
Kansliets noteringar
Kod

Dnr

2013-2993-105127-34

2013
Project Research GrantArea of science

Natural and Engineering Sciences
Announced grants

Research grants NT April 11, 2013
Total amount for which applied (kSEK)

2014 2015 2016 2017 2018

993 1005 1049 1093 1149

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

APPLICANT
Name(Last name, First name) Date of birth Gender

Jansson, Patrik 720311-7515 Male
Email address Academic title Position

patrikj@chalmers.se Professor Biträdande professor
Phone Doctoral degree awarded (yyyy-mm-dd)

031-7725415

WORKING ADDRESS
University/corresponding, Department, Section/Unit, Address, etc.

Chalmers tekniska högskola
Institutionen för data-och informationsteknik
Programvaruteknik

41296 Göteborg, Sweden

ADMINISTRATING ORGANISATION
Administrating Organisation

Chalmers tekniska högskola

DESCRIPTIVE DATA
Project title, Swedish (max 200 char)

Starkt typade bibliotek för program och bevis

Project title, English (max 200 char)

Strongly Typed Libraries for Programs and Proofs

Abstract (max 1500 char)

Our long-term goal is to create systems (theories, programming languages, libraries and tools) which make it easy to develop
reusable software components with matching specifications. In this research project, the main focus is on libraries. Strongly-typed
programming languages allow to express functional specifications as types. Checking the types of a program then means checking it
against its specification. Within such powerful programming languages, libraries are not only building blocks of programs, but also of
proofs. We believe that such libraries will eventually become the main means of developing programs, and because they come with
strong types, the programs built using the library will come with strong properties that will make the whole easy to prove correct. The
production of such libraries will also inform the design of future strongly-typed programming languages. In the recent years,
strongly-typed programming languages have started to become usable, but remain confined to a small niche. Our libraries will make
them a viable solution for a broader range of applications, bringing higher guarantees of correctness to a wider user base. To check
the applicability of our libraries, we will apply them to classical problems of computer programming, such as certain
divide-and-conquer algorithms or optimisation problems, as well as to the construction of tools supporting dependently-typed
programming themselves.

Kod

2013-2993-105127-34
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Abstract language

English
Keywords

Software Technology, Functional Programming, Dependent Types, Program Verification, Generic Programming
Research areas

*Nat-Tek generellt
Review panel

NT-2
Classification codes (SCB) in order of priority

10201, 10205, 10103
Aspects

Continuation grant

Application concerns: Continuation grant
Registration Number: 2011-6164
Application is also submitted to

similar to: identical to:

ANIMAL STUDIES
Animal studies

No animal experiments

OTHER CO-WORKER
Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

Bernardy, Jean-Philippe Chalmers tekniska högskola
Institutionen för data-och informationsteknik

Date of birth Gender

781215-0790 Male
Academic title Doctoral degree awarded (yyyy-mm-dd)

PhD 2011-06-07

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Kod

2013-2993-105127-34
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

ENCLOSED APPENDICES
A, B, C, D, N, S

APPLIED FUNDING: THIS APPLICATION
Funding period (planned start and end date)

2014-01-01 -- 2017-12-31
Staff/ salaries (kSEK)

Main applicant % of full time in the project 2014 2015 2016 2017 2018

Patrik Jansson 20 286 296 307 318 329

Other staff

New PhD student 80 554 573 594 615 637

Total, salaries (kSEK): 840 869 901 933 966

Other projectrelated costs (kSek) 2014 2015 2016 2017 2018

Travel costs 70 70 70 70 70
Computer equipment 20 20
PhD examination 10 40
Premises 54 56 58 60 62
Direct IT costs 9 10 10 10 11

Total, other costs (kSEK): 153 136 148 160 183

Total amount for which applied (kSEK)

2014 2015 2016 2017 2018

993 1005 1049 1093 1149

ALL FUNDING
Other VR-projects (granted and applied) by the applicant and co-workers, if applic. (kSEK)

Funded 2013 Funded 2014 Applied 2014Proj.no.(M) or reg.nr.

2011-6164 800
Project title Applicant

Strongly Typed Libraries for
Programs and Proofs

Chalmers

Funds received by the applicant from other funding sources, incl ALF-grant (kSEK)

Total Proj.period Applied 2014Funding source

SSF 25000 2011-2016
Project title Applicant

RAW FP: Productivity and
Performance through Resource
Aware Functional Programming

Chalmers

Kod

2013-2993-105127-34
Name of Applicant

Jansson, Patrik

Date of birth

720311-7515

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

POPULAR SCIENCE DESCRIPTION
Popularscience heading and description (max 4500 char)

En viktig gren av forskningen inom datavetenskap handlar om att utveckla system (programspråk, verktyg, programbibliotek, teorier)
som gör det enkelt att konstruera programvara som är korrekt och återanvändbar. Detta projekt siktar på att utnyttja funktionella
programspråk med starka typsystem till att skapa bibliotek av komponenter som kan uttrycka både specifikationer och
implementationer som uppfyller dessa. Vi kommer att utnyttja datorstödd interaktiv programutveckling där automatiska verktyg ger
snabb återkoppling på vilka delar som inte uppfyller specifikationen.

Den teoretiska möjligheten att uttrycka program och bevis i samma programspråk är känd sedan många år, men det är först nyligen
som teknikutvecklingen har medgett att utveckla större programbibliotek på detta sätt. Detta innebär att det finns många spännande
grundläggande frågor kvar att utforska och vi avser börja med enkla algoritmer för att sedan steg för steg utforska hur långt det går
att komma. Vi arbetar iterativt i tre nivåer för att utveckla komponentbiblioteken. Första nivån är att implementera en lösning på ett
visst problem (sökning, optimering eller liknande), nästa nivå är att abstrahera ut gemensamma mönster till programbibliotek och
slutligen vill vi utvärdera vilka möjliga förändringar av den underliggande språket som skulle kunna förbättra resultaten. Inom projektet
kommer vi att arbeta fram korrekta generiska bibliotek uttryckta i språket Agda. Agda är ett verktyg baserat på typteori och funktionell
programmering som möjliggör utveckling av program och specifikationer i samma språk. Utvecklingen av språket har skett (och
forskrider parallellt med biblioteksprojektet) i ett internationellt samarbete (med Japan, Tyskland och England) lett av Chalmers.

På lång sikt kan bevisbart korrekta programbibliotek användas och återanvändas som byggstenar vid all slags
programvarukonstruktion. Detta ger allmänt sett mer pålitliga program, och färre buggar. Ett spännande applikationsområde är
exekverbara, överblickbara högnivåmodeller för komplexa system. Vi har hittills mest fokuserat på att modellera komplexa system
inom dataområdet (logiska ramverk, lingvistik, programspråk, hårdvara) men i samarbetet med Potsdams Institut för Klimatforskning
(PIK) har vi börjat arbeta med komplexa system i interaktionen mellan klimat, ekonomi och samhälle. PIK har under flera år arbetat
med simuleringar av komplexa system och har under senare år börjat använda funktionell programmering som ett verktyg för att
experimentera med och kommunicera de högnivåmodeller som behövs för att överblicka komplexa system. Dessa högnivåmodeller
översätts senare i flera steg till effektiv programkod som klarar att köra tunga simuleringar inom rimlig tid. (Dessa simuleringar ger
underlag till politiska beslut inom klimatområdet.) PIK tog kontakt med Chalmers för att fördjupa sin kompetens inom
högnivåmodellering med hjälp av moderna programspråk (som Haskell och C++) och vi har under åren som gått haft flera kontakter
där starkt typade bibliotek för program och bevis har utkristalliserats som det forskningsområde där Chalmers bäst kan komplettera
PIK. Samarbetet har lett till ett gemensamt EU-projekt, flera artiklar och bibliotek för program och bevis.

