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Abstract. We present a computer-checked generic implementation for solving finite-
horizon sequential decision problems. This is a wide class of problems, including inter-
temporal optimizations, knapsack, optimal bracketing, scheduling, etc. The implementa-
tion can handle time-step dependent control and state spaces, and monadic representations
of uncertainty (such as stochastic, non-deterministic, fuzzy, or combinations thereof). This
level of genericity is achievable in a programming language with dependent types (we have
used both Idris and Agda). Dependent types are also the means that allow us to obtain
a formalization and computer-checked proof of the central component of our implementa-
tion: Bellman’s principle of optimality and the associated backwards induction algorithm.
The formalization clarifies certain aspects of backwards induction and, by making explicit
notions such as viability and reachability, can serve as a starting point for a theory of con-
trollability of monadic dynamical systems, commonly encountered in, e.g., climate impact
research.

1. Introduction

In this paper we extend a previous formalization of time-independent, deterministic sequen-
tial decision problems [BIB13] to general sequential decision problems (general SDPs).

Sequential decision problems are problems in which a decision maker is required to make
a step-by-step sequence of decisions. At each step, the decision maker selects a control upon
observing some state.

Time-independent, deterministic SDPs are sequential decision problems in which the
state space (the set of states that can be observed by the decision maker) and the control
space (the set of controls that can be selected in a given state) do not depend on the specific
decision step and the result of selecting a control in a given state is a unique new state.

In contrast, general SDPs are sequential decision problems in which both the state
space and the control space can depend on the specific decision step and the outcome of a
step can be a set of new states (non-deterministic SDPs) a probability distribution of new
states (stochastic SDPs) or, more generally, a monadic structure of states, see section 2.

Throughout the paper, we use the word “time” (and correspondent phrasings: “time-
independent”, “time-dependent”, etc.) to denote decision step number. In other words, we
write “at time 3 . . . ” as a shortcut for “at the third decision step . . . ”. The intuition is
that decision step 3 takes place after decision steps 0, 1 and 2 and before decision steps 4,
5, etc. In certain decision problems, some physical time – discrete or, perhaps, continuous
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– might be observable and relevant for decision making. In these cases, such time becomes
a proper component of the state space and the function that computes a new state from a
current state and a control has to fulfill certain monotonicity conditions.

Sequential decision problems for a finite number of steps, often called finite horizon
SDPs, are in principle well understood. In standard textbooks [CSRL01, Ber95, SG98],
SDPs are typically introduced by examples: a few specific problems are analyzed and dis-
sected and ad-hoc implementations of Bellman’s backwards induction algorithm [Bel57] are
derived for such problems.

To the best of our knowledge, no generic algorithm for solving general sequential decision
problems is currently available. This has a number of disadvantages:

An obvious one is that, in front of a particular instance of an SDP, be that a variant
of knapsack, optimal bracketing, inter-temporal optimization of social welfare functions or
more specific applications, scientists have to find solution algorithms developed for similar
problems — backwards induction or non-linear optimization, for example — and adapt or
re-implement them for their particular problem.

This is not only time-consuming but also error-prone. For most practitioners, showing
that their ad-hoc implementation actually delivers optimal solutions is often an insurmount-
able task.

If generic, machine-checkable implementations of these algorithms were available, im-
plementations could be done by simple instantiation. This would not only save time but also
yield solutions which are provably correct. Expert implementors would possibly still want
to re-implement problem-specific solution algorithms, e.g., to exploit some known properties
of the particular problem at hand. But they would at least be able to test their solutions
against provably correct ones.

In this work, we propose a formalization of general SDPs. For these problems, we im-
plement a generic version of Bellman’s backwards induction and derive a machine-checkable
proof that the proposed implementation is correct.

Our approach is similar in spirit to that proposed by de Moor [dM95]: the focus is on
generic programming over an abstract context, but we take this further by implementing
the algorithm, the specification and the proofs in one common framework (Idris). For
a discussion of the differences and of the similarities we refer the reader to our previous
paper [BIB13].

We rely on dependent types — types that are allowed to “depend” on values [Bra13] —
to implement generic algorithms and to encode (and prove) properties of such algorithms.
As in the previous paper [BIB13], we present our formalization in Idris but we have derived
an equivalent formulation in Agda.

We present our extension in two steps. First, we generalize time-independent1, deter-
ministic decision problems to the case in which the state and the control spaces can depend
on time but the transition function is still deterministic. Then, we extend this case to the
general one of monadic transition functions. As it turns out, neither extension is trivial: the
requirement of machine-checkable correctness brings to the light notions and assumptions
which, in informal and semi-formal derivations are often swept under the rug.

In particular, the extension to the time-dependent case has lead us to formalize the
notions of viability and reachability of states. For the deterministic case these notions are

1Remember that we use the word “time” as an alias to “decision step”. Thus, time-independent SDPs
are sequential decision problems in which the state space and the control space do not depend on the specific
decision step.
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more or less straightforward. But they become more interesting when non-deterministic
and stochastic transition functions are considered (as outlined in section 5).

We believe that these notions would be a good starting point for building a theory of
controllability for the kind of dynamical systems commonly encountered in climate impact
research. These were the systems originally studied in Ionescu’s dissertation [Ion09] and
the monadic case is an extension of the theory presented there for dynamical systems.

In the next section we introduce, informally, the notion of sequential decision processes
and problems. In section 3 we summarize the results for the time-independent, deterministic
case and use this as the starting point for the two extensions discussed in sections 4 and 5,
respectively.

2. Sequential decision processes and problems

In a nutshell, a sequential decision process is a process in which a decision maker is required
to take a finite number of decision steps, one after the other. The process starts in a state
x0 at an initial step number t0.

Here x0 represents all information available to the decision maker at t0. In a deci-
sion process like those underlying models of international environmental agreements, for
instance, x0 could be a triple of real numbers representing some estimate of the greenhouse
gas (GHG) concentration in the atmosphere, a measure of a gross domestic product and,
perhaps, the number of years elapsed from some pre-industrial reference state. In an opti-
mal bracketing problem, x0 could be a string of characters representing the “sizes” of a list
of “arguments” which are to be processed pairwise with some associative binary operation.
In all cases, t0 is the initial value of the decision step counter.

The control space – the set of controls (actions, options, choices, etc.) available to the
decision maker – can depend both on the initial step number and state. Upon selecting a
control y0 two events take place: the system enters a new state x1 and the decision maker
receives a reward r0.

In a deterministic decision problem, a transition function completely determines the
next state x1 given the time (step number) of the decision t0, the current state x0, and
the selected control y0. But, in general, transition functions can return sets of new states
(non-deterministic SDPs), probability distributions over new states (stochastic SDPs) or,
more generally, a monadic structures of states, as presented by Ionescu [Ion09].

