices Special Issue on the FunctionalProgramming Language Haskell. ACM SIGPLANnotices, 27(5), 1992.[9] P. Freyd. Recursive types reduced to inductive ty-pes. In Proceedings Logic in Computer Science,LICS '90, pages 498{507, 1990.[10] Robert Harper and Greg Morrisett. Compil-ing polymorphism using intensional type analysis.In 22nd Symposium on Priciples of ProgrammingLanguages, POPL '95, pages 130{141, 1995.[11] P. Jansson. Polytypism and polytypic uni�cation.Master's thesis, Chalmers University of Technologyand University of G�oteborg, 1995.[12] P. Jansson and J. Jeuring. Polytypic uni-�cation | implementing polytypic functionswith constructor classes. In preparation, seehttp://www.cs.chalmers.se/~johanj, 1996.[13] C. Barry Jay. Polynomial polymorphism. In Pro-ceedings of the Eighteenth Australasian ComputerScience Conference, pages 237{243, 1995.[14] C. Barry Jay. A semantics for shape. Science ofComputer Programming, 25:251{283, 1995.[15] J. Jeuring. Polytypic pattern matching. In Confer-ence Record of FPCA '95, SIGPLAN-SIGARCH-WG2.8 Conference on Functional ProgrammingLanguages and Computer Architecture, pages 238{248, 1995.[16] J. Jeuring and P. Jansson. Polytypic programming.In J. Launchbury, E. Meijer, and T. Sheard, edi-tors, Proceedings of the Second International Sum-mer School on Advanced Functional ProgrammingTechniques, pages 68{114. Springer-Verlag, 1996.LNCS 1129.[17] Mark P. Jones. Dictionary-free overloading by par-tial evaluation. In ACM SIGPLAN Workshop onPartial Evaluation and Semantics-Based ProgramManipulation, Orlando, Florida, June 1994.

[18] Mark P. Jones. Quali�ed Types: Theory and Prac-tice. Cambridge University Press, 1994.[19] Mark P. Jones. Functional programming with over-loading and higher-order polymorphism. In J. Jeu-ring and E. Meijer, editors, Advanced FunctionalProgramming, LNCS 925, pages 97{136. Springer-Verlag, 1995.[20] Mark P. Jones. A system of constructor classes:overloading and implicit higher-order polymor-phism. Journal of Functional Programming, pages1{35, 1995.[21] J.W. Klop. Term rewriting systems. In Handbookof Logic in Computer Science, pages 1{116. OxfordUniversity Press, 1992.[22] D.E. Knuth and P.B. Bendix. Simple word prob-lems in universal algebras. In J. Leech, edi-tor, Computational Problems in Abstract Algebra,pages 263{297. Pergamon Press, 1970.[23] K.J. Lieberherr, I. Silva-Lepe, and C. Xiao. Adap-tive object-oriented programming | using graph-based customization. Communications of theACM, pages 94{101, 1994.[24] G. Malcolm. Data structures and program trans-formation. Science of Computer Programming,14:255{279, 1990.[25] A. Martelli, C. Moiso, and C.F. Rossi. An al-gorithm for uni�cation in equational theories. InProc. Symposium on Logic Programming, pages180{186, 1986.[26] L. Meertens. Paramorphisms. Formal Aspects ofComputing, 4(5):413{425, 1992.[27] E. Meijer, M. Fokkinga, and R. Paterson. Func-tional programming with bananas, lenses, en-velopes, and barbed wire. In J. Hughes, editor,Proceedings of the 5th ACM Conference on Func-tional Programming Languages and Computer Ar-chitecture, FPCA '91, pages 124{144, 1991.[28] E. Meijer and G. Hutton. Bananas in space:Extending fold and unfold to exponential types.In Conference Record of FPCA '95, SIGPLAN-SIGARCH-WG2.8 Conference on Functional Pro-gramming Languages and Computer Architecture,pages 324{333, 1995.[29] J. Palsberg, C. Xiao, and K. Lieberherr. E�cientimplementation of adaptive software. TOPLAS,1995.12

[30] T. Sheard and N. Nelson. Type safe abstrac-tions using program generators. Unpublishedmanuscript, 1995.[31] Tim Sheard. Automatic generation and use of ab-stract structure operators. ACM Transactions onProgramming Languages and Systems, 13(4):531{557, 1991.[32] J. Ziv and A. Lempel. A universal algorithm forsequential data compression. IEEE Transactionson Information Theory, 23(3):337{343, 1977.A AppendixA.1 A simple PolyP programCombining the de�nitions from �gure 1 (flatten) withthe de�nition of fmap in �gure 2 and the code belowwe get a small polytypic program testing the functionseparate. We assume a prelude containing composi-tion and de�nitions of the functions const, concat.main = (separate l,separate r)l = Cons 1 (Cons 2 Nil)r = Fork 1 (Cons (Fork 2 Nil) Nil)data List a = Nil | Cons a (List a)data Rose a = Fork a (List (Rose a))separate x = (pmap (const ()) x,flatten x)pmap f = inn . fmap f (pmap f) . outcata h = h . fmap id (cata h) . outA.2 The generated codeThe code generated by PolyP looks as follows. We haveedited the generated code slightly.uncurry0 f p = funcurry2 f p = f (fst p) (snd p)data List a = Nil | Cons a (List a)data Rose a = Fork a (List (Rose a))main = (separate_f4List l, separate_f4Rose r)l = Cons 1 (Cons 2 Nil)r = Fork 1 (Cons (Fork 2 Nil) Nil)separate_f4List x =(pmap_f4List (const ()) x, flatten_f4List x)separate_f4Rose x =(pmap_f4Rose (const ()) x, flatten_f4Rose x)

pmap_f4List f = inn_f4List. fmap_f4List f (pmap_f4List f). out_f4Listpmap_f4Rose f = inn_f4Rose. fmap_f4Rose f (pmap_f4Rose f). out_f4Roseflatten_f4List = cata_f4List fl_f4Listflatten_f4Rose = cata_f4Rose fl_f4Roseinn_f4List = either (uncurry0 Nil)(uncurry2 Cons)fmap_f4List =\p r -> (fmap_e p r) -+- (fmap_Ppr p r)out_f4List x = case x ofNil -> Left ()(Cons a b) -> Right (a, b)cata_f4List h = h. fmap_f4List id (cata_f4List h). out_f4Listfl_f4List = either fl_e fl_Pprinn_f4Rose = uncurry2 Forkfmap_f4Rose =\p r -> (fmap_p p r) -*- (fmap_A4Listr p r)out_f4Rose x = case x of(Fork a b) -> (a, b)cata_f4Rose h = h. fmap_f4Rose id (cata_f4Rose h). out_f4Rosefl_f4Rose = \(x, y) -> fl_p x ++ fl_A4Listr yf -+- g = either (Left . f) (Right . g)fmap_e = \p r -> idfmap_Ppr = \p r -> fmap_p p r -*- fmap_r p rfl_e = \x -> ([])fl_Ppr = \(x, y) -> (fl_p x) ++ (fl_r y)(f -*- g) (x, y) = (f x, g y)fmap_p = \p r -> pfmap_A4Listr = \p r-> pmap_f4List (fmap_r p r)fl_p = \x -> x : ([])fl_A4Listr = concat . flatten_f4List. (pmap_f4List fl_r)fmap_r = \p r -> rfl_r = \x -> x

13