På Chalmers leds projektet av Patrik Jansson (inom gruppen Funktionell Programmering). Jansson har forskat om generisk
programmering sedan 1995 i olika konstellationer och det internationella kontaktnätet är mycket starkt. Den lokala forskningsmiljön
inom D&IT-institutionen är världsledande även inom flera närliggande områden - automatisk testning (Hughes, Claessen),
domänspecifika språk (Sheeran, Claessen), typteori (Coquand), språkteknologi (Ranta).

VRAPS/VR-Direct bilaga 2004.Ae Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix A
Research programme

Strongly Typed Libraries for Programs and Proofs

Patrik Jansson and Jean-Philippe Bernardy

1 Main objectives

Our long term goal is to create systems (theories, programming languages, libraries and
tools) which make it easy to develop software components and matching speci�cations.
In this research project, we aim to leverage the power of languages with strong types to
create libraries of components which can express functional speci�cations in a natural way,
and, simultaneously, implementations which satisfy those speci�cations. The ideal we aim
for is not merely correct programs, nor even proven correct programs; we want proof done
against a speci�cation that is naturally expressed for a domain expert.

Concretely, we aim to identify common patterns in the speci�cation of programs, and
capture those in libraries. At the same time, the patterns of implementations of these
speci�cations will also be captured in the library, such that the development of software
will go hand-in-hand with proofs of its functional correctness. As case-studies we will work
in three areas: simple divide-and-conquer algorithms, optimisation problems (inspired by
the Algebra of Programming [Bird and de Moor, 1997]), and testing.

2 Research area overview

Abstraction. The ability to name and reuse parts of algorithms is one of the cornerstones
of computer science. Abstracting out common patterns enables separation of concerns,
both in the small (variables, functions) and in the large (modules, libraries). Conversely,
lack of abstraction may force the implementation to contain multiple instances of a single
pattern. This process of replication is not only tedious, but error-prone, because the
risk of software error is directly correlated with the size of the program. Hence, one
important trend in the evolution of new programming languages is improved support for
abstraction�making more and more of the language features programmable. Widely used
modern languages such as Java, C++, Scheme and Haskell are actively gaining abstraction
power with Java Generics [Bracha et al., 1998], C++ Templates [Stepanov and Lee, 1995],
Scheme's composable macros [Flatt, 2002] and Haskell meta-programming [Sheard and
Peyton Jones, 2002]. But there is a danger lurking�more complex features can increase
the risk of bugs and unintended behaviour. With new abstraction mechanisms we also
need new computer-aided sanity checks of the program code.

1

Appendix A P. Jansson, 720311�7515, StrongLib

Types. Types are used in many parts of computer science to keep track of di�erent
kinds of values and to keep software from going wrong. In a nutshell, types enable the
programmer to keep track of the structure of data and computation in a way that is
checkable by the computer itself. E�ectively, they act as contracts between the implementor
of a program part and its users. If type-checking is performed statically, when the program
is compiled, it then amounts to proving that properties hold for all executions of the
program, independently of its input.

By the Curry�Howard correspondence, type systems are isomorphic to logics. Rich type
systems, such as those for languages with higher-order abstraction, correspond to higher-
order logics. A well-know example of a system based on this principle is the Coq proof
assistant [The Coq development team, 2010].

Dependently typed programs. Even though type-theory has been used as a logic for
decades, it has recently gained popularity as a medium for programming. The �agship
of dependently-typed programs is perhaps Compcert, a C compiler written and veri�ed
in Coq [Leroy, 2009]. Other applications are however rapidly appearing. Chlipala et al.
[2009] show how to develop and verify imperative programs within Coq. Oury and Swierstra
[2008] describe a library for database access which statically guarantees that queries are
consistent with the schema of the underlying database. Swamy et al. [2011] show how to
implement distributed programming with dependent types. Brady and Hammond [2012]
use dependent types to implement resource-safe programs (in the language Idris).

Agda. The programming language Agda is a system based on Martin-Löf type-theory
[Martin-Löf, 1984]. Within it, one can express programs, functional speci�cations as types,
and proofs (for example using algebraic reasoning) in a single language (by taking advantage
of the Curry�Howard correspondence). Agda is currently emerging as a lingua-franca of
programming with dependent types. Its canonical reference, Norell's Thesis [Norell, 2007],
has been cited 50 times per year since its publication indicating strong academic interest.
The focus of this project is on expressing libraries of correct programs and proofs in the
dependently typed functional language of Agda.

Libraries for dependent types. Strongly typed languages, such as Agda and Coq,
come with standard libraries that contain useful building blocks to create programs, spec-
i�cations, and proofs. The Coq library is part of a mature system which has been used in
many projects (sometimes complemented by extensions such as Ssre�ect [Gonthier, 2009]).
However, it is mostly applied to proofs rather than programs, because the Coq system is
mostly intended as a proof assistant rather than a programming language. Even projects
which aim to use Coq as a programming platform, such as Ynot and Compcert [Chlipala
et al., 2009, Leroy, 2009] retain this separation. The same observation applies to the li-
braries of most systems with dependent types. The Agda standard library (developed
mainly by Danielsson), has evolved from common abstractions needed by Agda program-
mers. It has been applied to several domains, in particular parser combinators [Danielsson,

2

Appendix A P. Jansson, 720311�7515, StrongLib

2010], Algebra of Programming [Mu et al., 2009] and Cryptography (ongoing work by N.
Pouillard in the DemTech.dk project).

In the current Agda implementation, the portions of the library dedicated to programming
are essentially decoupled from the portions dedicated to proofs. This can be a drawback:
the structure of a proof often follows the same structure as the program it refers to, therefore
keeping the two separated violates the principle of abstraction described above.

3 Project description

Our project will be organised in multiple iterations, each re�ning the libraries obtained
during the previous one. (The �rst iteration will be based on our current experience with
libraries for Haskell and Agda.) Each iteration will have the following three phases.

1. Development of a proven-correct application in a given domain. We believe
that the best way to develop libraries is by abstracting common patterns found in
various application domains. In this phase, we will assess the viability of our libraries
by applying them to a particular application domain (see below for the chosen case
studies on algebra of parallel programming, optimisation and testing).

2. Extraction of common patterns into libraries. In this phase, we will identify
common patterns found in the programs and speci�cations produced in the previous
phase, and capture them in libraries. At the same time, we will tie each pattern of
speci�cation to a pattern of implementation. We will then reimplement the applica-
tion previously produced using the software components of the library.

3. Re�nement of the programming language. In this phase we will assess the
strong and weak points of the underlying programming environment we use. We will
inform the group in charge of the development of the tool of the possible shortcomings
we might identify, and participate in their remedy, if suitable.

We work iteratively towards the following milestones (case studies) ranging from classical
problems of computer science to domain-speci�c applications:

Algebra of Parallel Programming (AoPP): A large class of sequence-processing al-
gorithms can be converted to parallel algorithms if they are monoid homomorphisms.
That is, if a function f : A ! B can be parallelised if it satis�es the following laws:

f emptyA = emptyB

f (a ++A b) = f a ++B f b

where empty and ++ denote monoidal unit and composition.

In some cases, the function is not a monoid homomorphism, but it can be phrased
in terms of an auxiliary function, which works on an extended type.