In general, the reward depends both on the “old” state and on the “new” state, and
on the selected control: in many decision problems, different controls represent different
levels of consumption of resources (fuel, money, CPU time or memory) or different levels of
restrictions (GHG emission abatements) and are often associated with costs. Different cur-
rent and next states often imply different levels of “running” costs or benefits (of machinery,
avoided climate damages, . . . ) or outcome payoffs.

The intuition of finite horizon SDPs is that the decision maker seeks controls that
maximize the sum of the rewards collected over a finite number of decision steps.2

In control theory, controls that maximize the sum of the rewards collected over a finite
number of steps are called optimal controls. In practice, optimal controls can only be
computed when a specific initial state is given and for problems in which transitions are

2This characterization of SDPs might appear too narrow (why shouldn’t a decision maker be interested,
for instance, in maximizing a product of rewards?) but it is in fact quite general. For an introduction to SDPs
and concrete examples of state spaces, control spaces, transition- and reward-functions, see [Ber95, SG98].
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Figure 1: Possible evolutions for the “cylinder” problem. Initial state (b, left), state and reward
after one step (c and 3, middle) and four steps trajectory and rewards (right).

deterministic. What is relevant for decision making – both in the deterministic case and in
the non-deterministic or stochastic case – are not controls but policies.

Informally, a policy is a function from states to controls: it tells which control to select
when in a given state. Thus, for selecting controls over n steps, a decision maker needs a
sequence of n policies, one for each step. Optimal policy sequences are sequences of policies
which cannot be improved by associating different controls to current and future states.

3. Time-independent, deterministic problems

In a previous paper [BIB13], we presented a formalization of time-independent, deterministic
SDPs. For this class of problems, we introduced an abstract context and derived a generic,
machine-checkable implementation of backwards induction.

In this section we recall the context and the main results from that paper [BIB13].
There, we illustrated time-independent, deterministic SDPs using a simplified version of
the “cylinder” example originally proposed by Reingold, Nievergelt and Deo [RND77] and
extensively studied by Bird and de Moor [BdM97]. We use the same example here:

A decision-maker can be in one of five states: a, b, c, d or e. In a, the decision maker
can choose between two controls (sometimes called “options” or “actions”): move ahead
(control A) or move to the right (control R). In b, c and d he can move to the left (L),
ahead or to the right. In e he can move to the left or go ahead.

Upon selecting a control, the decision maker enters a new state. For instance, selecting
R in b brings him from b to c, see Figure 1. Thus, each step is characterized by a current
state, a selected control and a new state. A step also yields a reward, for instance 3 for the
transition from b to c and for control R.

The challenge for the decision maker is to make a finite number of steps, say n, by
selecting controls that maximize the sum of the rewards collected.

An example of a possible trajectory and corresponding rewards for the first four steps
is shown on the right of figure 1. In this example, the decision maker has so far collected
a total reward of 16 by selecting controls according to the sequence [R,R,A,A ]: R in the
first and in the second steps, A in the third and in the fourth steps.
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In this problem, the set of possible states State = {a, b, c, d, e} is constant for all steps
and the controls available in a state only depend on that state. The problem is an instance of
a particular class of problems called time-independent, deterministic SDPs. In our previous
paper [BIB13] we characterized this class in terms of four assumptions:

(1) The state space does not depend on the current number of steps.
(2) The control space in a given state only depends on that state but not on the current

number of steps.
(3) At each step, the new state depends on the current state and on the selected control

via a known deterministic function.
(4) At each step, the reward is a known function of the current state, of the selected

control and of the new state.

The results obtained [BIB13] for this class of sequential decision problems can be summa-
rized as follows3. The problems can be formalized in terms of a context containing states
State and controls Ctrl from each state:

State : Type

Ctrl : (x : State) → Type

step : (x : State) → (y : Ctrl x ) → State

reward : (x : State) → (y : Ctrl x ) → (x ′ : State) → R
and of the notions of control sequence CtrlSeq x n (from a starting state x : State and for
n : N steps), value of control sequences and optimality of control sequences:

data CtrlSeq : State → N → Type where

Nil : CtrlSeq x Z

(::) : (y : Ctrl x ) → CtrlSeq (step x y) n → CtrlSeq x (S n)

value : CtrlSeq x n → R
value {n = Z } = 0

value {x } {n = S m } (y :: ys) = reward x y (step x y) + value ys

OptCtrlSeq : CtrlSeq x n → Type

OptCtrlSeq {x } {n } ys = (ys ′ : CtrlSeq x n) → So (value ys ′ 6 value ys)

In the above formulation, CtrlSeq x n formalizes the notion of a sequence of controls of
length n with the first control in Ctrl x . In other words, if we are given ys : CtrlSeq x n
and we are in x , we know that we can select the first control of ys.

The function value computes the value of a control sequence. As explained in the
beginning of this section, the challenge for the decision maker is to select controls that
maximize a sum of rewards4.

Thus, a sequence of controls ps : CtrlSeq x n is optimal iff any other sequence
ps ′ : CtrlSeq x n has a value that is smaller or equal to the value of ps. The value of
a control sequence of lenght zero is zero and the value of a control sequence of length S m is

3Throughout this paper we essentially adopt the notation introduced in [BIB13]: data types, constructors
and Type-valued functions are capitalized, function that return values of a specific type are lowercased. We
use the mnemonic Spec (or spec) to denote specifications. But to improve readability we now use State and
Ctrl (instead of X and Y ) to denote states and controls.

4Throughout this paper, we use + to compute such sum. But it is clear that + does not need to denote
standard addition. For instance, the sum could be “discounted” through lower weights for future rewards.
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computed by adding the reward obtained with the first decision step to the value of making
m more decisions with the tail of that sequence.

In the above, the arguments x and n to CtrlSeq in the types of value and OptCtrlSeq
occur free. In Idris (as in Haskell), this means that they will be automatically inserted as
implicit arguments. In the definitions of value and OptCtrlSeq , these implicit arguments
are brought into the local scope by adding them to the pattern match surrounded by curly
braces. We also use the function So : Bool → Type for translating between Booleans and
types (the only constructor is Oh : So True).