3

DemTech.dk

Appendix A P. Jansson, 720311�7515, StrongLib

A simple example is word counting, which maps strings to just a natural number
(the number of white-space separated words in the string). Addition on naturals
is associative but a single natural number does not provide enough information to
construct a monoid homomorphism. We need to keep the number of full words, plus
some information about spacing on either side.

helper : String ! CountAndSpacing
countSpaces : CountAndSpacing ! N
:::
wordCount : String ! N
wordCount = countSpaces � helper

The resulting algorithm works for any tree-like partitioning of the string into chunks
and can thus be made fast by using many processors. In this project we want to
develop a library for specifying, implementing and proving correctness of divide-
and-conquer algorithms. Initial results show that this works even for something as
sequential-looking as parsing (a paper on �E�cient Parallel and Incremental Parsing
of Practical Context-Free Languages� is in submission to ICFP 2013).

Domain speci�c modelling (DSM): What good is proof of correctness is if no-one un-
derstands the speci�cation? We take the stance that speci�cations must be readily
understood by domain experts, and therefore it is important for computer-scientists
to work with the domain speci�c concepts. We have done so in the past, in the domain
of vulnerability for climate impact [Lincke et al., 2009], grammars for language pro-
cessing [Duregård and Jansson, 2011], and Walras equilibria and Pareto-e�ciency for
economics [Ionescu and Jansson, 2013a]. In addition to domain knowledge (provided
by our contacts in Potsdam), this requires speci�cations and proofs for higher-order
constructions like monads, functors and natural transformations. In this project we
will develop speci�cations and libraries for optimisation and dynamical systems. In
particular, we will continue the work on economics and develop libraries of speci�ca-
tions for agent-based modelling. We will also work on improving language support to
present the speci�cations in a way accessible to the domain experts. An inspiration
here could be the syntactic support for domain speci�c languages in Idris [Brady and
Hammond, 2012].

Testing Tools: Property-based testing tools have proved useful to improve the con�dence
in program correctness. As it is well known, testing cannot show the absence of bugs,
only their presence. But is it possible to quantify the con�dence gained by running
a test suite? We will aim to give a more positive answer to the question. A �rst step
in this direction is to specify the set of inputs covered by a test-suite. In this project
we will focus on large abstract syntax tree (AST) types typically used in compilers,
and aim at supporting interesting subsets like well-typed terms or balanced trees
(expressible as inductive families in Agda).

4

http://www.cse.chalmers.se/~bernardy/PP.pdf
http://www.cse.chalmers.se/~bernardy/PP.pdf

Appendix A P. Jansson, 720311�7515, StrongLib

In a recent paper [Duregård et al., 2012] we presented a theory specifying and a
generic Haskell library for e�ciently enumerating the terms of complex AST-types.
The primary application is property-based testing, where it is used to de�ne both
random sampling (for example QuickCheck generators) and exhaustive enumeration
(in the style of SmallCheck). In this project we want to port this library and its
speci�cation to Agda and extend it towards inductive families. Our hypothesis is
that, compared the QuickCheck, the more algebraic enumeration approach will be
easier to specify and prove correct. (When successful, we may also extend the proofs
to QuickCheck.)

4 Preliminary �ndings

We have published results showing relevant related experience in all the suggested iteration
phases and application areas as indicated below.

4.1 The three phases of the iteration

Proven-correct applications: We have worked on correct applications in Haskell [Daniels-
son and Jansson, 2004, Jansson and Jeuring, 2002] and supporting theory [Danielsson et al.,
2006]. We have also worked on applications to climate impact research and economic mod-
elling directly in Agda: [Ionescu and Jansson, 2013a,b].

Patterns into libraries: We have developed, implemented and compared libraries of
generic functions [Jansson and Jeuring, 1998a,b, Norell and Jansson, 2004, Rodriguez et al.,
2008]. Most of this has been done in Haskell, but it has become clear that the natural
setting for generic programming is dependent types. We have also worked on libraries
for parsing [Bernardy, 2009, Duregård and Jansson, 2011], testing [Duregård et al., 2012,
Jeuring et al., 2012] and the above mentioned applications to climate and economy.

Re�nement of programming languages: We have designed a generic programming
language extension (PolyP [Jansson and Jeuring, 1997]) for Haskell, and we have been
involved in the design of the Agda language [Norell, 2007]. We are active in the develop-
ment of Agda: from the development of parametricity theory [Bernardy and Moulin, 2012,
Bernardy et al., 2012], a new kind of generic programming, based on a generalisation of
erasure, is being developed. A description and analysis of a core language exemplifying
this idea is in submission to ICFP 2013 [Bernardy and Moulin, 2013].

We have also contributed to the development of the �Concepts� feature of C++ by an
extensive comparison to Haskell's type classes [Bernardy et al., 2010c].

5

Appendix A P. Jansson, 720311�7515, StrongLib

4.2 The three application areas

AoPP: We have worked actively on implementing programs and proofs in the Algebra
of Programming tradition [Backhouse et al., 1999, Mu et al., 2008]. Recent work includes
an e�cient sparse matrix based matrix algorithm for parallel parsing and its proof (in
submission to ICFP 2013).

DSM: Dependent type theory is rich enough to express that a program satis�es a func-
tional speci�cation, but there is no a-priori method to derive a program once the speci�cation-
as-type is written. On the other hand, Bird and de Moor [1997] give a general methodology
to derive Haskell programs from speci�cations, via algebraic reasoning. Despite the strong
emphasis on correctness, their speci�cations and proofs are not expressed in a formally
checkable way. In [Mu et al., 2009] we have shown how to encode program derivation in
the style of Bird and de Moor, in Agda. A program is coupled with an algebraic derivation
from a speci�cation, whose correctness is guaranteed by the type system. We also have
very recent experience in domain modelling in Agda [Ionescu and Jansson, 2013a,b]. In
this project we want to go further in this direction and develop useful libraries of programs
and proofs with corresponding types and theorems.

Test: We have explored the tension between testing and proving of higher-order proper-
ties [Ionescu and Jansson, 2013b, Jansson et al., 2007], developed a technique for drastically
reducing the number of tests required for polymorphic properties [Bernardy et al., 2010a],
developed a library for specifying and testing class laws [Jeuring et al., 2012] and a library
for functional enumeration [Duregård et al., 2012].

4.3 Other relevant experience

Parametricity theory and applications. Thanks to the Curry-Howard correspon-
dence, the type of each program correspond to a theorem. There is another relation-
ship between types and propositions: each type-assignment gives rise to another theorem
(the parametricity condition) about the object being typed. Bernardy and Lasson [2011],
Bernardy and Moulin [2012], Bernardy et al. [2010b, 2012] have investigated how to in-
tegrate the above result in dependently typed languages. In that context, the net e�ect
is that for every type given by the programmer, an additional property becomes available
(for free) for showing the correctness of the program. An interesting application of para-
metricity is in property based testing of polymorphic functions [Bernardy et al., 2010a]. By
combining the results from this paper with our later results on parametricity for dependent
types [Bernardy et al., 2012] we want to develop a generic library for testing polymorphic
properties in Agda.

6

http://www.cse.chalmers.se/~bernardy/PP.pdf
http://www.cse.chalmers.se/~bernardy/PP.pdf

Appendix A P. Jansson, 720311�7515, StrongLib

5 Signi�cance

E�ective production of correct software is a problem which remains unsolved, and is of
great economic signi�cance. By leveraging the potential of dependently-typed languages,
this project aims to reduce the potential for errors by developing the speci�cation of a
system together with its implementation, and keeping them synchronised throughout the
lifetime of the system. A further advantage of this approach is that the skills required to
construct programs are directly applicable to understanding the speci�cations.

Software libraries have long been recognised as vehicles for increased software productivity.
First, they capture domain knowledge in terms of software solutions to the problems that a
user wants to solve. Second, they add a layer of abstraction to the underlying computation,
which allows developers to write software in terms closer to their problem domain and
usually results in improved quality and robustness. We aim to go beyond state-of-the-art
when it comes to expressivity of libraries for programming with dependent types, which is a
relatively unexplored niche. By doing so, we hope to improve the software technology �eld
in general, as these libraries should serve as examples of good design for other applications.

The scienti�c contributions to the computer science area will be in the form of software
prototypes (the libraries and other associated code will be available under an open licence),
conference and journal papers and talks (on the techniques used to create the libraries as
well as on the amendments made to the languages with dependent types), and doctoral
training. We also hope to help the wider research community by contributing libraries for
increasingly correct scienti�c computing.

6 International and national collaboration

With this project, we believe we are in an ideal situation for collaboration, as we have
contacts both upstream with the implementors of dependently-typed languages, and down-
stream with end-users of frameworks for formal modeling and implementation. In fact, we
believe that we are in the position to �ll in the niche of producing libraries for dependently-
typed languages, which are in demand from both sides, but currently lacking.

On the upstream side, we are in direct contact with the group currently in charge of the de-
velopment of Agda: The main developers, Norell and Danielsson, were Jansson's students;
and Agda Implementors' Meetings are held yearly at Chalmers. These meetings regu-
larly attract participants from research groups in Nottingham Univ., Copenhagen ITU,
TU Munich, and AIST (in Japan), among others. We have also close contacts with the
programming-logic group at Univ. of Gothenburg, which deals with the fundamental as-
pects of type-theory. (There is a VR-funded multi-project (2013�2016) lead by T. Coquand
which will work on Univalent foundations of mathematics, Game theory and Agda.)

Downstream, we have contacts with domain experts at the Potsdam Institute for Climate
Impact Research (PIK), which are in demand of tools to describe models of various dynam-
ical systems (such as the atmosphere or the economy) in formal ways, as well as e�cient

7

Appendix A P. Jansson, 720311�7515, StrongLib

implementations of these models. Since political decisions may depend on the outcome of
their simulations, matching the implementation with the models is important.

7 Organisation and budget

The project is led by Patrik Jansson in the Functional Programming (FP) group of the
Computer Science and Engineering (CSE) department at Chalmers. The work will be
carried out by Jansson (20%), J-P Bernardy (Ass. Prof. not paid by the project), a PhD
student (80%) and several MSc thesis students (not paid by the project). We apply for
70% of the total project cost from VR, the rest is covered by Chalmers and other sources.
We will bene�t from work on high-level modelling and scienti�c computing done at (and
funded by) PIK (Cezar Ionescu, Nicola Botta).

The �rst year of project is devoted to library support for Algebra of Programming (mile-
stoneAoPP), the second and third year focus is onDSM and the last years Test. Jansson
and Bernardy will together supervise the PhD student towards her PhD on �Strongly Typed
Libraries for Programs and Proofs�.

Jansson and Bernardy are partially funded (20% and 25%) by J. Hughes' �RAWFP: Re-
source aware functional programming� (SSF, 2011�2016). Hughes' project applies func-
tional programming techniques, especially DSLs embedded in Haskell, to the design and
veri�cation of complex software, taking motivating examples from the telecom and au-
tomotive domains. The current project proposal, on the other hand, will provide more
long-term basic research in the software technology of the future.

References

R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An introduction.
In Advanced Functional Programming, volume 1608 of LNCS, pages 28�115. Springer, 1999.

J.-P. Bernardy. Lazy functional incremental parsing. In Proc. of the 2nd ACM SIGPLAN sym-

posium on Haskell, pages 49�60. ACM, 2009.

J.-P. Bernardy and M. Lasson. Realizability and parametricity in pure type systems. In M. Hof-
mann, editor, FoSSaCS, volume 6604 of LNCS, pages 108�122. Springer, 2011.

J.-P. Bernardy and G. Moulin. A computational interpretation of parametricity. In Proc. of the

Symposium on Logic in Comp. Sci. IEEE, 2012.

J.-P. Bernardy and G. Moulin. Type-theory in color, 2013. submitted to ICFP 2013.

J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In A. Gordon,
editor, European Symposium on Programming, volume 6012 of LNCS, pages 125�144. Springer,
2010a.

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Proc. of

ICFP 2010, pages 345�356. ACM, 2010b.

8

Appendix A P. Jansson, 720311�7515, StrongLib

J.-P. Bernardy, P. Jansson, M. Zalewski, and S. Schupp. Generic programming with C++ concepts
and Haskell type classes�a comparison. J. Funct. Program., 20(3�4):271�302, 2010c. doi:
10.1017/S095679681000016X.

J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free � parametricity for dependent types.
J. Funct. Program., 22(02):107�152, 2012.

R. Bird and O. de Moor. Algebra of Programming, volume 100 of International Series in Computer

Science. Prentice-Hall International, 1997.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the past:
adding genericity to the java programming language. In OOPSLA '98, pages 183�200. ACM,
1998. doi: 10.1145/286936.286957.

E. Brady and K. Hammond. Resource-safe systems programming with embedded domain speci�c
languages. In Practical Aspects of Declarative Languages, pages 242�257. Springer, 2012.

A. Chlipala, G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. E�ective interactive proofs
for higher-order imperative programs. In Proc. of ICFP 2009, ICFP '09, pages 79�90. ACM,
2009.

N. A. Danielsson. Total parser combinators. In Proc. of ICFP 2010, ICFP '10, pages 285�296.
ACM, 2010.

N. A. Danielsson and P. Jansson. Chasing bottoms, a case study in program veri�cation in the
presence of partial and in�nite values. In MPC 2004, volume 3125 of LNCS, pages 85�109.
Springer, July 2004.

N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and loose reasoning is morally
correct. In POPL'06, pages 206�217. ACM Press, 2006.

J. Duregård and P. Jansson. Embedded parser generators. In Proceedings of the 4th ACM

Symposium on Haskell, Haskell '11, pages 107�117, New York, NY, USA, 2011. ACM. doi:
10.1145/2034675.2034689.

J. Duregård, P. Jansson, and M. Wang. Feat: Functional enumeration of algebraic types. In
Haskell'12, pages 61�72. ACM, 2012. doi: 10.1145/2364506.2364515.

M. Flatt. Composable and compilable macros:: you want it when? In ICFP '02, pages 72�83.
ACM, 2002. doi: 10.1145/581478.581486.

G. Gonthier. Ssre�ect: Structured scripting for higher-order theorem proving. In PLMMS'09,
page 1. ACM, 2009.

C. Ionescu and P. Jansson. Dependently-typed programming in scienti�c computing: Examples
from economic modelling. In R. Hinze, editor, 24th Symposium on Implementation and Appli-

cation of Functional Languages (IFL 2012), LNCS. Springer-Verlag, 2013a.

C. Ionescu and P. Jansson. Testing versus proving in climate impact research. In Proc. TYPES

2011, volume 19 of Leibniz International Proceedings in Informatics (LIPIcs), pages 41�54,
Dagstuhl, Germany, 2013b. Schloss Dagstuhl�Leibniz-Zentrum fuer Informatik. doi: 10.4230/
LIPIcs.TYPES.2011.41.