We have shown that one can compute optimal control sequences from optimal policy
sequences. These are policy vectors that maximize the value function val for every state:

Policy : Type

Policy = (x : State) → Ctrl x

PolicySeq : N → Type

PolicySeq n = Vect n Policy

val : (x : State) → PolicySeq n → R
val {n = Z } = 0

val {n = S m } x (p :: ps) = reward x (p x ) x ′ + val x ′ ps where

x ′ : State

x ′ = step x (p x )

OptPolicySeq : (n : N) → PolicySeq n → Type

OptPolicySeq n ps = (x : State) → (ps ′ : PolicySeq n) → So (val x ps ′ 6 val x ps)

We have expressed Bellman’s principle of optimality [Bel57] in terms of the notion of optimal
extensions of policy sequences

OptExt : PolicySeq n → Policy → Type

OptExt ps p = (p′ : Policy) → (x : State) → So (val x (p′ :: ps) 6 val x (p :: ps))

Bellman : (ps : PolicySeq n) → OptPolicySeq n ps →
(p : Policy) → OptExt ps p →
OptPolicySeq (S n) (p :: ps)

and implemented a machine-checkable proof of Bellman. Another machine-checkable proof
guarantees that, if one can implement a function optExt that computes an optimal extension
of arbitrary policy sequences

OptExtLemma : (ps : PolicySeq n) → OptExt ps (optExt ps)

then

backwardsInduction : (n : N) → PolicySeq n

backwardsInduction Z = Nil

backwardsInduction (S n) = (optExt ps) :: ps where

ps : PolicySeq n

ps = backwardsInduction n

yields optimal policy sequences (and, thus, optimal control sequences) of arbitrary length:

BackwardsInductionLemma : (n : N) → OptPolicySeq n (backwardsInduction n)
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In our previous paper [BIB13], we have shown that it is easy to implement a function that
computes the optimal extension of an arbitrary policy sequence if one can implement

max : (x : State) → (Ctrl x → R) → R
argmax : (x : State) → (Ctrl x → R) → Ctrl x

which fulfill the specifications

MaxSpec : Type

MaxSpec = (x : State) → (f : Ctrl x → R) → (y : Ctrl x ) →
So (f y 6 max x f )

ArgmaxSpec : Type

ArgmaxSpec = (x : State) → (f : Ctrl x → R) →
So (f (argmax x f ) == max x f )

When Ctrl x is finite, such max and argmax can always be implemented in a finite number
of comparisons.

4. Time-dependent state spaces

The results summarized in the previous section are valid under one implicit assumption:
that one can construct control sequences of arbitrary length from arbitrary initial states. A
sufficient (but not necessary) condition for this is that, for all x : State, the control space
Ctrl x is not empty. As we shall see in a moment, this assumption is too strong and needs
to be refined.

Consider, again, the cylinder problem. Assume that at a given decision step, only
certain columns are valid. For instance, for t 6= 3 and t 6= 6 all states a through e are valid
but at step 3 only e is valid and at step 6 only a, b and c are valid, see figure 2. Similarly,
allow the controls available in a given state to depend both on that state and on the decision
step. For instance, from state b at step 0 one might be able to move ahead or to the right.
But at step 6 and from the same state, one might only be able to move to the left.

We can easily formalize the context for the time-dependent case by adding an extra N
argument to the declarations of State and Ctrl and extending the transition and the reward
functions accordingly5 (where S : N → N is the successor function)

State : (t : N) → Type

Ctrl : (t : N) → State t → Type

step : (t : N) → (x : State t) → Ctrl t x → State (S t)

reward : (t : N) → (x : State t) → Ctrl t x → State (S t) → R
In general we will be able to construct control sequences of a given length from a given initial
state only if State, Ctrl and step satisfy certain compatibility conditions. For example,
assuming that the decision maker can move to the left, go ahead or move to the right
as described in the previous section, there will be no sequence of more than two controls

5A discrete time (number of decision steps) could be accounted for in different ways. One could for
instance formalize “time-dependent” states as pairs (N,Type). A study of alternative formalizations of
general decision problems is a very interesting topic but goes well beyond the scope of this work. We can
only provide two “justifications” for the formalization proposed here: that this is (again, to the best of
our knowledge) the first attempt at formalizing such problems generically and that the formalization via
additional N arguments seems natural if one considers how (non-autonomous) dynamical systems are usually
formalized in the continuous case through systems of differential equations.



8 BOTTA, JANSSON, IONESCU, CHRISTIANSEN, AND BRADY

starting from a, see figure 2 left. At step t , there might be states which are valid but from
which only m < n − t steps can be done, see figure 2 middle. Conversely, there might be
states which are valid but which cannot be reached from any initial state, see figure 2 right.
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Figure 2: Two steps trajectory starting at state a (left), states of limited viability (middle) and
unreachable states (right) for the “cylinder” problem with time-dependent state space.

4.1. Viability. The time-dependent case makes it clear that, in general, we cannot assume
to be able to construct control sequences of arbitrary length from arbitrary initial states.
For a given number of steps n, we must, at the very least, be able to distinguish between
initial states from which n steps can follow and initial states from which only m < n steps
can follow. Moreover, in building control sequences from initial states from which n steps
can actually be made, we may only select controls that bring us to states from which n − 1
steps can be made. In the example of figure 2 and with b as initial state, for instance, the
only control that can be put on the top of a control sequence of length greater than 2 is R.
Moves ahead or to the left would lead to dead ends.

We use the term viability to refer to the conditions that State, Ctrl and step have to
satisfy for a sequence of controls of length n starting in x : State t to exist. More formally,
we say that every state is viable for zero steps (viableSpec0 ) and that a state x : State t
is viable for S n steps if and only if there exists a command in Ctrl t x which, via step,
brings x into a state which is viable n steps (viableSpec1 and viableSpec2 ):

viable : (n : N) → State t → Bool

viableSpec0 : (x : State t) → Viable Z x

viableSpec1 : (x : State t) → Viable (S n) x → GoodCtrl t n x

viableSpec2 : (x : State t) → GoodCtrl t n x → Viable (S n) x

In the above specifications we have introduced Viable n x as a shorthand for So (viable n x ).
In viableSpec1 and viableSpec2 we use subsets implemented as dependent pairs:

GoodCtrl : (t : N) → (n : N) → State t → Type

GoodCtrl t n x = (y : Ctrl t x ∗∗ Viable n (step t x y))
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These are pairs in which the type of the second element can depend on the value of the
first one. The notation p : (a : A ∗∗ P a) represents a pair in which the type (P a) of the
second element can refer to the value (a) of the first element, giving a kind of existential
quantification [Bra13]. The projection functions are

outl : {A : Type } → {P : A → Type } → (a : A ∗∗ P a) → A

outr : {A : Type } → {P : A → Type } → (p : (a : A ∗∗ P a)) → P (outl p)

Thus, in general (a : A ∗∗ P a) effectively represents the subset of A whose elements fulfill
P and our case GoodCtrl t n x is the subset of controls available in x at step t which lead
to next states which are viable n steps.

The declarations of viableSpec0 , viableSpec1 and viableSpec2 are added to the context.
In implementing an instance of a specific sequential decision problem, clients are required
to define State, Ctrl , step, reward and the viable predicate for that problem. In doing so,
they have to prove (or postulate) that their definitions satisfy the above specifications.