P. Jansson and J. Jeuring. PolyP � a polytypic programming language extension. In Proc.

POPL'97: Principles of Programming Languages, pages 470�482. ACM Press, 1997.

9

Appendix A P. Jansson, 720311�7515, StrongLib

P. Jansson and J. Jeuring. PolyLib � a polytypic function library. Workshop on Generic Program-
ming, Marstrand, 1998a. Available from www.cse.chalmers.se/~patrikj/poly/polylib/.

P. Jansson and J. Jeuring. Functional pearl: Polytypic uni�cation. J. Funct. Program., 8(5):
527�536, 1998b.

P. Jansson and J. Jeuring. Polytypic data conversion programs. Science of Computer Program-

ming, 43(1):35�75, 2002.

P. Jansson, J. Jeuring, and students of the Utrecht University Generic Programming class. Testing
properties of generic functions. In Z. Horvath, editor, Proceedings of IFL 2006, volume 4449 of
LNCS, pages 217�234. Springer-Verlag, 2007.

J. Jeuring, P. Jansson, and C. Amaral. Testing type class laws. In Haskell'12, pages 49�60. ACM,
2012. doi: 10.1145/2364506.2364514.

X. Leroy. Formal veri�cation of a realistic compiler. Communications of the ACM, 52(7):107�115,
2009.

D. Lincke, P. Jansson, M. Zalewski, and C. Ionescu. Generic libraries in C++ with concepts from
high-level domain descriptions in Haskell: A DSL for computational vulnerability assessment.
In IFIP Working Conf. on Domain Speci�c Languages, volume 5658/2009 of LNCS, pages 236�
261, 2009.

P. Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming using dependent types. In Mathe-

matics of Program Construction, volume 5133/2008 of LNCS, pages 268�283. Springer, 2008.

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in Agda: dependent types
for relational program derivation. J. Funct. Program., 19:545�579, 2009. doi: 10.1017/
S0956796809007345.

U. Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Chalmers Tekniska Högskola, 2007.

U. Norell and P. Jansson. Polytypic programming in Haskell. In Implementation of Functional

Languages 2003, volume 3145 of LNCS, pages 168�184. Springer, 2004.

N. Oury and W. Swierstra. The power of Pi. In Proc. of ICFP 2008, pages 39�50. ACM, 2008.

A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira. Comparing
libraries for generic programming in Haskell. In Haskell'08, pages 111�122. ACM, 2008.

T. Sheard and S. Peyton Jones. Template meta-programming for haskell. In Proc. of the 2002

ACM SIGPLAN workshop on Haskell, Haskell '02, pages 1�16. ACM, 2002.

A. A. Stepanov and M. Lee. The standard template library. Technical Report HPL-95-11(R.1),
Hewlett Packard Laboratories, Palo Alto, CA, USA, Nov. 1995.

N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Secure distributed pro-
gramming with value-dependent types. In Proceeding of the 16th ACM SIGPLAN international

conference on Funct. Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, pages
266�278, 2011.

The Coq development team. The Coq proof assistant, 2010.

10

www.cse.chalmers.se/~patrikj/poly/polylib/

VRAPS/VR-Direct bilaga 2004.Be Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix B
Curriculum vitae

Appendix C P. Jansson, 720311�7515, StrongLib

C Curricula Vitæ

Curriculum Vitæ:

Patrik Jansson, 1972-03-11

1. Higher education degree:

1995: BSc+MSc degrees in Eng. Physics +
Eng. Mathematics from Chalmers, Sweden.
I graduated almost two years before schedule
as the best student of my year.

2. Doctoral degree:

2000: Ph.D. degree in CS from Chalmers,
Sweden, on Functional Polytypic Program-

ming, Advisor: Johan Jeuring.

3. PostDoc and guest research:

1998, 1998, 2001: Research visits (2 +
2 + 3 months) to Northeastern University,
Boston, USA; Oxford University Computing
Lab, UK; Dept. of Computer Science, Yale,
USA.

4. Quali�cation as Assoc. Professor:

2004: Docent (Associate Prof.) degree from
Chalmers, Sweden.

5. Current Employment:

2011�now: Professor, Chalmers. Research
50% (2013).

6. Prev. Employment and Education:

2001�2004: Ass. Prof. in CS, Chalmers.

2004�2011: Associate Professor, Chalmers.

7. Interruptions in research:

Parental leave with Julia (1999) and Erik
(2004) for a total of one full time year.

2002�2005: Director of studies of the CS
dept. On average 35% / year for three years.

2005�2008: Vice head of the CSE dept. On
average 50% of full time / year for four years.

2011�2013: Head of the 5y CSE pro-
gramme. On average 42% of full time / year.

8. Supervision experience:

I was PhD advisor of Ulf Norell (PhD
2007), Nils Anders Danielsson (PhD 2007)
and Jean-Philippe Bernardy (PhD 2011).
I worked on generic programs and proofs
with Norell, on program correctness through
types with Danielsson and parametricity for
dependent types & testing with Bernardy.
All three are still in academia. I have super-
vised over 20 MSc and BSc project students.

I currently supervise the PhD student Jonas
Duregård (Lic. Dec. 2012). I am also exam-
iner (but not supervisor) of three other PhD
students: Ramona Enache, Dan Rosén and
Anton Ekblad.

I have been a member of the evaluation com-
mittee of three PhD defenses at Chalmers
(T. Gedell, CSE (2008), M. Zalewski, CSE
(2008), H. Johansson, Physics (2010)).

9. Awards, grants, etc.:

1991: Winner of the Swedish National
Physics Olympiad

1991: Represented Sweden in the Interna-
tional Physics Olympiads.

1991: Represented Sweden in the Interna-
tional Mathematics Olympiad.

1996: Received the John Ericsson medal for
outstanding scholarship, Chalmers

1

Appendix C P. Jansson, 720311�7515, StrongLib

1997�2004: Obtained travel grants (277k
SEK in total) from several private founda-
tions

1998: Organiser of the �rst Workshop on
Generic Programming (WGP), Marstrand.

2003�2005: Co-applicant on Cover �

Combining Veri�cation Methods in Software

Development funded with 8M SEK by the
Swedish Foundation for Strategic Research.

2003�2005: Main applicant on the project
Generic Functional Programs and Proofs

funded with 1.8M SEK by VR.

2008�present: Elected member of IFIP
(International Federation for Information
Processing) Working Group 2.1 on �Algo-
rithmic Languages and Calculi�.

2009�2011: Elected member of the faculty
senate, Chalmers.

2009�2011: Member of the Steering group
of WGP.

2009: PC Chair for WGP

2009�2012: Co-applicant on �Software De-
sign and Veri�cation using Domain Speci�c
Languages� funded with 11M SEK by the
Swedish Science Council (VR, multi-project
grant in strategic ICT).

2010�2013: Co-applicant and work-
package leader in the Coordination Action
�Global Systems Dynamics and Policy�
(GSDP) funded with 1.3M EUR by the
EU (ICT-2009.8.0 FET Open).

2011�2016: Co-applicant on �RAW FP:
Productivity and Performance through Re-
source Aware Functional Programming�
(RAW FP) funded with 25M SEK by the
Swedish Foundation for Strategic Research.

2011�2013: Main applicant on the project
Strongly Typed Libraries for Programs and

Proofs funded with 2.4M SEK by VR.

2011: Organiser of a workshop on �Do-
main Speci�c Languages for Economical

and Environmental Modelling (DSL4EE)� in
Marstrand as part of GSDP.

2011�2012: Steering Committee Chair of
WGP.

2012: Workshops chair of the Interna-
tional Conference on Functional Program-
ming (ICFP 2012).

2012: Organised two �ICT challenges to
Global Systems Science� workshops in Brus-
sels as part of the First Open Global Systems
Science Conference.

2013: Organised the �Global Systems Sci-
ence 2013: Models and Data� workshop in
Brussels with Mario Rasetti, Michael Resch
and Ralph Dum.

2013: Workshops chair of ICFP 2013.

I have been reviewer for Journal of Func-
tional Programming, Science of Computer
Programming, Principles of Programming
Languages, ICFP, IFL and several other
journals and conferences.

Leadership experience:

2002�2008: Member of the steering group
of the department.

2002�2005: Director of Studies for the BSc
and MSc education at the CS department

2005�2008: Vice head of the CSE dept. re-
sponsible for the BSc and MSc education.

2008�2010: Deputy project leader of
the IMPACT project at Chalmers (�Devel-
opment of Chalmers' New Master's Pro-
grammes�, 30M SEK).

2009: Head of steering group of Chalmers
eScience Initiative.

2011�2013: Head of the 5-year edu-
cation programme in Computer Science
and Engineering (Civilingenjör Datateknik,
Chalmers).

2013�: Head of the Division of Software
Technology, Chalmers and GU.

2

Appendix C P. Jansson, 720311�7515, StrongLib

Curriculum Vitæ:

Jean-Philippe Bernardy,

19781215-0790

1. Higher education degree:

1996�2000: BSc+MSc degrees in CS, ob-
tained with �la plus grande distinction�
(highest distinction), Université Libre de
Bruxelles, July 2000.

2. Doctoral degree:

2011: Ph.D. degree in CS from Chalmers,
Sweden. Thesis: A Theory of Parametric

Polymorphism and an Application, Advisor:
Patrik Jansson.

3. PostDoc:

2011�2012: Continued development of the
theory of parametric polymorphism, in col-
laboration with Prof. Thierry Coquand and
Prof. Peter Dybjer (Chalmers).

4. Docent degree:

I plan to obtain my Docent degree before
2015.

5. Current Employment:

2012�now: Assistant Prof., Chalmers. Re-
search 75% (2013).

6. Prev. Employment:

2007�2011: Doctoral Student, Chalmers,
Sweden

2005�2007: Software Engineer, Eurocontrol
(Brussels)

2000�2003: Software Engineer, PhiDaNi
Software (Brussels)

7. Interruptions in research:

I have taken 56 days of parental leave during
my employment as Assistant Professor.

8. Supervised PhD and PostDoc:

I am currently co-supervising Guilhem
Moulin. The main supervisor is Peter Dy-
bjer.

9. Awards, grants, etc.:

Co-applicant on Types for programs and

proofs funded with 12 M SEK by the
Swedish Science Council.

Invited talks:

� �Unobtrusive Version Control�, Pots-
dam Institute for Climate Impact Re-
search, 2007

� �Concepts and Type-Classes�, Work-
shop on Generic Programming, 2008

� �Yi: the Haskell editor�, Haskell Sym-
posium, 2008

� �Testing Polymorphic Properties� Eu-
ropean Symposium on Programming,
2009

� �Parametricity and Dependent types�,
International Conference of Functional
Programming, 2010

� �Proof-Irrelevance in Agda�, Agda In-
terest Meeting, Nottingham 2010

� �Realisability and Parametricity in
PTSs�, Microsoft Research, Cambridge,
2010

3

Appendix C P. Jansson, 720311�7515, StrongLib

� �Internalizing Parametricity�, Agda In-
terest Meeting, Shonan Village, Japan,
2011

� �Implementing Parametricity�, Para-
metricity Workshop, Glasgow 2012

� �Type-Theory in Color�, Agda Interest
Meeting, Copenhagen 2012

Teaching Experience:

I have been responsible for teaching the fol-
lowing courses:

� Programming Paradigms (2012, 2013).

� Functional Programming Languages
with Linear Types (2013).

Implementations:

I am the main developer of the Yi editor.
I have made signi�cant contributions to the
following industrial-strength tools:

� Alex (Lexer generator)

� BNFC (Parser generator)

� Agda

Community roles:

� Haskell Symposium 2013, PC Member

� Haskell Implementers Workshop 2010,
PC Member

4

VRAPS/VR-Direct bilaga 2004.Ce Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix C P. Jansson, 720311�7515, StrongLib

C Publication lists

The publications most relevant for this project are marked with an arrow ()).

Selected Publications: Patrik Jansson

Note to non computer scientists Conference articles in computer science are peer
reviewed full articles � not 1�2 page abstracts, and are the normal form of refereed pub-
lication. The top conferences in each sub�eld (like POPL and ICFP below) typically have
the highest impact factor within that �eld, higher even than any journal.

Most cited publications (Google Scholar, 2013-03-25)

Jansson's Hirsch-index is 16, his total citation count is over 1200 and the following papers
are the �ve most cited (not including the papers in the last 8 years).

� P. Jansson and J. Jeuring. PolyP � a polytypic programming language extension. In
Proc. POPL'97: Principles of Programming Languages, pages 470�482. ACM Press,
1997.
Number of citations: 307.

� R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An
introduction. In Advanced Functional Programming, volume 1608 of LNCS, pages
28�115. Springer, 1999.
Number of citations: 182.

� J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury et al., edi-
tors, Advanced Functional Programming '96, volume 1129 of LNCS, pages 68�114.
Springer-Verlag, 1996.
Number of citations: 158.

� M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs in
dependent type theory. Nordic Journal of Computing, 10(4):265�289, 2003. ISSN
1236-6064.
Number of citations: 56.

) P. Jansson and J. Jeuring. Polytypic data conversion programs. Science of Computer
Programming, 43(1):35�75, 2002.
Number of citations: 50.

1

Appendix C P. Jansson, 720311�7515, StrongLib

Journal articles (last 8 years, excluding the above)

� J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free � parametricity for
dependent types. J. Funct. Program., 22(02):107�152, 2012.
Number of citations: 4.

� J.-P. Bernardy, P. Jansson, M. Zalewski, and S. Schupp. Generic programming with
C++ concepts and Haskell type classes � a comparison. J. Funct. Program., 20
(3�4):271�302, 2010c. URL http://dx.doi.org/10.1017/S095679681000016X.
Number of citations: 10.

) S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in Agda: dependent
types for relational program derivation. J. Funct. Program., 19:545�579, 2009. doi:
10.1017/S0956796809007345.
Number of citations: 7.

Articles in refereed collections and conf. proceedings (last 8 years)

) C. Ionescu and P. Jansson. Dependently-typed programming in scienti�c computing:
Examples from economic modelling. In R. Hinze, editor, 24th Symposium on Im-
plementation and Application of Functional Languages (IFL 2012), LNCS. Springer-
Verlag, 2013a.
Number of citations: 0.

� C. Ionescu and P. Jansson. Testing versus proving in climate impact research. In
Proc. TYPES 2011, volume 19 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 41�54, Dagstuhl, Germany, 2013b. Schloss Dagstuhl�Leibniz-
Zentrum fuer Informatik. doi: 10.4230/LIPIcs.TYPES.2011.41.
Number of citations: 0.

� J. Duregård, P. Jansson, and M. Wang. Feat: Functional enumeration of algebraic
types. In Haskell'12, pages 61�72. ACM, 2012. doi: 10.1145/2364506.2364515.
Number of citations: 4.

� J. Jeuring, P. Jansson, and C. Amaral. Testing type class laws. In Haskell'12, pages
49�60. ACM, 2012. doi: 10.1145/2364506.2364514.
Number of citations: 0.