4.2. Control sequences. With the notion of viability in place, we can readily extend the
notion of control sequences of section 3 to the time-dependent case:

data CtrlSeq : (x : State t) → (n : N) → Type where

Nil : CtrlSeq x Z

(::) : (yv : GoodCtrl t n x ) → CtrlSeq (step t x (outl yv)) n → CtrlSeq x (S n)

Notice that now the constructor :: (for constructing control sequences of length S n) can
only be applied to those (implicit !) x : State t for which there exists a “good” control
y = outl yv : Ctrl t x such that the new state step t x y is viable n steps. The specification
viableSpec2 ensures us that, in this case, x is viable S n steps.

The extension of val , OptCtrlSeq and the proof of optimality of empty sequences of
controls are, as one would expect, straightforward:

val : (x : State t) → (n : N) → CtrlSeq x n → R
val Z = 0

val {t } x (S n) (yv :: ys) = reward t x y x ′ + val x ′ n ys where

y : Ctrl t x ; y = outl yv

x ′ : State (S t); x ′ = step t x y

OptCtrlSeq : (x : State t) → (n : N) → CtrlSeq x n → Type

OptCtrlSeq x n ys = (ys ′ : CtrlSeq x n) → So (val x n ys ′ 6 val x n ys)

nilIsOptCtrlSeq : (x : State t) → OptCtrlSeq x Z Nil

nilIsOptCtrlSeq x Nil = reflexive Float lte 0
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4.3. Reachability, policy sequences. In the time-independent case, policies are func-
tions of type (x : State) → Ctrl x and policy sequences are vectors of elements of that
type. Given a policy sequence ps and an initial state x , one can construct its corresponding
sequence of controls by ctrls x ps:

ctrl : (x : State) → PolicySeq n → CtrlSeq x n

ctrl x Nil = Nil

ctrl x (p :: ps) = p x :: ctrl (step x (p x )) ps

Thus p x is of type Ctrl x which is, in turn, the type of the first (explicit) argument of the
“cons” constructor of CtrlSeq x n, see section 3.

As seen above, in the time-dependent case the “cons” constructor of CtrlSeq x n takes
as first argument dependent pairs of type GoodCtrl t n x . For sequences of controls to
be construable from policy sequences, policies have to return, in the time-dependent case,
values of this type. Thus, what we want to formalize in the time-dependent case is the
notion of a correspondence between states and sets of controls that, at a given step t ,
allows us to make a given number of decision steps n. Because of viableSpec1 we know that
such controls exist for a given x : State t if and only if it is viable at least n steps. We use
such a requirement to restrict the domain of policies

Policy : N → N → Type

Policy t Z = ()

Policy t (S n) = (x : State t) → Reachable x → Viable (S n) x → GoodCtrl t n x

Let us go back to the right-hand side of figure 2. At a given step, there might be states
which are valid but which cannot be reached. It could be a waste of computational resources
to consider such states, e.g., when constructing optimal extensions inside a backwards in-
duction step.

We can compute optimal policy sequences more efficiently if we restrict the domain of
our policies to those states which can actually be reached from the initial states. We can do
this by introducing the notion of reachability. We say that every initial state is reachable
(reachableSpec0 ) and that if a state x : State t is reachable, then every control y : Ctrl t x
leads, via step, to a reachable state in State (S t) (see reachableSpec1 ). Conversely, if a state
x ′ : State (S t) is reachable then there exist a state x : State t and a control y : Ctrl t x
such that x is reachable and x ′ is equal to step t x y (see reachableSpec2 ):

reachable : State t → Bool

reachableSpec0 : (x : State Z ) → Reachable x

reachableSpec1 : (x : State t) → Reachable x → (y : Ctrl t x ) →
Reachable (step t x y)

reachableSpec2 : (x ′ : State (S t)) → Reachable x ′ →
(x : State t ∗∗ (Reachable x , (y : Ctrl t x ∗∗ x ′ = step t x y)))

As for viability, we have introduced Reachable x as a shorthand for So (reachable x ) in the
specification of reachable. We can now apply reachability to refine the notion of policy

Policy : N → N → Type

Policy t Z = ()

Policy t (S n) = (x : State t) → Reachable x → Viable (S n) x → GoodCtrl t n x

and policy sequences:
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data PolicySeq : N → N → Type where

Nil : PolicySeq t Z

(::) : Policy t (S n) → PolicySeq (S t) n → PolicySeq t (S n)

In contrast to the time-independent case, PolicySeq now takes an additional N argument.
This represents the time (number of decision steps, value of the decision steps counter)
at which the first policy of the sequence can be applied. The previous one-index idiom
(S n) · · · n · · · (S n) becomes a two-index idiom: t (S n) · · · (S t) n · · · t (S n). The
value function val maximized by optimal policy sequences is:

val : (t : N) → (n : N) →
(x : State t) → (r : Reachable x ) → (v : Viable n x ) →
PolicySeq t n → R

val Z = 0

val t (S n) x r v (p :: ps) = reward t x y x ′ + val (S t) n x ′ r ′ v ′ ps where

y : Ctrl t x ; y = outl (p x r v)

x ′ : State (S t); x ′ = step t x y

r ′ : Reachable x ′; r ′ = reachableSpec1 x r y

v ′ : Viable n x ′; v ′ = outr (p x r v)

4.4. The full framework. With these notions of viability, control sequence, reachability,
policy and policy sequence, the previous [BIB13] formal framework for time-independent
sequential decision problems can be easily extended to the time-dependent case.

The notions of optimality of policy sequences, optimal extension of policy sequences,
Bellman’s principle of optimality, the generic implementation of backwards induction and
its machine-checkable correctness can all be derived almost automatically from the time-
independent case.

We do not present the complete framework here. To give an idea of the differences
between the time-dependent and the time-independent cases, we compare the proofs of
Bellman’s principle of optimality.

Consider, first, the time-independent case. As explained in section 3, Bellman’s prin-
ciple of optimality says that if ps is an optimal policy sequence of length n and p is an
optimal extension of ps then p :: ps is an optimal policy sequence of length S n. In the
time-dependent case we need as additional argument the current number of decision steps
t and we make the length of the policy sequence n explicit. The other arguments are, as
in the time-independent case, a policy sequence ps, a proof of optimality of ps, a policy p
and a proof that p is an optimal extension of ps:

Bellman : (t : N) → (n : N) →
(ps : PolicySeq (S t) n) → OptPolicySeq (S t) n ps →
(p : Policy t (S n)) → OptExt t n ps p →
OptPolicySeq t (S n) (p :: ps)

The result is a proof of optimality of p :: ps. Notice that the types of the last 4 arguments
of Bellman and the type of its result now depend on t .

As discussed in [BIB13], a proof of Bellman can be derived easily. According to the
notion of optimality for policy sequences of section 3, one has to show that

val t (S n) x r v (p ′ :: ps ′) 6 val t (S n) x r v (p :: ps)
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for arbitrary x : State and (p ′ :: ps ′) : PolicySeq t (S n). This is straightforward. Let

y = outl (p′ x r v); x ′ = step t x y ;

r ′ = reachableSpec1 x r y ; v ′ = outr (p′ x r v);

then

val t (S n) x r v (p′ :: ps ′)

= { def. of val }
reward t x y x ′ + val (S t) n x ′ r ′ v ′ ps ′

6 { optimality of ps, monotonicity of + }
reward t x y x ′ + val (S t) n x ′ r ′ v ′ ps

= { def. of val }
val t (S n) x r v (p ′ :: ps)

6 { p is an optimal extension of ps }
val t (S n) x r v (p :: ps ′)

We can turn the equational proof into an Idris proof:

Bellman t n ps ops p oep =

opps where

opps : OptPolicySeq t (S n) (p :: ps)

opps Nil x r v impossible

opps (p′ :: ps ′) x r v =

transitive Float lte step2 step3 where

y : Ctrl t x ; y = outl (p′ x r v)

x ′ : State (S t); x ′ = step t x y

r ′ : Reachable x ′; r ′ = reachableSpec1 x r y

v ′ : Viable n x ′; v ′ = outr (p ′ x r v)

step1 : So (val (S t) n x ′ r ′ v ′ ps ′ 6 val (S t) n x ′ r ′ v ′ ps)

step1 = ops ps ′ x ′ r ′ v ′

step2 : So (val t (S n) x r v (p′ :: ps ′) 6 val t (S n) x r v (p ′ :: ps))

step2 = monotone Float plus lte (reward t x y x ′) step1

step3 : So (val t (S n) x r v (p′ :: ps) 6 val t (S n) x r v (p :: ps))

step3 = oep p′ x r v

Both the informal and the formal proof require only minor changes from the proofs for the
time-independent case presented in the previous paper [BIB13].

5. Monadic transition functions

As explained in our previous paper [BIB13], many sequential decision problems cannot be
described in terms of a deterministic transition function.

Even for physical systems which are believed to be governed by deterministic laws,
uncertainties might have to be taken into account. They can arise because of different
modelling options, imperfectly known initial and boundary conditions and phenomenological
closures or through the choice of different approximate solution methods.

In decision problems in climate impact research, financial markets, and sports, for in-
stance, uncertainties are the rule rather than the exception. It would be blatantly unrealistic
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to assume that we can predict the impact of, e.g., emission policies over a relevant time
horizon in a perfectly deterministic manner. Even under the strongest rationality assump-
tions – each player perfectly knows how its cost and benefits depend on its options and
on the options of the other players and has very strong reasons to assume that the other
players enjoy the same kind of knowledge – errors, for instance “fat-finger” mistakes, can
be made.

In systems which are not deterministic, the kind of knowledge which is available to
a decision maker can be different in different cases. Sometimes one is able to assess not
only which states can be obtained by selecting a given control in a given state but also
their probabilities. These systems are called stochastic. In other cases, the decision maker
might know the possible outcomes of a single decision but nothing more. The corresponding
systems are called non-deterministic.

The notion of monadic systems, originally introduced by Ionescu [Ion09], is a simple,
yet powerful, way of treating deterministic, non-deterministic, stochastic and other systems
in a uniform fashion. It has been developed in the context of climate vulnerability research,
but can be applied to other systems as well. In a nutshell, the idea is to generalize a generic
transition function of type α → α to α → M α where M is a monad.

For M = Id , M = List and M = SimpleProb, one recovers the deterministic, the non-
deterministic and the stochastic cases. As in [Ion09], we use SimpleProb α to formalize the
notion of finite probability distributions (a probability distribution with finite support) on
α, for instance:

data SimpleProb : Type → Type where

MkSimpleProb : (as : Vect n α) →
(ps : Vect n R) →
(k : Fin n → So (index k ps > 0.0)) →
sum ps = 1.0 →
SimpleProb α

We write M : Type → Type for a monad and fmap, ret and >>= for its fmap, return and
bind operators:

fmap : (α → β) → M α → M β

ret : α → M α

(>>=) : M α → (α → M β) → M β

fmap is required to preserve identity and composition that is, every monad is a functor:

functorSpec1 : fmap id = id

functorSpec2 : fmap (f ◦ g) = (fmap f ) ◦ (fmap g)

ret and >>= are required to fulfill the monad laws

monadSpec1 : (fmap f ) ◦ ret = ret ◦ f

monadSpec2 : (ret a) >>= f = f a

monadSpec3 : ma >>= ret = ma

monadSpec4 : {f : a → M b} → {g : b → M c} →
(ma >>= f ) >>= g = ma >>= (λa ⇒ (f a) >>= g)
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For the stochastic case (M = SimpleProb), for example, >>= encodes the total probability
law and the monadic laws have natural interpretations in terms of conditional probabilities
and concentrated probabilities.

As it turns out, the monadic laws are not necessary for computing optimal policy se-
quences. But, as we will see in section 5.4, they do play a crucial role for computing possible
state-control trajectories from (optimal or non optimal) sequences of policies. For stochas-
tic decision problems, for instance, and a specific policy sequence, >>= makes it possible to
compute a probability distribution over all possible trajectories which can be realized by
selecting controls according to that sequence. This is important, e.g. in policy advice, for
providing a better understanding of the (possible) implications of adopting certain policies.

We can apply the approach developed for monadic dynamical systems to sequential
decision problems to extend the transition function to the time-dependent monadic case

step : (t : N) → (x : State t) → Ctrl t x → M (State (S t))

As it turns out, extending the time-dependent formulation to the monadic case is almost
straightforward and we do not present the full details here. There are, however, a few
important aspects that need to be taken into account. We discuss four aspects of the
monadic extension in the next four sections.

5.1. Monadic containers. For our application not all monads make sense. We generalize
from the deterministic case where there is just one possible state to some form of container
of possible next states. A monadic container has, in addition to the monadic interface, a
membership test:

(∈) : α → M α → Bool

For the generalization of viable we also require the predicate areAllTrue defined on M -
structures of Booleans

areAllTrue : M Bool → Bool

The idea is that areAllTrue mb is true if and only if all Boolean values contained in mb are
true. We express this by requiring the following specification

areAllTrueSpec : (b : Bool) → So (areAllTrue (ret b) == b)

isInAreAllTrueSpec : (mx : M α) → (p : α → Bool) →
So (areAllTrue (fmap p mx )) →
(x : α) → So (x ∈ mx ) → So (p x )

It is enough to require this for the special case of α equal to State (S t).
A key property of the monadic containers is that if we map a function f over a container

ma, f will only be used on values in the subset of α which are in ma. We model the subset
as (a : α ∗∗ so (a ∈ ma)) and we formalise the key property by requiring a function
tagElem which takes any a : α in the container into the subset:

toSub : (ma : M α) → M (a : α ∗∗ So (a ∈ ma))

toSubSpec : (ma : M α) → fmap outl (toSub ma) = ma

The specification requires toSub to be a tagged identity function. For the cases mentioned
above (M = Id , List and SimpleProb) this is easily implemented.
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5.2. Viability, reachability. In section 4 we said that a state x : State t is viable for S n
steps if an only if there exists a control y : Ctrl t x such that step t x y is viable n steps.