� J. Duregård and P. Jansson. Embedded parser generators. In Proceedings of the 4th
ACM Symposium on Haskell, Haskell '11, pages 107�117, New York, NY, USA, 2011.
ACM. doi: 10.1145/2034675.2034689.
Number of citations: 3.

) J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In
Proc. of ICFP 2010, pages 345�356. ACM, 2010b.
Number of citations: 25.

2

http://dx.doi.org/10.1017/S095679681000016X

Appendix C P. Jansson, 720311�7515, StrongLib

) J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In
A. Gordon, editor, European Symposium on Programming, volume 6012 of LNCS,
pages 125�144. Springer, 2010a.
Number of citations: 16.

� A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira.
Comparing libraries for generic programming in Haskell. In Haskell'08, pages 111�
122. ACM, 2008.
Number of citations: 56.

� D. Lincke, P. Jansson, M. Zalewski, and C. Ionescu. Generic libraries in C++ with
concepts from high-level domain descriptions in Haskell: A DSL for computational
vulnerability assessment. In IFIP Working Conf. on Domain Speci�c Languages,
volume 5658/2009 of LNCS, pages 236�261, 2009.
Number of citations: 5.

� J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz. A comparison
of C++ concepts and Haskell type classes. In Proc. ACM SIGPLAN Workshop on
Generic Programming (WGP), pages 37�48. ACM, 2008a.
Number of citations: 20.

� S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming using dependent types.
In Mathematics of Program Construction, volume 5133/2008 of LNCS, pages 268�
283. Springer, 2008.
Number of citations: 12.

� P. Jansson, J. Jeuring, and students of the Utrecht University Generic Programming
class. Testing properties of generic functions. In Z. Horvath, editor, Proceedings of
IFL 2006, volume 4449 of LNCS, pages 217�234. Springer-Verlag, 2007.
Number of citations: 4.

� N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and loose reasoning
is morally correct. In POPL'06, pages 206�217. ACM Press, 2006.
Number of citations: 51.

Publicly available implementations (last 8 years)

I have participated in the development of the Agda proof engine (mainly through my PhD
students Ulf Norell, Nils Anders Danielsson and Jean-Philippe Bernardy),

� U. Norell et al. Agda � a dependently typed programming language. Implementation
available from Google Code: http://code.google.com/p/agda/, 2008.

The �rst description of Agda was in the PhD thesis of Ulf Norell (2007) and it has
been cited ’ 50 times / year since then, indicating a quick spread in academia.

3

http://code.google.com/p/agda/

Appendix C P. Jansson, 720311�7515, StrongLib

Publication list for Jean-Philippe Bernardy

Database used for citation data: Google scholar.

Peer-reviewed publications in journal

) J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free � parametricity for
dependent types. J. Funct. Program., 22(02):107�152, 2012.
Number of citations: 4.

� J.-P. Bernardy, P. Jansson, M. Zalewski, and S. Schupp. Generic programming with
C++ concepts and Haskell type classes � a comparison. J. Funct. Program., 20
(3�4):271�302, 2010c. URL http://dx.doi.org/10.1017/S095679681000016X.
Number of citations: 10.

Peer-reviewed publications in conferences and workshops

) J.-P. Bernardy and G. Moulin. A computational interpretation of parametricity. In
Proc. of the Symposium on Logic in Comp. Sci. IEEE, 2012.
Number of citations: 4.

� J.-P. Bernardy and M. Lasson. Realizability and parametricity in pure type systems.
In M. Hofmann, editor, FoSSaCS, volume 6604 of LNCS, pages 108�122. Springer,
2011.
Number of citations: 11.

) J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In
Proc. of ICFP 2010, pages 345�356. ACM, 2010b.
Number of citations: 25.

) J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic properties. In
A. Gordon, editor, European Symposium on Programming, volume 6012 of LNCS,
pages 125�144. Springer, 2010a.
Number of citations: 16.

) J.-P. Bernardy. Lazy functional incremental parsing. In Proc. of the 2nd ACM
SIGPLAN symposium on Haskell, pages 49�60. ACM, 2009.
Number of citations: 8.

� J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz. A comparison
of C++ concepts and Haskell type classes. InWGP '08: Proc. of the ACM SIGPLAN
workshop on Generic programming, pages 37�48. ACM, 2008b.
Number of citations: 20.

4

http://dx.doi.org/10.1017/S095679681000016X

Appendix C P. Jansson, 720311�7515, StrongLib

Non peer-reviewed publications

� J.-P. Bernardy. Yi: an editor in Haskell for Haskell. In Proc. of the �rst ACM
SIGPLAN symposium on Haskell, pages 61�62. ACM, 2008.
Number of citations: 6.

Publicly available implementations

I am the main contributor to the Yi project

� J.-P. Bernardy. Yi: an editor in Haskell for Haskell. In Proc. of the �rst ACM
SIGPLAN symposium on Haskell, pages 61�62. ACM, 2008.

I have contributed the Agda proof engine. The �rst description of Agda was in the PhD
thesis of Ulf Norell and it has been cited ’ 50 times / year since then, indicating a quick
spread in academia.

5

VRAPS/VR-Direct bilaga 2004.Re Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix D P. Jansson, 720311�7515, StrongLib

D Scienti�c Report

The main focus of the research project was on libraries to help develop programs with
matching speci�cations. The results are in three tracks: Haskell libraries, Agda libraries
and more fundamental results in parametricity theory. We have published three Haskell
Symposium papers, each contributing one such library and two papers about Agda libraries.
In parallell with the more applied case studies we also worked on more fundamental theo-
retical results which extend parametricity theory to apply to dependent types (constructive
logic). This resulted in two published papers and a prototype implementation in Agda.

Embedded Parser Generators The paper describes how to embed context-free gram-
mars in Haskell so that parsers and pretty-printers are automatically generated from them.
In this way we combine features of parser generators (static grammar checks, clear BNF
syntax) and features that are otherwise exclusive to combinator libraries (reuse, param-
eters, grammar generation inside Haskell). The library (BNFC-meta) enables domain
experts to focus on describing the grammar (a speci�cation of the intended language) in a
variant of BNF without worrying about the implementation details.

Testing Type Class Laws The speci�cation of a class in Haskell often starts with
stating, in comments, the laws that should be satis�ed by methods de�ned in instances of
the class, followed by the type of the methods of the class. This paper develops a library
that supports testing such class laws using QuickCheck. Our library is a light-weight class
law testing framework, which requires a limited amount of work per class law, and per
datatype for which the class law is tested.

Feat: Functional Enumeration of Algebraic Types In mathematics, an enumer-
ation of a set S is a bijective function from (an initial segment of) the natural numbers
to S. We de�ne �functional enumerations� as e�ciently computable such bijections. This
paper describes a theory of functional enumeration and provides an algebra of enumera-
tions closed under sums, products, guarded recursion and bijections. We implement our
ideas in a Haskell library called testing-feat, and make the source code freely available.
Feat provides e�cient �random access� to enumerated values. The primary application
is property-based testing, where it is used to de�ne both random sampling (for example
QuickCheck generators) and exhaustive enumeration (in the style of SmallCheck).

Testing versus proving in climate impact research Higher-order properties arise
naturally in some areas of climate impact research. For example, �vulnerability measures�
must ful�ll certain conditions which are best expressed by quanti�cation over all increasing
functions. This kind of property is notoriously di�cult to test. However, for the measures
used in practice, it is quite easy to encode the property as a dependent type and prove
it correct. Moreover, in scienti�c programming, one is often interested in correctness �up
to implication�: the program would work as expected, say, if one would use real numbers

1

Appendix D P. Jansson, 720311�7515, StrongLib

instead of �oating-point values. Such counterfactuals are impossible to test, but again,
they can be easily encoded as types and proven. We show examples of such situations
(encoded in Agda), encountered in actual vulnerability assessments.

Dependently-typed programming in scienti�c computing Computer simulations
are essential in economics where the ability to make laboratory experiments is limited yet
it is important to ensure that the models are implemented correctly. Typically, though,
the models are only informally speci�ed. We argue that using dependent types allows us to
gradually reduce the gap between the mathematical description and the implementation,
and we provide a library for speci�cation of basic concepts from economic modelling.

Proofs for free Reynolds' abstraction theorem shows how a typing judgement in Sys-
tem F can be translated into a relational statement (in second order predicate logic) about
inhabitants of the type. We obtain a similar result for pure type systems: for any PTS
used as a programming language, there is a PTS that can be used as a logic for para-
metricity. Types in the source PTS are translated to relations (expressed as types) in the
target. Similarly, values of a given type are translated to proofs that the values satisfy the
relational interpretation.

A computational interpretation of parametricity In this paper, we show how the
above theorem can be internalized. More precisely, we describe an extension of Pure
Type Systems with a special parametricity rule (with computational content), and prove
fundamental properties such as Church-Rosser's and strong normalization. All instances
of the abstraction theorem can be both expressed and proved in the calculus itself.

D.1 The relation between the old and the new project

The new project is a natural continuation of the old project but what we have learnt
during the way has changed the focus a bit. Where the old project talks about programs
and proofs, the new project explicitly includes also speci�cation (and automatic testing) as
intermediate stages. As the new project is not bigger, this will mean less focus on programs
and more focus on libraries for speci�cations and proofs.

D.2 Available research resources

The project was granted 2.4M SEK from VR (P. Jansson, diarienummer 2011-6164) which
mainly paid for J.-P. Bernardy (PostDoc, 50%) but also 20% of P. Jansson. Jansson
(20%) and J. Duregård (80%) were also partially supported by a VR multi-project grant in
ICT, 2009�2012 (J. Hughes, diarienummer 2009-4303). Finally the Potsdam Institute for
Climate Impact Research supported Cezar Ionescu who worked part-time in this project.

2

VRAPS/VR-Direct bilaga 2004.Re Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix N P. Jansson, 720311�7515, StrongLib

N Budget

I apply for 80% of a PhD student salary (the other 20% are covered by teaching) and
for 20% of my own salary. The amounts include indirect costs from the department and
university level. I also apply for direct costs for travel money for the new student.

Cost 2014 2015 2016 2017 2018
Patrik Jansson, 20%: 286 296 307 318 329
New PhD student, 80%: 554 573 594 615 637
Travel, o�ces, IT: 153 135 148 160 183
Total: 993 1004 1048 1093 1149

Jansson is partially funded (20%) by J. Hughes' �RAWFP: Resource aware functional pro-
gramming� (SSF, 2011�2016). Hughes' project applies functional programming techniques,
especially DSLs embedded in Haskell, to the design and veri�cation of complex software,
taking motivating examples from the telecom and automotive domains. The current project
proposal, on the other hand, will provide more long-term basic research in the software
technology of the future.

In addition to teaching (25%), the co-applicant Bernardy is mainly (50%) funded by the
ongoing VR project (P. Jansson, 2011�2013) for which we apply for a continuation. He
is partially funded (25%) by RAWFP (described above) and he will probably be partially
funded (20%) by a recently granted multi-project-grant (VR 2013�2016, number 2012-
5294) lead by T. Coquand. Therefore we do not apply for funding from VR for him in this
project. Coquand's project will also complement the current project by strengthening the
Agda group at U. of Gothenburg.

1

VRAPS/VR-Direct b Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth Reg date

Kod Dnr

Project title

DateApplicant

Head of department at host University Clarifi cation of signature Telephone

Vetenskapsrådets noteringar
Kod

	AmnesOmrade_S: *Nat-Tek generellt
	Amnesrad_S: NT
	AnsokanKod_A: 2013-2993-105127-34
	AnsokanKod_B: 2013-2993-105127-34
	AnsokanKod_C: 2013-2993-105127-34
	AnsokanKod_D: 2013-2993-105127-34
	AnsokanKod_N: 2013-2993-105127-34
	AnsokanKod_S: 2013-2993-105127-34
	appendix: Appendix S
	appendix_C: Appendix C
	appendix_D: Appendix D
	appendix_N: Appendix N
	Ar_S: 2013 -
	BeredGrp_S: NT-2
	Bidragsform_S: Project Research Grant
	Budget:
	Ar_S1: 2014
	Ar_S2: 2015
	Ar_S3: 2016
	Ar_S4: 2017
	Ar_S5: 2018

	DetBud:
	Dnr_S:
	ForhandText_A:
	ForhandText_B:
	ForhandText_C:
	ForhandText_D:
	ForhandText_N:
	ForhandText_S:
	ForvMynd_S: Chalmers tekniska högskola
	hjalptext1: A signature on the application is required not only from the applicant but also from the authorised representative of the administrating organisation/institution or equivalent (normally the head of the department or establishment where the research is to be conducted). The signature confirms that the department can accommodate the proposed research, position or equipment; that the costing in the application is approved for the department's part, that any proposed experimentation on human or animal subjects has been reported, and that the applicant has reported any secondary occupations and commercial ties (s)he may have, and nothing inconsistent with good research practice has thereby emerged. The applicant must have discussed these conditions with the representative of the administrating organisation/institution or equivalent before the latter approves and signs the application.
	hjalptext6: NOTE the exceptions!Please note that a different procedure applies for the following types of grants:•	Infrastructure- Operation Grants•	Infrastructure- Grants for Expensive Equipment•	Infrastructure- Grants for Large Databases•	Framework Grant SIMSAMFor these types of grants the vice-chancellor, instead of the head of department, must sign Appendix S. Thereby (s)he confirms the commitments of the administrative organization. The details are specified in the Call for Proposals, published at www.vr.se.
	hjalptext7:
	hjalptext8:
	ProjTitelEng_A: Strongly Typed Libraries for Programs and Proofs
	ProjTitelEng_B: Strongly Typed Libraries for Programs and Proofs
	ProjTitelEng_C: Strongly Typed Libraries for Programs and Proofs
	ProjTitelEng_S: Strongly Typed Libraries for Programs and Proofs
	ProjTitelSv_D:
	ProjTitelSv_N:
	RegDate_S: 2013-04-11 18:59:52
	S:
	Namn_A: Jansson, Patrik
	Namn_B: Jansson, Patrik
	Namn_C: Jansson, Patrik
	Namn_D: Jansson, Patrik
	Namn_N: Jansson, Patrik
	Namn_S: Jansson, Patrik
	PersNr_A: 720311-7515
	PersNr_B: 720311-7515
	PersNr_C: 720311-7515
	PersNr_D: 720311-7515
	PersNr_N: 720311-7515
	PersNr_S: 720311-7515

	sign: Signatures
	SoktBeloppAr_S1: 993
	SoktBeloppAr_S2: 1005
	SoktBeloppAr_S3: 1049
	SoktBeloppAr_S4: 1093
	SoktBeloppAr_S5: 1149
	StartSlut_S: 2014-01-01 -- 2017-12-31
	Text1: 3
	Text2: 2
	Utlysning_S: Research grants NT April 11, 2013