As explained above, monadic extensions are introduced to generalize the notion of
deterministic transition function. For M = SimpleProb, for instance, step t x y is a
probability distribution on State (S t). Its support represents the set of states that can be
reached in one step from x by selecting the control y .

According to this interpretation, M is a monadic container and the states in step t x y
are possible states at step S t . For x : State t to be viable for S n steps, there must exist a
control y : Ctrl t x such that all next states which are possible are viable for n steps. We
call such a control a feasible control

viable : (n : N) → State t → Bool

feasible : (n : N) → (x : State t) → Ctrl t x → Bool

feasible {t } n x y = areAllTrue (fmap (viable n) (step t x y))

With the notion of feasibility in place, we can extend the specification of viable to the
monadic case

viableSpec0 : (x : State t) → Viable Z x

viableSpec1 : (x : State t) → Viable (S n) x → GoodCtrl t n x

viableSpec2 : (x : State t) → GoodCtrl t n x → Viable (S n) x

As in the time-dependent case, Viable n x as a shorthand for so (viable n x ) and

GoodCtrl : (t : N) → (n : N) → State t → Type

GoodCtrl t n x = (y : Ctrl t x ∗∗ Feasible n x y)

Here, Feasible n x y is a shorthand for so (feasible n x y).
The notion of reachability introduced in section 4 can be extended to the monadic case

straightforwardly: every initial state is reachable. If a state x : State t is reachable, every
control y : Ctrl t x leads, via step to a M -structure of reachable states. Conversely, if
a state x ′ : State (S t) is reachable then there exist a state x : State t and a control
y : Ctrl t x such that x is reachable and x ′ is in the M -structure step t x y :

reachable : State t → Bool

Reachable : State t → Type

Reachable x = So (reachable x )

reachableSpec0 : (x : State Z ) → Reachable x

reachableSpec1 : (x : State t) → Reachable x → (y : Ctrl t x ) →
(x ′ : State (S t)) → So (x ′ ∈ (step t x y)) → Reachable x ′

reachableSpec2 : (x ′ : State (S t)) → Reachable x ′ →
(x : State t ∗∗ (Reachable x , (y : Ctrl t x ∗∗ So (x ′ ∈ (step t x y)))))

As in the time-dependent case, Reachable x is a shorthand for so (reachable x ).
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5.3. Aggregation measure. In the monadic case, the notions of policy and policy se-
quence are the same as in the deterministic case. The notion of value of a policy sequence,
however, requires some attention.

In the deterministic case, the value of selecting controls according to the policy sequence
(p :: ps) of length S n when in state x at step t is given by

reward t x y x ′ + val (S t) n x ′ r ′ v ′ ps

where y is the control selected by p, x ′ = step t x y and r ′ and v ′ are proofs that x ′ is
reachable and viable for n steps. In the monadic case, step returns an M -structure of states.
In general, for each possible state in step t x y there will be a corresponding value of the
above sum.

As shown by Ionescu [Ion09], one can easily extend the notion of the value of a policy
sequence to the monadic case if one has a way of measuring (or aggregating) an M -structure
of R satisfying a monotonicity condition:

meas : M R → R
measMon : (f : State t → R) → (g : State t → R) →

((x : State t) → So (f x 6 g x )) →
(mx : M (State t)) → So (meas (fmap f mx ) 6 meas (fmap g mx ))

With meas, the value of a policy sequence in the monadic case can be easily computed

Mval : (t : N) → (n : N) →
(x : State t) → (r : Reachable x ) → (v : Viable n x ) →
PolicySeq t n → R

Mval Z = 0

Mval t (S n) x r v (p :: ps) = meas (fmap f (toSub mx ′)) where

y : Ctrl t x ; y = outl (p x r v)

mx ′ : M (State (S t)); mx ′ = step t x y

f : (x ′ : State (S t) ∗∗ So (x ′ ∈ mx ′)) → R
f (x ′ ∗∗ x ′ins) = reward t x y x ′ + Mval (S t) n x ′ r ′ v ′ ps where

r ′ : Reachable x ′; r ′ = reachableSpec1 x r y x ′ x ′ins

v ′ : Viable n x ′; v ′ = isInAreAllTrueSpec mx ′ (viable n) (outr (p x r v)) x ′ x ′ins

Notice that, in the implementation of f , we (can) call Mval only for those values of x ′ which
are provably reachable (r ′) and viable for n steps (v ′). Using r , v and outr (p x r v), it is
easy to compute r ′ and v ′ for x ′ in mx ′.

The monotonicity condition for meas plays a crucial role in proving Bellman’s principle
of optimality. The principle itself is formulated as in the deterministic case, see section 4.4.
But now, proving

Mval t (S n) x r v (p ′ :: ps ′) 6 Mval t (S n) x r v (p ′ :: ps)

requires proving that

meas (fmap f (step t x y)) 6 meas (fmap g (step t x y))

where f and g are the functions that map x ′ in mx ′ to

reward t x y x ′ + Mval (S t) n x ′ r ′ v ′ ps ′

and
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reward t x y x ′ + Mval (S t) n x ′ r ′ v ′ ps

respectively (and r ′, v ′ are reachability and viability proofs for x ′, as above). We can use
optimality of ps and monotonicity of + as in the deterministic case to infer that the first sum
is not bigger than the second one for arbitrary x ′. The monotonicity condition guarantees
that inequality of measured values follows.

A final remark on meas: in standard textbooks, stochastic sequential decision problems
are often tackled by assuming meas to be the function that computes (at step t , state x ,
for a policy sequence p :: ps, etc.) the expected value of fmap g (step t x y) where y is the
control selected by p at step t and g is defined as above. Our framework allows clients to
apply whatever aggregation best suits their specific application domain as long as it fulfills
the monotonicity requirement. This holds for arbitrary M , not just for the stochastic case.

5.4. Trajectories. Dropping the assumption of determinism has an important implication
on sequential decision problems: the notion of control sequences (and, therefore, of optimal
control sequences) becomes, in a certain sense, void. What in the non-deterministic and
stochastic cases do matter are just policies and policy sequences.

Intuitively, this is easy to understand. If the evolution of a system is not deterministic,
it makes very little sense to ask for the best actions for the future. The best action at step
t + n will depend on the state that will be reached after n steps. Such state is not known
in advance. Thus – for non-deterministic systems – only policies are relevant: if we have an
optimal policy for step t + n, we know all we need to optimally select controls at that step.

On a more formal level, the implication of dropping the assumption of determinism
is that the notions of control sequence and policy sequence become roughly equivalent.
Consider, for example, a non-deterministic case (M = List) and an initial state x0 : State 0.
Assume we have a rule

p0 : (x : State 0) → Ctrl 0 x

which allows us to select a control y0 = p0 x0 at step 0. We can then compute the singleton
list consisting of the dependent pair (x0 ∗∗ y0):

mxy0 : M (x : State 0 ∗∗ Ctrl 0 x )

mxy0 = ret (x0 ∗∗ y0)

Via the transition function, mxy0 yields a list of possible future states mx 1:

mx 1 : M (State 1)

mx 1 = step 0 x0 y0

Thus, after one step and in contrast to the deterministic case, we do not have just one set
of controls to choose from. Instead, we have as many sets as there are elements in mx 1.
Because the controls available in a given state depend, in general, on that state, we do not
have a uniformly valid rule for joining all such control spaces into a single one to select a
new control from. But again, if we have a rule for selecting controls at step 1

p1 : (x : State 1) → Ctrl 1 x

we can pair each state in mx 1 with its corresponding control and compute a list of state-
control dependent pairs

mxy1 : M (x : State 1 ∗∗ Ctrl 1 x )

mxy1 = fmap f mx 1 where
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f : (x : State 1) → (x : State 1 ∗∗ Ctrl 1 x )

f x1 = (x1 ∗∗ p1 x1)

In general, if we have a rule p

p : (t : N) → (x : State t) → Ctrl t x

and an initial state x0, we can compute lists of state-control pairs mxy t for arbitrary t

mxy : (t : N) → M (x : State t ∗∗ Ctrl t x )

mxy Z = ret (x0 ∗∗ p Z x0)

mxy (S t) = (mxy t) >>= g where

g : (x : State t ∗∗ Ctrl t x ) → M (x : State (S t) ∗∗ Ctrl (S t) x )

g (xt ∗∗ yt) = fmap f (step t xt yt) where

f : (x : State (S t)) → (x : State (S t) ∗∗ Ctrl (S t) x )

f xt = (xt ∗∗ p (S t) xt)

For a given t , mxy t is a list of state-control pairs. It contains all states and controls which
can be reached in t steps from x0 by selecting controls according to p 0 . . . p t . We can see
mxy t as a list-based, possibly redundant representation of a subset of the graph of p t .

We can take a somewhat orthogonal view and compute, for each element in mxy t , the
sequence of state-control pairs of length t leading to that element from (x0 ∗∗ p0 x0). What
we obtain is a list of sequences. Formally:

data StateCtrlSeq : (t : N) → (n : N) → Type where

Nil : (x : State t) → StateCtrlSeq t Z

(::) : (x : State t ∗∗ Ctrl t x ) → StateCtrlSeq (S t) n → StateCtrlSeq t (S n)

stateCtrlTrj : (t : N) → (n : N) →
(x : State t) → (r : Reachable x ) → (v : Viable n x ) →
(ps : PolicySeq t n) → M (StateCtrlSeq t n)

stateCtrlTrj Z x = ret (Nil x )

stateCtrlTrj t (S n) x r v (p :: ps ′) = fmap prepend (toSub mx ′ >>= f ) where

y : Ctrl t x ; y = outl (p x r v)

mx ′ : M (State (S t)); mx ′ = step t x y

prepend : StateCtrlSeq (S t) n → StateCtrlSeq t (S n)

prepend xys = (x ∗∗ y) :: xys

f : (x ′ : State (S t) ∗∗ So (x ′ ∈ mx ′)) → M (StateCtrlSeq (S t) n)

f (x ′ ∗∗ x ′inmx ′) = stateCtrlTrj (S t) n x ′ r ′ v ′ ps ′ where

r ′ : Reachable x ′; r ′ = reachableSpec1 x r y x ′ x ′inmx ′

v ′ : Viable n x ′; v ′ = isInAreAllTrueSpec mx ′ (viable n) (outr (p x r v)) x ′ x ′inmx ′

For an initial state x : State 0 which is viable for n steps, and a policy sequence ps,
stateCtrlTrj provides a complete and detailed information about all possible state-control
sequences of length n which can be obtained by selecting controls according to ps.

For M = List , this information is a list of state-control sequences. For M = SimpleProb
it is a probability distribution of sequences. In general, it is an M -structure of state-control
sequences.
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If ps is an optimal policy sequence, we can search stateCtrlTrj for different best-case
scenarios, assess their Mval -impacts or, perhaps identify policies which are near optimal
but easier to implement than optimal ones.

6. Conclusions and outlook

We have presented a dependently typed, generic framework for finite-horizon sequential
decision problems. These include problems in which the state space and the control space
can depend on the current decision step and the outcome of a step can be a set of new
states (non-deterministic SDPs) a probability distribution of new states (stochastic SDPs)
or, more generally, a monadic structure of states.

The framework supports the specification and the solution of specific SDPs that is, the
computation of optimal controls for an arbitrary (but finite) number of decision steps n and
starting from initial states which are viable for n steps, through instantiation of an abstract
context.

Users of the framework are expected to implement their problem-specific context.
This is done by specifying the “bare” problem State, Ctrl , M , step, reward ; the basic
container monad functionalities fmap, MisIn, areAllTrue, toSub and their specification
isInAreAllTrueSpec; the measure meas and its specification measMon; the viability and
reachability functions viable and reachable with their specification viableSpec0 , viableSpec1 ,
viableSpec2 , reachableSpec0 , reachableSpec1 , reachableSpec2 and the maximization func-
tions max and argmax with their specification maxSpec and argmaxSpec (used in the im-
plementation of optExtension).

The generic backwards induction algorithm provides them with an optimal sequence of
policies for their specific problem. The framework’s design is based on a clear cut separa-
tion between proofs and computations. Thus, for example, backwardsInduction returns a
bare policy sequence, not a policy sequence paired with an optimality proof. Instead, the
optimality proof is implemented as a separate lemma

BackwardsInductionLemma : (t : N) → (n : N) → OptPolicySeq t n (backwardsInduction t n)

This approach supports an incremental approach towards correctness: If no guarantee of
optimality is required, users do not need to implement the full context. In this case, some
of the above specifications, those of max and argmax , for instance, do not need to be
implemented.

We understand our contribution as a first step towards building a software infrastructure
for computing provably optimal policies for general SDPs and we have made the essential
components of such infrastructure publicly available on GitHub6

This paper is part of a longer series exploring the use of dependent types for scientific
computing [IJ13a] including the interplay between testing and proving [IJ13b]. We have
developed parts of the library code in Agda (as well as in Idris) to explore the stronger
module system and we have noticed that several notions could benefit from using the rela-
tional algebra framework (called AoPA) built up in [MKJ09]. Rewriting more of the code
in AoPA style is future work.

6The repository is https://github.com/nicolabotta/SeqDecProbs and the code for this paper is in
tree/master/manuscripts/2014.LMCS/code.

https://github.com/nicolabotta/SeqDecProbs
tree/master/manuscripts/2014.LMCS/code
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6.1. Generic tabulation. The policies computed by backwards induction are provably
optimal but backwards induction itself is often computationally intractable. For the cases
in which State t is finite, the framework provides a tabulated version of the algorithm which
is linear in the number of decision steps (not presented here).

The tabulated version is still generic but does not come with a machine-checkable
proof of correctness. Nevertheless, users can apply the slow but provably correct algorithm
to “small” problems and use these results to validate the fast version. Or they can use
the tabulated version for production code and switch back to the safe implementation for
verification.

6.2. Viability and reachability defaults. As seen in the previous sections, in order to
apply the framework to a specific problem, a user has to implement a problem-specific
viability predicate

viable : (n : N) → State t → Bool

Attempts at computing optimal policies of length n from initial states which are not viable
for at least n steps are then detected by the type checker and rejected. This guarantees
that no exceptions will occur at run time. In other words: the framework will reject
problems which are not well-posed and will provide provably optimal solutions for well-
posed problems.

As seen in section 5.2, for this to work, viable has to be consistent with the problem
specific controls Ctrl and transition function step that is, it has to fulfill:

viableSpec0 : (x : State t) → Viable Z x

viableSpec1 : (x : State t) → Viable (S n) x → GoodCtrl t n x

viableSpec2 : (x : State t) → GoodCtrl t n x → Viable (S n) x

where

GoodCtrl : (t : N) → (n : N) → State t → Type

GoodCtrl t n x = (y : Ctrl t x ∗∗ Feasible n x y)

and Feasible n x y is a shorthand for so (feasible n x y):

feasible : (n : N) → (x : State t) → Ctrl t x → Bool

feasible {t } n x y = areAllTrue (fmap (viable n) (step t x y))

Again, users are responsible for implementing or (if they feel confident to do so) postulating
the specification.

For problems in which the control state Ctrl t x is finite for every t and x , the framework
provides a default implementation of viable. This is based on the notion of successors:

succs : State t → (n : N ∗∗ Vect n (M (State (S t))))

succsSpec1 : (x : State t) → (y : Ctrl t x ) → So ((step t x y) ‘isIn‘ (succs x ))

succsSpec2 : (x : State t) → (mx ′ : M (State (S t))) →
So (mx ′ ‘isIn‘ (succs x )) → (y : Ctrl t x ∗∗ mx ′ = step t x y)

Users can still provide their own implementation of viable. Alternatively, they can imple-
ment succs (and succsSpec1 , succsSpec2 ) and rely on the default implementation of viable
provided by the framework. This is
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viable Z = True

viable (S n) x = isAnyBy (λmx ⇒ areAllTrue (fmap (viable n) mx )) (succs x )

and can be shown to fulfill viableSpec0 , viableSpec1 and viableSpec2 . In a similar way, the
framework supports the implementation of reachable with a default based on the notion of
predecessor.

6.3. Outlook. In developing the framework presented in this paper, we have implemented
a number of variations of the “cylinder” problem discussed in sections 3 and 4 and a simple
“Knapsack” problem instance7. Discussing such examples goes beyond the scope of this
paper but we plan a follow-up article focused on application examples. In particular, we
want to apply the framework to study optimal emission policies in a competitive multi-
agent game under threshold uncertainty in the context of climate impact research. This is
the application domain that has motivated the development of the framework in the very
beginning.

The work presented here naturally raises a number of questions. A first one is related
with the notion of reward function

reward : (t : N) → (x : State t) → Ctrl t x → State (S t) → R
As mentioned in our previous paper [BIB13], we have taken reward to return values of type
R but it is clear that this assumption can be weakened. A natural question here is what
specification the return type of reward has to fulfill for the framework to be implementable.

A second question is directly related with the notion of viability discussed above. Ac-
cording to this notion, a necessary (and sufficient) condition for a state x : State t to be
viable S n steps is that there exists a control y : Ctrl t x such that all states in step t x y
are viable n steps.

Remember that step t x y is an M-structure of values of type State (S t). In the
stochastic cases, step t x y is a probability distribution. Its support is the set of all states
that can be reached from x with non-zero probability by selecting y . Our notion of viability
requires all such states to be viable n steps no matter how small their probabilities might
actually be. It is clear that under our notion of viability small perturbations of a perfectly
deterministic transition function can easily turn a well-posed problem into an ill-posed one.
The question here is whether there is a natural way of weakening the viability notion that
allows one to preserve well-posedness in the limit for vanishing probabilities of non-viable
states.

Another question comes from the notion of aggregation measure introduced in section
5.3. As mentioned there, in the stochastic case meas is often taken to be the expected value
function. Can we construct other suitable aggregation measures? What is their impact on
optimal policy selection?

Finally, the formalization presented here has been implemented on the top of ad-hoc
extensions of the Idris standard library. Beside application (framework) specific software
components — e.g., for implementing the context of SDPs or tabulated versions of back-
wards induction — we have implemented data structures to represent bounded natural

7 See S1206 CylinderExample1.lidr, S1206 CylinderExample4.lidr and S1106 KnapsackExample.lidr in
the Github repository

https://github.com/nicolabotta/SeqDecProbs/blob/master/manuscripts/2014.LMCS/code/DynamicProgramming/S1206_CylinderExample1.lidr
https://github.com/nicolabotta/SeqDecProbs/blob/master/manuscripts/2014.LMCS/code/DynamicProgramming/S1206_CylinderExample4.lidr
https://github.com/nicolabotta/SeqDecProbs/blob/master/manuscripts/2014.LMCS/code/DynamicProgramming/S1106_KnapsackExample.lidr
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numbers, finite probability distributions, and setoids. We also have implemented a num-
ber of operations on data structures of the standard library, e.g., point-wise modifiers for
functions and vectors and filter operations with guaranteed non-empty output.

From a software engineering perspective, an interesting question is how to organize such
extensions in a software layer which is independent of specific applications (in our case the
components that implement the framework for SDPs) but still not part of the standard
library. To answer this question we certainly need a better understanding of the scope of
different constructs for structuring programs: modules, parameter blocks, records and type
classes.

For instance it is clear that from our viewpoint – that of the developers of the frame-
work – the specifications (∈), isInAreAllTrueSpec of section 5 demand a more polymorphic
formulation. On the other hand, these functions are specifications: in order to apply the
framework, users have to implement them. How can we avoid over-specification while at
the same time minimizing the requirements we put on the users?

Tackling such questions would obviously go beyond the scope of this paper and must
be deferred to future work.
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